TRƯờNG THPT chuyên Hà Tĩnh ------*****------ Đề thi Thử Đại học lần iii, năm học 2010-2011 Môn : Toán ; Khối : A, B Thời gian làm bài: 180 phút, không kể thời gian phát đề. I. PHN CHUNG CHO TT C TH SINH (7,0 im) Câu I. (2,0 điểm) 1. Khảo sát biến thiên vẽ đồ thị (C) hàm số y = x3 - 3x2. m 2. Biện luận theo m số nghiệm phơng trình x = . x 3x Câu II. (2,0 điểm) 1. Tìm nghiệm x ( 0; ) phơng trình : 2. Tìm tất giá trị m để hàm số y = 5cosx + sinx - = sin x + . 3x + x + x + 2mx + xác định x R . log e ln(1 + ln x ) dx . Câu III. (1,0 điểm) Tính tích phân I = x Câu IV. (1,0 điểm) Cho khối lăng trụ đứng ABCD. A1 B1C1 D1 có đáy hình bình hành có BAD = 45 . Các đờng chéo AC1 DB1 lần lợt tạo với đáy góc 450 600. Hãy tính thể tích khối lăng trụ biết chiều cao 2. 2 x + 18 y + 36 xy 5(2 x + y ) xy = ( x, y R ) . Câu V. (1,0 điểm) Giải hệ phơng trình : 2 x + y = 30 II. PHN RIấNG (3,0 im) Thớ sinh ch c lm mt hai phn (phn A hoc B). A. Theo chng trỡnh Chun: Cõu VIa. (2,0 im) 1. Trong mt phng tọa độ Oxy, cho cỏc ng thng d1 : x + y = ; d : x y + = . Vit phng trỡnh ng trũn cú tõm I d v tip xỳc vi d1 ti im A ( 2;5 ) . 2. Trong khụng gian tọa độ Oxyz, cho hỡnh thoi ABCD vi A(1 ; 2; 1), B(2 ; ; 2) . Tỡm ta cỏc nh C, D bit tõm I ca hỡnh thoi thuc ng thng d : Cõu VIIa. (1,0 im) x +1 y z = = . 1 Tỡm s phc z tha z = v 17( z + z ) z z = . B. Theo chng trỡnh Nõng cao: Cõu VIb. (2,0 im) 1. Trong mt phng tọa độ Oxy, cho đờng tròn (C) : x2 + y2 - 6x - 2y + = 0. Viết phơng trình đờng thẳng (d) qua M (0;2) cắt (C) theo dây cung có độ dài 4. 2. Trong khụng gian tọa độ Oxyz, viết phơng trình mặt phẳng (P) chứa trục Oy (P) cắt mặt cầu (S) : x2 + y2 + z2 - 2x + 6y - 4z + = theo giao tuyến đờng tròn có bán kính 2. ( ) Cõu VIIb. (1,0 im) Trong cỏc acgumen ca s phc 3i , tỡm acgumen cú s o dng nh nht . ------------------------------------ Ht ------------------------------------Ghi : Thí sinh không đợc sử dụng tài liệu Cán coi thi không giải thích thêm. Họ tên thí sinh :--------------------------------------; Số báo danh:------------------- TTT trờng THPTchuyên Hà Tĩnh kỳ thi Thử Đại học lần iii, năm học 2010 -2011 Môn: Toán - Khối: a, B Câu I 1. y = x3 - 3x2. (1đ) * Tập xác định : D = R * Sự biến thiên : Giới hạn: lim y = + lim y = x + Đáp án Điểm 0.25 x Chiều biến thiên : y = 3x2 - 6x = 3x(x -2) Hàm số đồng biến khoảng ( - ; 0) (2; + ), nghịch biến khoảng (0;2). - th cú im cc i (0;0), im cc tiu (2; -4) Bảng biến thiên : x - + , y + y 0 - 0.25 + 0.25 -4 * Đồ thị : y'' = 6x - = x = Điểm uốn U(1;-2) Đồ thị qua điểm (-1;4), (3; 0) nhận điểm U(1;-2) làm tâm đối xứng . y x 2. (1đ) x= m x 3x x 0, x . x x x = m Số nghiệm pt số giao điểm đồ th 0.25 0.25 y = x x x ( x v x 3) vi th y = m . x 3x x < hoac x > Ta cú y = x x x = . x + x < x < Lp bng bin thiờn ta cú: x - y + 0.25 0 + - + y + 0.25 0 +/ +/ +/ +/ m < hoc m > thỡ pt cú nghim. m = pt vụ nghim. < m < pt cú nghim. m = pt cú nghim. 0,25 II 1. (1đ) 5cosx + sinx - = sin x + 5cosx +sinx = sin2x + cos2x 0.25 2cos2x 5cosx + + sin2x sinx = (2cosx )(cosx 2) + sinx( 2cosx 1) = (2cosx 1) ( cosx + sinx ) = 0. +/ cosx + sinx = vụ nghim. +/ cosx = x = + 2k , k Z . i chiu iu kin x ( 0; ) suy pt cú nghim nht l : (1đ) Hm s xỏc nh x R log 0,25 0,25 3x + x + 3x + x + x R (*). x + 2mx + x + 2mx + m < Vỡ 3x + 2x + > x , nờn (*) 2 x + 2mx + x + x + x 0,25 , x R . Gii ta cú vi : III. (1đ) 1- m < thỡ hm s xỏc nh vi x R . t lnx = t , ta cú I = ln(1 + t )dt . t u = ln( 1+t2) , dv = dt ta cú : du = 2t dt , v = t . 1+ t2 1 1 t2 dt dt = ln dt T ú cú : I = t ln( 1+ t ) ữ (*). 0 1+ t 1+ t2 0 Tip tc t t = tanu , ta tớnh c dt 1+ t 0.25 0.25 x + 2(1 m) x + x + 2(m + 1) x + < m < 0,25 = 0,25 0.25 0.5 . 0.25 . Hỡnh lng tr ng nờn cnh bờn vuụng gúc vi ỏy v di cnh bờn bng chiu cao ca 0 hỡnh lng tr. T gi thit ta cú : C1 AC = 45 , B1 DB = 60 . T ú suy : AC = CC1 = , BD = cot 600 = . p dng nh lý cụ sin cú: BD2 = AB2 + AD2 2AB.AD. cos450 , AC2 = DC2 +AD2 2DC.AD.cos1350. Ta cú : 4 BD2 AC2 =- AB.AD + DC. AD( 2) = 2 AB. AD = 2 AB. AD AB. AD = 3 Thay vo (*) ta cú : I = ln2 + IV. (1đ) . .2 = . T ú VABCD. A1B1C1D1 = AB.AD sin450.AA1 = 3 2 0,5 0,5 V. (1đ) iu kin xy .Nu x = suy y = khụng tho pt (2) ca h. Nu y = cng tng t, xy > 0. xy 2x + 3y + = . Pt (1) ca h x + 18 y + 36 xy = 5(2 x + y ) xy 6x y 2x + 3y 2 2x + 3y = t , t 2. Xột f(t) = t + , t . Ta thy f(t) = t > t suy f(t) . xy t t2 Du = xy t = hay 2x = 3y. Thay vo pt (2) ca h , suy h cú nghim: x = ; y = 2. vy 0,5 t VIa. 1. (1đ) Do ng trũn tip xỳc vi ng thng d1 ti im A nờn IA d1 . Vy phng trỡnh IA l: ( x + ) ( y ) = x y + 19 = d2 0,5 0.5 d1 A x y + = x = I ( 1;7 ) Kt hp I d nờn ta tõm I l nghim h x y + 19 = y = Bỏn kớnh ng trũn R = IA = 13 . Vy phng trỡnh ng trũn l: ( x 1) + ( y ) = 13 uur uur Gi I ( t ; t ; + t ) d . Ta cú IA = ( t ; + t ; t ) , IB = ( + t ;3 + t ; t ) . uur uur Do ABCD l hỡnh thoi nờn IA.IB = 3t + 9t + = t = 1, t = . 0,5 Do C i xng vi A qua I v D i xng vi B qua I nờn: * Vi t = I ( 0;1;1) C ( 1;0;1) , D ( 2; 1;0 ) . 0.5 2. (1đ) 0,5 * Vi t = I ( 1; 2;0 ) C ( 3; 2; 1) , D ( 0;1; ) . VIIa. (1đ) t z = a + bi , ta cú: z = ( a 1) 2 Mt khỏc: 17( z + z ) z.z = a + b = Thay (2) vo (1) c + b = a + b 2a = 24 ( 1) 34 a ( 2) 24 a = 24 a = . Kt hp vi (1) cú b = b = 3, b = . Vy cú hai s phc tha bi toỏn l: + 3i v 3i . 0.5 0,5 VIb 1. (1đ) (C) cú tõm I(3;1) v b/k R =3 .Gi s (C) ct (d) ti A , B .H IH AB thỡ H l trung im ca AB suy AH = 2. Tam gớac AHI vuụng ti H nờn IH = IA2 AH = = . Vỡ (d) qua M(0;2) nờn cú pt A(x-0) +B(y-2) = ( A2 + B2 0) Ax + By 2B = . Ta cú IH = A + B 2B = A2 AB B = . Chn B = ta cú : A = hoc - A2 + B Vy cú t (d) phi tỡm l : (d1): 2x + y -2 = v (d2) : x 2y + = 0. 0,5 . 0.5 Phng trỡnh (S) : (x-1)2 + (y + 3)2 + ( z -2)2 = suy tõm I( 1; -3;2), b/k R = 3. (P) cha Oy nờn pt cú dng Ax + Cz = vi (A2 +C2 ). 0.5 (P) ct (S) theo ng trũn b/k r = suy d(I,(P)) = VIIb. (1đ) Chn A = thỡ C = 2. iữ = cos( ) + i sin( ) ữ. Ta cú 3i = ữ 2 3 R2 r = A + 2C = C = 2A A2 + C Vy pt mf (P) l : x + 2z = 0. 0.5 0,5 8 Theo cụng thc Moavr ta cú z = cos( ) + i sin( ) ữ . T ú suy z cú h cỏc 3 + 2k , k Z . Ta thy vi k = thỡ acgumen dng nh nht ca z l acgumen l : . 3 0,5 VII b. 0.25 0.5 0.25 . TRƯờNG THPT chuyên Hà Tĩnh ***** Đề thi Thử Đại học lần iii, năm học 2010-2011 Môn : Toán ; Khối : A, B Thời gian làm bài: 180 phút, không kể thời gian phát đề. I. PHN CHUNG CHO. trờng THPTchuyên Hà Tĩnh kỳ thi Thử Đại học lần iii, năm học 2010 -2011 Môn: Toán - Khối: a, B Câu Đáp án Điểm I 1. (1đ) y = x 3 - 3x 2 . * Tập xác định : D = R * Sự biến thi n : Giới hạn:. x 3) vi th y = m . Ta cú y = 3 2 2 3 2 3 0 3 3 3 0 3 x x khi x hoac x x x x x x khi x < > = + < < . Lp bng bin thi n ta cú: x - 0 2 3 + y + 0 + 0 - + y 4 0 0 +/