1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Functional studies of a type III and a novel secretion system of edwardsiella tarda

205 619 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Cấu trúc

  • ACKNOWLEDEMENTS

  • TABLE OF CONTENTS

  • LIST OF PUBLICATIONS RELATED TO THIS STUDY

  • LIST OF FIGURES

  • LIST OF ABBREVIATIONS

  • SUMMARY

  • Chapter I. Introduction

    • I.1 E. tarda and its infections

      • I.1.1 Taxonomy, identification and distribution

      • I.1.2 E. tarda infections

        • I.1.2.1 Infections in humans

        • I.1.2.2 Infections in animals

      • I.1.3 Treatment and prevention

    • I.2 Virulence factors of E. tarda

      • I.2.1 Serum and phagocyte resistance

      • I.2.2 Adherence and invasion of host cell

      • I.2.3 Toxins, enzymes and other secreted proteins

      • I.2.4 Phosphate specific transport (PST) operon

      • I.2.5 Type III secretion system in E. tarda

      • I.2.6 EVP gene cluster

    • I.3 Secretion systems in gram-negative bacteria

      • I.3.1 Type I secretion system

      • I.3.2 Type II secretion system

      • I.3.3 Type IV secretion system

      • I.3.4 Type V secretion system

      • I.3.5 Type III secretion system

        • I.3.5.1 Regulation of type III secretion system

          • I.3.5.1.1 Regulation of Salmonella pathogenecity island 1 (SPI-1)

          • I.3.5.1.2 Regulation of Salmonella SPI-2

          • I.3.5.1.3. Regulation of EPEC LEE TTSS

          • I.3.5.1.4. Regulation of P. aeruginosa TTSS

        • I.3.5.2 Chaperones of TTSS

          • I.3.5.2.1 Chaperones of effectors

          • 1.3.5.2.2 Chaperones of translocators

          • 1.3.5.2.3 Chaperones of the flagellar system

      • 1.3.6 A putative novel secretion system

    • I.4 Objectives

  • Chapter II. Common materials and methods

    • II.1 Bacterial strains, plasmids and buffers

    • II.2 Preparation of E. tarda cultures

    • II.3 Molecular biology techniques

      • II.3.1 Genomic DNA isolation

      • II.3.2 Genome walking and cloning

      • II.3.3 Cloning and transformation into E. coli cells

      • II.3.4 Analysis of plasmid DNA

      • II.3.5 Purification of plasmid DNA

      • II.3.6 Phage Library

        • II.3.6.1 Phage Library construction

        • II.3.6.2 Plaque screening

        • II.3.6.3 Purification of phage DNA

      • II.3.7 DNA sequencing

      • II.3.8 Sequence analysis

      • II.3.9 Southern hybridization

        • II.3.9.1 DNA preparation

        • II.3.9.2 Probe preparation

        • II.3.9.3 Hybridization analysis

        • II.3.9.4 Washing and visualization

    • II.4 Protein techniques

      • II.4.1 Preparation of extracellular proteins from E. tarda

      • II.4.2 One-dimensional polyacrlamide gel electophoresis (1D-PAGE)

      • II.4.3 Two-dimensional polyacrylamide gel electophoresis

        • II.4.3.1 Iso-electric focusing (IEF)

        • II.4.3.2 Second-dimensional PAGE

      • II.4.4 Silver staining of protein gels

    • II.5 Western blot

    • II.6 Animal studies

      • II.6.1 Animal model and maintenance

      • II.6.2 Fifty percent median lethal dose (LD50) studies

    • II.7 Statistical Analysis

  • Chapter III. Regulation of a Type III and a Putative Secretion System (EVP) by EsrC in E. tarda

    • III.1 Introduction

    • III.2 Materials and Methods

      • III.2.1 Bacterial strains and plasmids

      • III.2.2 Construction of deletion mutants and plasmids

      • III.2.3 LD50 determinations

      • III.2.4 Phagocyte isolation

      • III.2.5 2D-PAGE and protein identification

      • III.2.6 RNA isolation and RT-PCR analysis

      • III.2.7 β-galactosidase assays

    • III.3 Results

      • III.3.1 Sequence analysis of regulators

      • III.3.2 Role of EsrC in E. tarda virulence and protein secretion

      • III.3.3 Functional relationship between two-component system EsrA-EsrB and EsrC

      • III.3.4 Regulation of TTSS apparatus genes and orf29 and orf30

      • III.3.5 EsrC regulates the EVP gene cluster

      • III.3.6 Regulation of esrA-esrB and esrC

    • III.4 Discussion

      • III.4.1 EsrC is a positive regulator

      • III.4.2 EsrC regulates orf29 and orf30 and EVP

      • III.4.3 Involvements of other regulators

      • III.4.4 Effect of high temperature

  • Chapter IV. EscBD is a chaperone for the TTSS translocon components EseB and EseD in E. tarda

    • IV.1 Introduction

    • IV.2 Materials and Methods

      • IV.2.1 Bacterial strains and plasmids

      • IV.2.2 Construction of deletion mutants and plasmid

      • IV.2.3 1D-PAGE, 2D-PAGE and Western analysis of proteins

      • IV.2.4 Fractionation of bacterial cells

      • IV.2.5 β-galactosidase assays

      • IV.2.6 Co-purification assay

    • IV.3 Results

      • IV.3.1 Orf2 is necessary for the secretion of EseB and EseD

      • IV.3.2 Orf2 has chaperone features and is not secreted into culture

      • IV.3.4 EscBD is not required for the transcription of eseB and eseD

      • IV.3.5 EscBD interacts with both EseB and EseD

      • IV.3.6 EscBD does not bind to EseB and EseD concurrently

    • IV.4 Discussion

  • Chapter V. E. tarda contains a type VI secretion system necessary for the export of proteins involved in its pathogenesis

    • V.1 Introduction

    • V.2 Materials and Methods

      • V.2.1 Bacterial strains and plasmids

      • V.2.2 Yeast strain and plasmids

      • V.2.3 Library construction

      • V.2.4 Plaque screening and Lambda DNA isolation

      • V.2.5 DNA sequencing

      • V.2.6 Mutant construction

      • V.2.7 Edman N-terminal sequencing

      • V.2.8 Generation of Polyclonal Antibodies

      • V.2.9 Protein Assay

      • V.2.10 Yeast two-hybrid analysis

      • V.2.11 Virulence in fish

      • V.2.12 β-galactosidase assays

      • V.2.13 Southern hybridization

      • V.2.14 Bioinformatic tools

      • V.2.15 Nucleotide accession numbers

    • V.3 Results

      • V.3.1 Sequence analysis of EVP gene cluster

      • V.3.2 Systematic mutation of individual genes of the EVP secretion system

      • V.3.3 Identification of secreted proteins of the EVP secretion system

      • V.3.4 Identification of the start codon of essA

      • V.3.5 Association of the EVP secreted proteins

      • V.3.6 Mutations of EVP genes led EvpC and EssA accumulation inside the bacteria

      • V.3.7 Characteristics of EvpO and its homologs

      • V.3.8 Components of the EVP secretion system interact

      • V.3.9 C-terminus is important for the secretion of EvpC and EssA

      • V.3.10 EssA is under the regulation of EsrC

      • V.3.11 essA contributes to the virulence of E. tarda

      • V.3.12 Distribution of EVP genes in E. tarda strains

    • V.4 Discussion

  • Chapter VI. General conclusions and future directions

    • VI.1 General conclusions

    • VI.2 Future directions

  • References

Nội dung

FUNCTIONAL STUDIES OF A TYPE III AND A NOVEL SECRETION SYSTEM IN EDWARDSIELLA TARDA ZHENG JUN NATIONAL UNIVERSITY OF SINGAPORE 2006 FUNCTIONAL STUDIES OF A TYPE III AND A NOVEL SECRETION SYSTEM IN EDWARDSIELLA TARDA ZHENG JUN (B.Sc, M.Sc) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF BIOLOGICAL SCIENCES NATIONAL UNIVERSITY OF SINGAPORE 2006 ii ACKNOWLEDEMENTS I would like to express my heartfelt gratitude to my supervisor, Associate Professor Leung Ka Yin, for his invaluable guidance, encouragement, patience, and trust throughout my study in the lab. I am grateful to him for teaching me critical thinking and writing skills. Many thanks to Associate Professor Pan Shen Quan and Associate Professor Sanjay Swarup for their helpful advice and suggestions for my research work. Special thanks to Prof. S. J. Busby, Prof. C. W. Stephan for providing plasmids for my research work. Sincere thanks to Prof. Ilan Rosenshine for his generous sharing of ideas and experiences. I also wish to thank Prof. P. Cossart for her permission to use the figure and legend in the book she edited. I am grateful to Ms Wang Xian Hui, Ms Kho Say Tin and Mr. Shashikant Joshi from the Protein and Proteomics Centre for their ready assistance in my protein work. I would like thank Ms Tung Siew Lai for her assistance in my experiments and I am grateful to Mr. Peng Bo for his help in the phage library construction. A great deal of credit goes to my labmates - Dr. Srinivasa Rao, Dr. Yamada, Mr. Li Mo, Dr Yu HongBing, Ms Yao Fei, Ms Rasvinder Kaur D/O Nund Singh, Ms Lee Hooi Chen, Dr Xie Haixia, and Mr. Smarajit Chakraborty for their care and help during my stay. I also thank Wang Xiao Wei, Li Peng, Jiang Na Xin, Alan John Lowton, Qian Zhuo Lei and other friends in the department for helping me in one way or another during the course of my project. My parents, sisters and brother have been a great source of inspiration for all through my research. My sincere respects to them. Finally, I am deeply indebted to my wife for her love, understanding and support over the years. i TABLE OF CONTENTS ACKNOWLEDEMENTS I TABLE OF CONTENTS II LIST OF PUBLICATIONS RELATED TO THIS STUDY X LIST OF FIGURES XI LIST OF ABBREVIATIONS . XIV SUMMARY XVI Chapter I. Introduction I.1 E. tarda and its infections I.1.1 Taxonomy, identification and distribution . I.1.2 E. tarda infections I.1.2.1 Infections in humans I.1.2.2 Infections in animals I.1.3 Treatment and prevention . I.2 Virulence factors of E. tarda . I.2.1 Serum and phagocyte resistance . I.2.2 Adherence and invasion of host cell . I.2.3 Toxins, enzymes and other secreted proteins . ii I.2.4 Phosphate specific transport (PST) operon I.2.5 Type III secretion system in E. tarda . I.2.6 EVP gene cluster 13 I.3 Secretion systems in gram-negative bacteria . 14 I.3.1 Type I secretion system 14 I.3.2 Type II secretion system . 15 I.3.3 Type IV secretion system . 16 I.3.4 Type V secretion system . 16 I.3.5 Type III secretion system . 17 I.3.5.1 Regulation of type III secretion system . 19 I.3.5.2 Chaperones of TTSS 25 1.3.6 A putative novel secretion system . 28 I.4 Objectives 30 Chapter II. Common materials and methods . 32 II.1 Bacterial strains, plasmids and buffers . 32 II.2 Preparation of E. tarda cultures . 32 II.3 Molecular biology techniques 34 II.3.1 Genomic DNA isolation 34 II.3.2 Genome walking and cloning 34 iii II.3.3 Cloning and transformation into E. coli cells 35 II.3.4 Analysis of plasmid DNA . 35 II.3.5 Purification of plasmid DNA 36 II.3.6 Phage Library 36 II.3.6.1 Phage Library construction 36 II.3.6.2 Plaque screening . 37 II.3.6.3 Purification of phage DNA 37 II.3.7 DNA sequencing . 38 II.3.8 Sequence analysis 39 II.3.9 Southern hybridization 39 II.3.9.1 DNA preparation 39 II.3.9.2 Probe preparation . 40 II.3.9.3 Hybridization analysis 40 II.3.9.4 Washing and visualization . 41 II.4 Protein techniques 41 II.4.1 Preparation of extracellular proteins from E. tarda 41 II.4.2 One-dimensional polyacrlamide gel electophoresis (1D-PAGE) . 42 II.4.3 Two-dimensional polyacrlamide gel electophoresis . 43 II.4.3.1 Iso-electric focusing (IEF) . 43 II.4.3.2 Second-dimensional PAGE 44 iv II.4.4 Silver staining of protein gels 44 II.5 Western blot . 45 II.6 Animal studies 45 II.6.1 Animal model and maintenance 45 II.6.2 Fifty percent median lethal dose (LD50) studies 46 II.7 Statistical Analysis . 46 Chapter III. Regulation of a Type III and a Putative Secretion System (EVP) by EsrC in E. tarda . 47 III.1 Introduction . 49 III.2 Materials and Methods 52 III.2.1 Bacterial strains and plasmids 52 III.2.2 Construction of deletion mutants and plasmids . 52 III.2.3 LD50 determinations . 57 III.2.4 Phagocyte isolation 57 III.2.5 2D-PAGE and protein identification . 58 III.2.6 RNA isolation and RT-PCR analysis . 58 III.2.7 β-galactosidase assays 58 III.3 Results . 59 III.3.1 Sequence analysis of regulators . 59 III.3.2 Role of EsrC in E. tarda virulence and protein secretion 62 v III.3.3 Functional relationship between two-component system EsrA-EsrB and EsrC . 67 III.3.4 Regulation of TTSS apparatus genes and orf29 and orf30 69 III.3.5 EsrC regulates the EVP gene cluster . 70 III.3.6 Regulation of esrA-esrB and esrC . 73 III.4 Discussion . 76 III.4.1 EsrC is a positive regulator 76 III.4.2 EsrC regulates orf29 and orf30 and EVP . 78 III.4.3 Involvements of other regulators . 80 III.4.4 Effect of high temperature . 81 Chapter IV. EscBD is a chaperone for the TTSS translocon components EseB and EseD in E. tarda . 84 IV.1 Introduction . 86 IV.2 Materials and Methods . 88 IV.2.1 Bacterial strains and plasmids . 88 IV.2.2 Construction of deletion mutants and plasmid 89 IV.2.3 1D-PAGE, 2D-PAGE and Western analysis of proteins . 92 IV.2.4 Fractionation of bacterial cells . 93 IV.2.5 β-galactosidase assays . 94 IV.2.6 Co-purification assay . 94 IV.3 Results . 95 vi IV.3.1 Orf2 is necessary for the secretion of EseB and EseD 95 IV.3.2 Orf2 has chaperone features and is not secreted into culture 96 IV.3.3 EscBD is required for the stability of both EseB and EseD in the cytoplasm . 100 IV.3.4 EscBD is not required for the transcription of eseB and eseD 102 IV.3.5 EscBD interacts with both EseB and EseD . 104 IV.3.6 EscBD does not bind to EseB and EseD concurrently 106 IV.4 Discussion . 108 Chapter V. E. tarda contains a type VI secretion system necessary for the export of proteins involved in its pathogenesis . 111 V.1 Introduction 113 V.2 Materials and Methods . 115 V.2.1 Bacterial strains and plasmids . 115 V.2.2 Yeast strain and plasmids 117 V.2.3 Library construction 117 V.2.4 Plaque screening and Lambda DNA isolation 117 V.2.5 DNA sequencing . 117 V.2.6 Mutant construction 118 V.2.7 Edman N-terminal sequencing 118 V.2.8 Antibodies generation . 119 V.2.9 Protein Assay 119 vii V.2.10 Yeast two-hybrid analysis . 119 V.2.11 Virulence in fish 121 V.2.12 β-galactosidase assays . 121 V.2.13 Southern hybridization 121 V.2.14 Bioinformatic tools . 121 V.2.15 Nucleotide accession numbers 122 V.3 Results 122 V.3.1 Sequence analysis of EVP gene cluster 122 V.3.2 Systematic mutation of individual genes of the EVP secretion system 126 V.3.3 Identification of secreted proteins of the EVP secretion system 129 V.3.4 Identification of the start codon of essA 129 V.3.5 Association of the EVP secreted proteins . 133 V.3.6 Mutations of EVP genes led EvpC and EssA accumulation inside the bacteria . 136 V.3.7 Characteristics of EvpO and its homologs 139 V.3.8 Components of the EVP secretion system interact . 142 V.3.9 C-terminus is important for the secretion of EvpC and EssA . 144 V.3.10 EssA is under the regulation of EsrC 146 V.3.11 essA contributes to the virulence of E. tarda 146 V.3.12 Distribution of EVP genes in E. tarda strains . 149 V.4 Discussion 149 viii Grimont, P. A. D., F. Grimont, C. Richard, and R. Sakazaki. 1980. Edwardsiella hoshinae, a new species of Enterobacteriaceae. Curr. Microbiol. 4: 347-351. Haack, K. R., C. L. Robinson, K. J. Miller, J. W. Fowlkes, and J. L. Mellies. 2003. Interaction of Ler at the LEE5 (tir) operon of enteropathogenic Escherichia coli. Infect. Immun. 71: 384-392. Hacker, J., and J. B. Kapper. 2000. Pathogenicity islands and the evolution of microbes. Annu. Rev. Microbio. 54: 641-679 Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166: 557-580. Hardie, K. R., S. Lory, and A. P. Pugsley 1996. Insertion of an outer membrane protein in Escherichia coli requires a chaperone-like protein. EMBO J. 15: 978-988. Hawke, J. P. 1979. A bacterium associated with disease of pond cultured channel catfish, Ictalurus punctatus. J. Fish. Res. Board of Canada 36: 1508-1512. Hawke, J. P., A. C. McWhorter, A. G. Steigerwalt, and D. J. Brenner. 1981. Edwardsiella ictaluri sp. nov., the causative agent of enteric septicemia of catfish. Int. J. Syst. Bacteriol. 31: 396-400. Henderson, I. R., F. Navarro-Garcia, and J. P. Nataro. 1998. The great escape: structure and function of the autotransporter proteins. Trends Microbiol. 6: 370-378. Henderson, I. R., F. Navarro-Garcia, M. Desvaux, R. C. Fernandez, and D. Ala'Aldeen. 2004. Type V Protein Secretion Pathway: the Autotransporter Story. Microbiol. Mol. Biol. Rev. 68: 692-744. Hensel, M. 2000. Salmonella pathogenicity island 2. Mol. Microbiol. 36: 1015-1023. Hensel, M., J. E. Shea, S. R. Waterman, R. Mundy, T. Nikolaus, G. Banks, A. Vazquez-Torres, C. Gleeson, F. C. Fang, and D. W. Holden. 1998. Genes encoding putative effector proteins of the type III secretion system of Salmonella pathogenicity island are required for bacterial virulence and proliferation in macrophages. Mol. Microbiol. 30: 163-174. Higgins, C. F., C. J. Dorman, D. A. Stirling, L. Waddell, I. R. Booth, G. May, and E. Bremer. 1988. A physiological role for DNA supercoiling in the osmotic regulation of gene expression in S. typhimurium and E. coli. Cell 52: 569-584. 170 Higgins, C. F., S. C. Hyde, M. M. Mimmackk, U. Gileadi, D. R. Gill, and M. P. Gallagher. 1990. Binding protein-dependent transport systems. J. Bioenerg. Biomembr. 22: 571-592. Hirono, I., N. Tange, and T. Aoki. 1997. Iron regulated hemolysin gene from Edwardsiella tarda. Mol. Microbiol. 24: 851-856. Ho, S. N., H. D. Hunt, R. M. Horton, J. K. Pullen, and L. R. Pease. 1989. Sitedirected mutagenesis by overlap extension using the polymerase chain reaction. Gene 77: 51-59. Hobbs, M. and J. S. Mattick. 1993. Common components in the assembly of type fimbriae, DNA transfer systems, filamentous phage and protein-secretion apparatus: a general system for the formation of surface-associated protein complexes. Mol. Microbiol. 10: 233-243. Holmes, D. S., and M. Quigley. 1981. A rapid boiling method for the preparation of bacterial plasmids. Anal. Biochem. 114: 193-197. Hong, K. H., and V. L. Miller. 1998. Identification of a novel Salmonella invasion locus homologous to Shigella ipgDE. J. Bacteriol. 180: 1793-1802. Hoshina, T. 1962. On a new bacterium, Paracolobactrum anguillimortiferum. Bull. Jap. Soc. Sci. Fish. 28: 162-164. Hueck, C. J. 1998. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62: 379-433. Ide, T., S. Laarmann, L. Greune, H. Schillers, H. Oberleithner, and M. A. Schmidt. 2001. Characterization of translocation pores inserted into plasma membranes by type IIIsecreted Esp proteins of enteropathogenic Escherichia coli. Cell. Microbiol. 3: 669-679. Iida, T., and H. Wakabayashi. 1993. Resistance of Edwardsiella tarda to opsonophagocytosis of eel neutrophils. Fish Pathol. 28: 191-192. Iriarte, M., and G. R. Cornelis. 1998. YopT, a new Yersinia Yop effector protein, affects the cytoskeleton of host cells. Mol. Microbiol. 29: 915-929. Iverson, J. B. 1973. Enrichment procedures for isolation of Salmonella, Arizona, Edwardsiella, and Shigella from faeces. J. Hyg. Camb. 71: 349-361. 171 Janda, J. M., and S. L. Abbott. 1993a. Infections associated with the genus Edwardsiella: the role of Edwardsiella tarda in human disease. Clin. Infect. Dis. 17: 742748. Janda, J. M., and S. L. Abbott. 1993b. Expression of an iron-regulated hemolysin from Edwardsiella tarda. FEMS Microbiol. Lett. 111: 275-280. Janda, J. M., S. L. Abbott, and L. S. Oshiro. 1991a. Penetration and Replication of Edwardsiella spp. in HEp-2 Cells. Infect. Immun. 59: 154-161. Janda, J. M., S. L. Abott, S. Kroshe-Bystrom, W. K. W. Cheng, C. Powers, R. P. Kokka, and K. Tamura. 1991b. Pathogenic properties of Edwardsiella species. J. Clin. Microbiol. 29: 1977-2001. Jordan, G. W., and W. K. Hadley. 1969. Human infection with Edwardsiella tarda. Ann. Int. Med. 70: 283-288 Kalogeraki, V. S., and S. C. Winans. 1997. Suicide plasmids containing promoterless reporter genes can simultaneously disrupt and create fusions to target genes of diverse bacteria. Gene 188: 69-75. Kaniga, K., J. C. Bossio, and J. E. Galán. 1994. The Salmonella typhimurium invasion genes invF and invG encode homologues of the AraC and PulD family of proteins. Mol. Microbiol. 13: 555-568. Kaper J. B., J. Hacker, eds. 1999. Pathogenicity Islands and Other Mobile Virulence Elements. American Society of Microbiology, Washington, D. C. Karavolos, M. H., A. J. Roe, M. Wilson, J. Henderson, J. J. Lee, D. L. Gally, and C. M. Khan. 2005. Type III secretion of the Salmonella effector protein SopE is mediated via an N-terminal amino acid signal and not an mRNA sequence. J. Bacteriol. 187: 15591567. Kawai, K., Y. Liu, K. Ohnishi, and S. Oshima. 2004. A conserved 37 kDa outer membrane protein of Edwardsiella tarda is an effective vaccine candidate. Vaccine 22: 3411-3418. Kazmierczak, B. I., D. L. Mielke, M. Russel, and P. Model. 1994. pIV, a filamentous phage protein that mediates phage export across the bacterial cell envelope, forms a multimer. J. Mol. Biol. 238: 187-198. 172 Kelly, M. T., D. J. Brenner, and J. J. Farmer III. 1985. Enterobacteriaceae, p 263-277. In E. H. Lennette, A. Balows, W. J. Hausler, and H. J. Shadomy. (eds.) Manual of clinical microbiology, (4th ed). American Society of Microbiology, Washington, D. C. Kelly, M., E. Hart, R. Mundy, O. Marches, S. Wiles, L. Badea, S. Luck, M. Tauschek, G. Frankel, R. M. Robins-Browne, and E. L. Hartland. 2006. Essential Role of the Type III Secretion System Effector NleB in Colonization of Mice by Citrobacter rodentium. Infect. Immun. 74: 2328-2337. Kenny, B., R. DeVinney, M. Stein, D. J. Reinscheid, E. A. Frey, and B. B. Finlay. 1997. Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91: 511-520. Kim, C. C., and S. Falkow. 2004. Delineantion of upstream signaling events in the Salmonella pathogenicity island Transcriptional activation pathway. J. Bacterial. 186: 4694-4704. Knodler, L. A., J. Celli, W. D. Hardt, B. A. Vallance, C. Yip, and B. B. Finlay. 2002. Salmonella effectors within a single pathogenicity island are differentially expressed and translocated by separate type III secretion systems. Mol. Microbiol. 43: 1089-1103. Kokubo, T., T. Iida, and H. Wakabayashi. 1990. Production of siderophore by Edwardsiella tarda. Fish Pathol. 25: 237-241. Kourany, M., M. Vasquez, and R. Saenz. 1977. Edwardsiellosis in man andanimals in Panama: clinical and epidemiological characteristics. Amer. J. Trop.Med. Hyg. 26: 11831190 Kubori, T., Y. Matsushima, D. Nakamura, J. Uralil, M. Lara-Tejero, A. Sukhan, J. E. Galan, and S. I. Aizawa. 1998. Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280: 602-605. Lee, A. K., C. S. Detweiler, and S. Falkow. 2000. OmpR regulates the two-component system SsrA-SsrB in Salmonella pathogenicity island 2. J. Bacteriol. 182: 771-781. Lee, S. H., and J. E. Galan. 2004. Salmonella type III secretion-associated chaperones confer secretion-pathway specificity. Mol. Microbiol. 51: 483-495. Li, M., I. Rosenshine, S. L. Tung, X. H. Wang, D. Friedberg, C. L. Hew, and K. Y. Leung. 2004. Comparative proteomic analysis of extracellular proteins of enterohemorrhagic and enteropathogenic Escherichia coli strains and their ihf and ler mutants. Appl. Environ. Microbiol. 70: 5274-5282. 173 Lin, R. J., M. Capage, and C. W. Hill. 1984. A repetitive DNA sequence, rhs, responsible for duplications within the Escherichia coli K-12 chromosome. J. Mol. Biol. 177: 1-18. Lindeberg, M., G. P. Salmond, and A. Collmer. 1996. Complementation of deletion mutations in a cloned functional cluster of Erwinia chrysanthemi out genes with Erwinia carotovora out homologues reveals OutC and OutD as candidate gatekeepers of speciesspecific secretion of proteins via the type II pathway. Mol. Microbiol. 20: 175-190. Linderoth, N. A., M. N. Simon, and M. Russel. 1997. The filamentous phage pIV multimer visualized by scanning transmission electron microscopy. Science 278: 16351638. Ling, S. H. M., X. H. Wang, L. Xie, T. M. Lim, and K. Y. Leung. 2000. Use of green fluorescent protein (GFP) to track the invasive pathways of Edwardsiella tarda in the in vivo and in vitro fish models. Microbiology 146: 7-19. Liu Y., S. Oshima, K. Kurohara, K. Ohnishi, and K. Kawai. 2005. Vaccine efficacy of recombinant GAPDH of Edwardsiella tarda against Edwardsiellosis. Microbiol. Immunol. 49: 605-612. Liu, C. I., and S. S. Tsai. 1980. Edwardsiellosis in pond-cultured eel in Taiwan. CAPD Fisheries series No. 3, Reports on Fish Dis. Res. 3: 109-115. Liu, Y., S. Oshima, K. Kurohara, K. Ohnishi, and K. Kawai. 2005. Vaccine efficacy of recombinant GAPDH of Edwardsiella tarda against Edwardsiellosis. Microbiol. Immunol. 49: 605-612. Lloyd, S. A., M. Norman, R. Rosqvist, and H. Wolf-Watz. 2001. Yersinia YopE is targeted for type III secretion by N-terminal, not mRNA, signals. Mol Microbiol. 39: 520-531. Lodge, J., J. Fear, S. Busby, P. Gunasekaran, and N. R. Kamini. 1992. Broad host range plasmids carrying the Escherichia coli lactose and galactose operons. FEMS. Microbiol. Lett. 95: 271-276. Lostroh, C.P., and C. A. Lee. 2001. The HilA box and sequences outside it determine the magnitude of HilAdependent activation of PprgH from Salmonella pathogenicity island (SPI1). J. Bacteriol. 183: 4876-4885. Lostroh, C. P., V. Bajaj, and C. A. Lee. 2000. The cis requirements for transcriptional activation by HilA, a virulence determinant encoded on SPI-1. Mol. Microbiol. 37: 300315. 174 Lucas, R. L., and C. A. Lee. 2001. Roles of HilC and HilD in regulation of hilA expression in Salmonella enterica serovar Typhimurium. J. Bacteriol. 183: 2733-2745. Lucas, R. L., C. P. Lostroh, C. C. DiRusso, M. P. Spector, B. L. Wanner, and C. A. Lee. 2000. Multiple factors independently regulate hilA and invasion gene expression in Salmonella enterica serovar Typhimurium. J. Bacteriol. 182: 1872-1882. Marlovits, T. C., T. C. Marlovits, T. Kubori, A. Sukhan, D. R. Thomas, J. E. Galan, and V. M. Unger. 2004. Structural insights into the assembly of the type III secretion needle complex. Science 306: 1040-1042. Marques, L. R. M., M. R. F. Toledo, N. P. Silva, M. Magalhaes, and R. Luiz. 1984. Invasion of HeLa cells by Edwardsiella tarda. Curr. Microbiol. 10: 129-132. Mavris, M., A. L. Page, R. Tournebize, B. Demers, P. Sansonetti, and C. Parsot. 2002. Regulation of transcription by the activity of the Shigella flexneri type III secretion apparatus. Mol. Microbiol. 43: 1543-1553. McCaw, M. L., G. L. Lykken, P. K. Singh, and T. L. Yahr. 2002 ExsD is a negative regulator of the Pseudomonas aeruginosa type III secretion regulon. Mol. Microbiol. 46: 1123-1133. McDaniel, T. K., K. G. Jarvis, M. S. Donnenberg, and J. B. Kaper. 1995. A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens. Proc. Natl. Acad. Sci. USA 92: 1664-1668. Mecsas, J., and E. J. Strauss. 1996. Molecular mechanisms of bacterialvirulence: type III secretion and pathogenicity islands. Emerg. Infect. Dis. 2: 271-288. Mellies, J. L., S. J. Elliott, V. Sperandio, M. S. Donnenberg, and J. B. Kaper. 1999. The Per regulon of enteropathogenic Escherichia coli: identification of a regulatory cascade and a novel transcriptional activator, the locus of enterocyte effacement (LEE)encoded regulator (Ler). Mol. Microbiol. 33: 296-306. Menard, R., P. J. Sansonetti, C. Parsot, and T. Vasselon. 1994. Extracellular association and cytoplasmic partition of IpaB and IpaC invasins of Shigella flexneri. Cell 79: 515-535 Meyer, F. P., and G. L. Bullock, 1973. Edwardsiella tarda, a new pathogen of channel catfish (Ictalurus punctatus). Appl. Microbiol. 25: 155-156. 175 Miao, E.A., and S. I. Miller. 2000. A conserved amino acid sequence directing intracellular type III secretion by Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 97: 7539-7544 Miller, C. G., K. L. Strauch, A. M. Kukral, J. L. Miller, P. T. Wingfield, G. J. Mazzei, R. C. Werlen, P. Graber, and N. R. Movva. 1987. N-terminal methioninespecific peptidase in Salmonella typhimurium. Proc Natl Acad Sci USA 84: 2718-2722. Miller, J. H. 1972. Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory. Miller, S. I. 1991. PhoP/PhoQ: macrophage-specific modulators of Salmonella virulence? Mol. Microbiol. 5: 2073-2078. Moore, M. M., D. L. Fernadez, and R. L. Thune. 2002. Cloning and characterization of Edwardsiella ictaluri proteins expressed and recognized by the channel catfish Ictalurus punctatus immune response during infection. Dis. Aquat. Org. 52: 93-107. Mougous J. D., M. E. Cuff, S. Raunser, A. Shen, M. Zhou, C. A. Gifford, A. L. Goodman, Gr. Joachimiak, C. L. Ordoñez, S. Lory, T. Walz, A. Joachimiak, and J. J. Mekalanos. 2006. A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus Science 312: 1526-1530. Mudgett, M. B., O. Chesnokova, D. Dahlbeck, E. T. Clark, O. Rossier, U. Bonas, and B. J. Staskawicz. 2000. Molecular signal required for type III secretion and translocationof the Xanthomonas campestris AvrBs2 protein to pepper plants. Proc. Natl. Acad. Sci. USA 97: 13324-13329. Nagel, P., A. Serritella, and T. J. Layden. 1982. Edwardsiella tarda gastroenteritis associated with a pet turtle. Gastroenterol. 82: 1436-1437. Neyt, C., and G. R. Cornelis. 1999. Role of SycD, the chaperone of the Yersinia Yop translocators YopB and YopD. Mol. Microbiol. 31: 143-156. Niebuhr, K., N. Jouihri, A. Allaoui, P. Gounon, P. J. Sansonetti, and C. Parsot. 2000. IpgD, a protein secreted by the type III secretion machinery of Shigella flexneri, is chaperoned by IpgE and implicated in entry focus formation. Mol. Microbiol. 38: 8-19. Nikolaus, T., J. Deiwick, C. Rappl, J. A. Freeman, W. Schroder, S. I. Miller, and M. Hensel. 2001. SseBCD proteins are secreted by the type III secretion system of Salmonella pathogenicity island and function as a transolocon. J. Bacteriol. 183: 60366045. 176 Ochman, H., F. C. Soncini, F. Solomon, and E. A. Groisman. 1996. Identification of a pathogenicity island required for Salmonella survival in host cells. Proc. Natl. Acad. Sci. USA. 93: 7800-7804. Onogawa, T., T. Terayama, H. Zen-yogi, Y. Amano, and K. Suzuki. 1976. Distribution of Edwardsiella tarda and hydrogen sulfide-producing Escherichia coli in healthy persons. Jpn. Assoc. Infect. Dis. 50: 10-17. Osiri, M., T. Tantawichien, and U. Deesomchock. 1997. Edwardsiella tarda bacteremia and septic arthritis in a patient with diabetes mellitus. Southeast Asian J. Trop. Med. Public Health 28: 669-672. Ovartlarnporn, B., P. Chayakul, and S. Suma. 1986. Edwardsiella tarda infections in Hat Yai hospital. J. Med. Assoc. Thai. 69: 599-603. Owens, D. R., S. L. Nelson, and J. B. Addison. 1974. Isolation of Edwardsiella tarda from swine. Appl. Microbiol. 27: 703-705. Page, A. L., and C. Parsot. 2002. Chaperones of the type III secretion pathway: jacks of trades. Mol. Microbiol. 46: 1-11. Page, A. L., M. Fromont-Racine, P. Sansonetti, P. Legrain, and C. Parsot. 2001. Characterization of the interaction partners of secreted proteins and chaperones of Shigella flexneri. Mol. Microbiol. 42: 1133-45. Pallen, M. J., G. Dougan, and G. Frankel. 1997. Coiled-coil domains in proteins secreted by type III secretion systems. Mol. Microbiol. 25: 423-425. Parsons, D. A., and F. Heffron. 2005. sciS, an icmF Homolog in Salmonella enterica Serovar Typhimurium, Limits Intracellular Replication and Decreases Virulence. Infect. Immun. 73: 4338-45. Parsot, C., C. Hamiaux, and A. L. Page. 2003. The various and varying roles of specific chaperones in type III secretion systems. Curr. Opin. Microbiol. 6: 7-13. Payne, S. M. 1988. Iron and virulence in the family Enterobacteriaceae. Crit. Rev. Microbiol. 16: 81-111. Pegues, D. A., M. J. Hantman, I. Behlau, and S. I. Miller. 1995. PhoP/PhoQ transcriptional repression of Salmonella typhimurium invasion genes: evidence for a role in protein secretion. Mol. Microbiol. 17: 169-181. 177 Persson, C., R. Nordfelth, A. Holmstrom, S. Hakansson, R. Rosqvist, and H. WolfWatz. 1995Cell-surface-bound Yersinia translocate the protein tyrosine phosphatase YopH by a polarized mechanism into the target cell. Mol. Microbiol. 18: 135-150. Phillips, A. D., L. R. Trabulsi, G. Dougan, and G. Frankel. 1998. Edwardsiella tarda induces plasma membrane ruffles on infection of HEp-2 cells. FEMS Microbiol. Lett. 161: 317-323. Plumb, J. A. 1993. Edwardsiella septicaemia, p. 61-79. In V. Inglis, R. J. Roberts, and N. R. Bromage (ed.), Bacterial diseases of fish. Cambridge University Press, Cambridge, United Kingdom. Plumb, J. A. 1999. Edwardsiella septicemias. p 479-521 In P.T. K. Woo, and D. W. Bruno (eds). Fish diseases and disorders, Vol 3: viral, bacterial and fungal infections. Cab International, London, United Kingdom. Pugsley, A. P. 1993. The complete general secretory pathway in gram-negative bacteria. Microbiol. Rev. 57: 50-108. Pugsley, A. P., O. Francetic, O. M. Possot, N. Sauvonnet, and K. R. Hardie. 1997. Recent progress and future directions in studies of the main terminal branch of the general secretory pathway in gram-negative bacteria: a review. Gene 192: 13-19. Pukatzki, S., A. T. Ma, , D. Sturtevant, B. Krastins, D. Sarracino, W. C. Nelson, J. F. Heidelberg, and J. J. Mekalanos. 2006. Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc. Natl. Acad. Sci. USA 103: 1528-1533. Purcell, M. and H. A. Shuman. 1998. The Legionella pneumophila icmGCDJBF genes are required for killing of human macrophages. Infect. Immun. 66: 2245-2255. Py, B., M. Chippaux, and F. Barras. 1993. Mutagenesis of cellulose EGZ for studying the general protein secretory pathway in Erwinia chrysanthwmi. Mol. Microbiol. 7: 785793 Rakeman, J. L., H. R. Bonifield, and S. I. Miller. 1999. A HilA-independent pathway to Salmonella typhimurium invasion gene transcription. J. Bacteriol. 181: 3096-3104. Ramamurthi, K. S., and O. Schneewind 2003. Yersinia yopQ mRNA encodes a bipartite type III secretion signal in the first 15 codons. Mol. Microbiol. 50: 1189-1198 Reed, L. J., and H. Muench. 1938. A simple method of estimating fifty percent end points. Am. J. Hyg. 27: 493-497. 178 Rietsch, A., I. Vallet-Gely, S. L. Dove, and J. J. Mekalanos. 2005. ExsE, a secreted regulator of type III secretion genes in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 102: 8006-8011. Rubirés, X., F. Saigí, N. Piqué, N. Climent, S. Merino, S. Albertí, J. M. Tomas, and M. Regue. 1997. A gene (wbbL) from Serratia marcescens N28b (O4) complements the rfb-50 mutation of Escherichia coli K-12 derivatives. J. Bacteriol. 179: 7581-7586. Ruoff, K. L., and M. J. Ferraro. 1987. Hydrolytic enzymes of “Streptococcus milleri”. J. Clin. Microbiol. 25: 1645-1647. Russel, M. 1998. Macromolecular assembly and secretion across the bacterial cell envelope: type II protein secretion systems. J. Mol. Biol. 279: 485-499. Sakazaki, R., and Y. Murata. 1962. The new group of Enterobacteriaceae, the Azakusa group. Jap. J. Bacteriol. 17: 616-617. Salati, F. 1985. Immunogenicity of Edwardsiella tarda antigens in the eel (Anguilla japonica). Piscicoltura Eittiopatologia 20: 12-26. Salati, F. and R. Kusuda. 1985a. Vaccine preparations used for immunisation of eel (Anguilla japonica) against Edwardsiella tarda infection. Bull. Jap. Soc. Sci. Fish. 51: 1233-1237. Salati, F., and R. Kusuda. 1985b. Chemical composition of the lipopolysaccharide from Edwardsiella tarda. Fish Pathol. 20: 187-191. Salati, F., K. Kawai, and R. Kusuda. 1983. Immunoresponse of eel against Edwardsiella tarda antigens. Fish Pathol. 18: 135-141. Salmond, G. P., and P. J. Reeves.1993. Membrane traffic wardens and protein secretion in gram-negative bacteria. Trends Biochem. Sci. 18: 7-12. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York. Sanchez-SanMartin , C., V. H. Bustamante, E. Calva, and J. L. Puente. 2001. Transcriptional regulation of the orf19 gene and the tir-cesT-eae operon of enteropathogenic Escherichia coli. J. Bacteriol. 183: 2823-2833. Sandkvist M. 2001. Biology of type II secretion. Mol. Microbiol. 40: 271-283. 179 Schechter, L. M., S. M. Damrauer, and C. A. Lee. 1999. Two AraC/XylS family members can independently counteract the effect of repressing sequences upstream of the hilA promoter. Mol. Microbiol. 32: 629-642. Schesser, K., M. S. Francis, A. Forsberg, and H wolf-watz. 2000. Type III secretion systems in animal- and plant-interacting bacteria. p 239-263. In P. Cossart, P. Boquet, S. Normark, and R. Rappuoli. (eds.) Cellular Microbiology. American Society of Microbiology, Washington, D. C. Schlieker, C., H. Zentgraf, P. Dersch, and A. Mogk. 2005. ClpV, a unique Hsp100/Clp member of pathogenic proteobacteria. Biol. Chem. 386: 1115-1127. Secombs, C. J. 1990. Isolation of salmonid macrophages and analysis of their killing activity. p. 137-154. In J. S. Stolen, T. C. Fletcher, D. P. Anderson, B. S. Roberson, and W. B. Van Muiswinkel (ed.), Techniques in fish immunology. SOS Publications, Fair Haven, N.J. Segal, G. and H. A. Shuman. 1999. Legionella pneumophila utilizes the same genes to multiply within Acanthamoeba castellanii and human macrophages. Infect. Immun. 67: 2117-2124. Shain, H., K. A. Homer, and D. Beighton. 1996. Degradation and utilisation of chondroitin sulphate by Streptococcus intermedius. J. Med. Microbiol. 44: 372-380. Shea, J. E., M. Hensel, C. Gleeson, and D. W. Holden. 1996. Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 93: 2593-2597. Shen. D. K., D. Filopon, L. Kuhn, B. Polack, and B. Toussaint. 2006. PsrA Is a Positive Transcriptional Regulator of the Type III Secretion System in Pseudomonas aeruginosa. Infect. Immun.74: 1121-1129. Shimizu, T., K. Shima, K. Yoshino, K. Yonezawa, T. Shimizu, and H. Hayashi. 2002. Proteome and Transcriptome Analysis of the Virulence Genes Regulated by the VirR/VirS System in Clostridium perfringens J. Bacteriol. 184: 2587-2594. Silverman, S., E., M. Elgrably-Weiss, I. Rosenshine, R. Kohen, and S. Altuvia. 2000. Characterization of Escherichia coli DNA lesions generated within J774 macrophages. J. Bacteriol. 182: 5225-5230. Simon, R., U. Priefer, and A. Puhler. 1983. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Bio/Technology. 1: 784-791. 180 Slaven, E. M., F. A. Lopez, S. M. Hart, and C. V. Sanders. 2001. Myonecrosis caused by Edwardsiella tarda: a case report and case series of extraintestinal E. tarda infections. Clin. Infect. Dis. 32: 1430-1433. Song, Y. L., and G. H. Kou. 1979. Immune response of eels (Anguilla japonica) against Aeromonas hydrophila and Edwardsiella anguillimortiferum (E. tarda) infection. Proceedings of the Republic of China – United States Cooperative Science Seminar. National Science Council, Republic of China, Taipei, p. 107-114. Sperandio, V., C. C. Li, and J. B. Kaper. 2002. Quorum-sensing Escherichia coli regulator A (QseA): a regulator of the LysR family involved in the regulation of the LEE pathogenicity island in enterohemorrhagic Escherichia coli. Infect. Immun. 70: 30853093. Sperandio, V., J. L. Mellies, R. M. Delahay, G. Frankel, J. A. Crawford, W. Nguyen, and J. B. Kaper. 2000. Activation of enteropathogenic Escherichia coli (EPEC) LEE2 and LEE3 operons by Ler. Mol. Microbiol. 38: 781-793. Srinivasa Rao, P. S., T. M. Lim, and K. Y. Leung. 2001. Opsonized virulent Edwardsiella tarda strains are able to adhere to and survive and replicate within fish phagocytes but fail to stimulate reactive oxygen intermediates. Infect. Immun. 69: 56895697. Srinivasa Rao, P. S., T. M. Lim, and K. Y. Leung. 2003a. Functional genomics approach to the identification of virulence genes involved in Edwardsiella tarda pathogenesis. Infect. Immun. 71: 1343-1351. Srinivasa Rao, P. S., Y. Yamada, and K. Y. Leung. 2003b. A major catalase (KatB) that is required for H2O2 and phagocyte-mediated killing in Edwardsiella tarda. Microbiology 149: 2635-2644. Srinivasa Rao, P. S., Y. Yamada, Y. P. Tan, and K. Y. Leung. 2004. Use of proteomics to identify novel virulence determinants that are required for Edwardsiella tarda pathogenesis. Mol. Microbiol. 53: 573-586. Stebbins, C.E., and J. E. Galan. 2001. Maintenance of an unfolded polypeptide by a cognate chaperone in bacterial type III secretion. Nature 414: 77-81. Stock, A. M., V. L. Robinson, and P. N. Goudreau. 2000. Two-component signal transduction. Annu. Rev. Biochem. 69: 183-215. 181 Strauss, E. J., N. Ghori, and S. Falkow. 1997. An Edwardsiella tarda strain containing a mutation in a gene with homology to shlB and hpmB is defective for entry into epithelial cells in culture. Infect. Immun. 65: 3924-3932. Suprapto, H., T. Hara, T. Nakai, and K. Muroga. 1996. Purification of a lethal toxin of Edwardsiella tarda. Fish Pathol. 31: 203-207. Tan, Y. P. 2005. Use of genetics and proteomics to study virulence factors of Eswardsiella tarda. Ph.D thesis. National University of Singapore. Tan, Y. P., J. Zheng, S. L. Tung, I. Rosenshine, and K.Y. Leung. 2005. Role of type III secretion in Edwardsiella tarda virulence. Microbiology 151: 2301-2313. Tan, Y. P., Q. Lin, X. H. Wang, S. Joshi, C. L. Hew, and K. Y. Leung. 2002. Comparative proteomic analysis of extracellular proteins of Edwardsiella tarda. Infect. Immun. 70: 6475-6480. Thanassi, D. G., and S. J. Hultgren. 2000. Multiple pathways allow protein secretion across the bacterial outer membrane. Curr. Opin. Cell Biol. 12: 420-30. Thomas, N. A., W. Deng, J. L. Puente, E. A. Frey, C. K. Yip, N. C. Strynadka, and B. B. Finlay. 2005. CesT is a multi-effector chaperone and recruitment factor required for the efficient type III secretion of both LEE- and non-LEE-encoded effectors of enteropathogenic Escherichia coli. Mol. Microbiol. 57: 1762-1779. Thune, R. L., L. A. Stanley, and R. K. Cooper. 1993. Pathogenesis of gram-negative bacterial infections in warm water fish. Annu. Rev. Fish Dis. 3: 37-68. Tu, X., I. Nisan, C. Yona, E. Hanski, and I. Rosenshine. 2003. EspH, a new cytoskeleton-modulating effector of enterohaemorrhagic and enteropathogenic Escherichia coli. Mol. Microbiol. 47: 595-606. Tucker, S. C., and J. E. Galán. 2000. Complex Function for SicA, a Salmonella enterica Serovar Typhimurium Type III Secretion-Associated Chaperone. J. Bacteriol. 182: 2262-2268 Ullah, M. A., and T. Arai. 1983a. Exotic substances produced by Edwardsiella tarda. Fish Pathol. 18: 71-75. Ullah, M. A., and T. Arai. 1983b. Pathological activities of the naturally occurring strains of Edwardsiella tarda. Fish Pathol. 18: 65-70. 182 Urbanowski, M. L., G. L. Lykken, and T. L.Yahr. 2005. A secreted regulatory protein couples transcription to the secretory activity of the Pseudomonas aeruginosa type III secretion system. Proc Natl. Acad. Sci. USA. 102: 9930-9935. Vallis, A. J., T. L.Yahr, J. T. Barbieri, and D. W. Frank. 1999. Regulation of ExoS production and secretion by Pseudomonas aeruginosa in response to tissue culture conditions. Infect. Immun. 67: 914-920. Van Damme, L. R., and J. Vandepitte. 1980. Frequent isolation of Edwardsiella tarda and Plesiomonas shigelloides from healthy Zairese freshwater fish: a possible source of sporadic diarrhea in the tropics. Appl. Environ. Microbiol. 39: 475-479. Vandepitte, J., P. Lemmens, and L. DeSwert. 1983. Human edwardsiellosis traced to ornamental fish. J. Clin. Microbiol. 17: 165-167. Vartian, C. V., and E. J. Septimus. 1990. Soft-tissue infection caused by Edwardsiella tarda and Aeromonas hydrophila. J. Infect. Dis. 161: 816. Vogel, J. P., and R. R. Isberg. 1999. Cell biology of Legionella pneumophila. Curr. Opin. Microbiol. 2: 30-34. Vogel, J. P., H. L. Andrews, S. K. Wong, and R. R. Isberg. 1998. Conjugative transfer by the virulence system of Legionella pneumophila. Science 279: 873-876. Wainwright, L. A., and J. B. Kaper. 1998. EspB and EspD require a specific chaperone for proper secretion from enteropathogenic Escherichia coli. Mol. Microbiol. 27: 12471260. Walker, J. E., M. Saraste, M. J. Runswick, and N. J. Gay. 1982. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1: 945-951. Wang, Y. D., S. Zhao, and C. W. Hill. 1998. Rhs elements comprise three subfamilies which diverged prior to acquisition by Escherichia coli. J. Bacteriol. 180: 4102-4110. Wattiau, P., and G. R. Cornelis. 1993. SycE, a chaperone-like protein of Yersinia enterocolitica involved in the secretion of YopE. Mol. Microbiol. 8: 123-131. Wattiau, P., B. Bernier, P. Deslee, T. Michiels, and G. R. Cornelis. 1994. Individual chaperones required for Yop secretion by Yersinia. Proc. Natl. Acad. Sci. USA. 91: 10493-10497. 183 Wattiau, P., S. Woestyn, and G. R. Cornelis. 1996. Customized secretion chaperones in pathogenic bacteria. Mol. Microbiol. 20: 255-262. Webb, D. C., H. Rosenberg, and G. B. Cox. 1992. Mutational analysis of Escherichia coli phosphate-specific transport system, a member of traffic ATPase (or ABC) family of membrane transporters. J. Biol. Chem. 267: 24661-24668. Wilderman, P. J., A. I. Vasil, Z. Johnson, and M. L. Vasil. 2001. Genetic and biochemical analyses of a eukaryotic-like phospholipase D of Pseudomonas aeruginosa suggest horizontal acquisition and a role for persistence in a chronic pulmonary infection model. Mol. Microbiol. 39: 291-303. Wilson, J. P., R. R. Waterer, J. D. Wafford, Jr., and S. W. Chapman. 1989. Serious infections with Edwardsiella tarda. Arch. Intern. Med. 149: 208-210. Wipat, A., S. C. Brignell, B. J. Guy, M. Rose, P. T. Emmerson, and C. R. Harwood. 1998. The yvsA-yvqA (293 degrees-289 degrees) region of the Bacillus subtilis chromosome containing genes involved in metal ion uptake and a putative sigma factor. Microbiology 144: 1593-1600. Wong, J.D., M. A. Miller, and J. M. Janda. 1989. Surface properties and ultrastructure of Edwrdsiella species. J. Clin. Microbiol. 27: 1797-1801. Wood, M. W., M. A. Jones, P. R. Watson, S. Hedges, T. S. Wallis, and E. E. Galyov. 1998. Identification of a pathogenicity island required for Salmonella enteropathogenicity. Mol. Microbiol. 29: 883-891. Wood, M.W., R. Rosqvist, P. B. Mullan, M. H. Edwards, and E. E. Galyov. 1996. SopE, a secreted protein of Salmonella dublin, is translocated into the target eukaryotic cell via a sip-dependent mechanism and promotes bacterial entry. Mol. Microbiol. 22: 327-338. Wu, M. S., R. S. Shyu, M. Y. Lai, G. T. Huang, D. S. Chen, and T. H. Wang. 1995. A predisposition toward Edwardsiella tarda bacteremia in individuals with preexisting liver disease. Clin. Infect. Dis. 21: 705-706. Yahr, T. L., and D. W. Frank. 1994. Transcriptional organization of the transregulatory locus which controls exoenzyme S synthesis in Pseudomonas aeruginosa. J. Bacteriol. 176: 3832-3238. Yahr, T. L., J. Goranson, and D. W. Frank. 1996. Exoenzyme S of Pseudomonas aeruginosa is secreted by a type III pathway. Mol. Microbiol. 22: 991-1003. 184 Yang, C. H., and C. K. Wang. 1999. Edwardsiella tarda bacteraemia complicated by acute pancreatitis and pyomyoma. J. Infect. 38: 124-126. Zurawski, D.V., and M. A. Stein. 2003. SseA acts as the chaperone for the SseB component of the Salmonella Pathogenicity Island translocon. Mol. Microbiol. 47: 1341-1351. Zurawski, D.V., and M. A. Stein. 2004. The SPI2-encoded SseA chaperone has discrete domains required for SseB stabilization and export, and binds within the C-terminus of SseB and SseD. Microbiology 150: 2055-2068. 185 [...]... tarda infections E tarda is a ubiquitous organism with a broad host range and can cause diseases in both humans and animals I.1.2.1 Infections in humans E tarda is the only species of this genus that can infect humans and cause diseases in humans Association of E tarda with human diseases was first reported in 1969 (Jordan and Hadley, 1969) So far, at least 300 clinical cases have been reported E tarda. .. tarda cells have been observed to be surrounded by a layer of slime (Ullah and Arai, 198 3a) and this was speculated to help in bacterial adherence to host cells Clinical E tarda isolates were invasive in a HeLa cell assay (Marques et al., 1984) Janda et al (199 1a) reported that E tarda was able to penetrate and replicate in cultured HEp-2 cell Clinical isolates of E tarda induced plasma membrane ruffles... tarda infections in humans are more common in tropical and subtropical regions (Sakazaki and Murata, 1962; Kourany et al., 1977), and in persons with exposure to the aquatic environments or exotic animals including amphibians and reptiles, and conditions leading to iron overload and dietary habits like ingestion of raw fish (Janda and Abbott, 199 3a, 3 Wu et al., 1995) The diseases caused by E tarda. .. cannot utilize many sugars, and therefore the epithet tarda means inactivity E tarda can grow on tryptic soy agar medium and form small, round, raised and transparent colonies at 24-26°C (Meyer and Bullock, 1973) The biochemical characteristics of Edwardsiella are similar to Escherichia, Shigella, and Salmonella, but it is easily differentiated on the basis of a complete set of biochemical test results... sepsis (Clarridge et al., 1980), septic arthritis (Osiri et al., 1997), bacteremia (Yang and Wang, 1999) and wound infections (Vartian and Septimus, 1990; Banks, 1992; Ashford et al., 1998) E tarda was also isolated from patients with hepatobiliary diseases and immuno-competence (Janda and Abbott, 199 3a) I.1.2.2 Infections in animals Besides causing diseases in humans, E tarda is most commonly associated... freshwater environments as well as with animals that inhabit these ecosystems, such as turtles, water tortoises, fish, toads and snakes (Plumb, 1993), and it can cause Edwardsiella septicemia, a mild to severe system disease, in warmed water fish E tarda is most prevalent in channel catfish (Meyer and Bullock, 1973) and in Japanese eels (Egusa, 1976) The outbreaks of disease caused by E tarda is typically... unravel E tarda pathogenesis 11 Fig I.2 Schematic diagram of bacterial type I to V secretion systems 18 Fig III. 1 Schematic presentation of TTSS and EVP gene clusters of E tarda PPD130/91 .60 Fig III. 2 Amino acid sequence alignments of the EsrC and other members of the AraC family of transcription regulatory proteins of TTSSs 61 Fig III. 3 Proteome analysis of E tarda PPD130/91 and. .. al., 2000), and to produce toxins and enzymes such as hemolysins (Hirono et al., 1997), catalases (Srinivasa Rao et al., 2003b) and dermatotoxins (Ullah and Arai, 1983b) for disseminating infection Recently, two important virulence mechanisms that are related to secretion systems, namely, a type III secretion system (TTSS) (Tan et al., 2005) and a putative novel secretion system, EVP (E tarda virulence... extracts, and outer membrane proteins as immunogens (Song and Kou, 1979; Salati et al., 1983; Salati, 1985; Salati and Kusuda, 198 5a and 1985b; Kawai et al., 2004; Liu et al., 2005) However, no commercial vaccine has been marketed so far I.2 Virulence factors of E tarda Information regarding E tarda virulence is rather limited, although several recent studies have identified a number of virulence factors... Edwardsiella was in Japan by Sakazaki and Murata (1962) This genus includes three members, namely E ictaluri (Hawke, 1979), E hoshinae (Grimont et al., 1980) and E tarda (Ewing et al., 1965) E ictaluri can be isolated from catfish and can cause severe infections and enteric septicemia (Hawke et al., 1981), while E hoshinae has been found in water, birds, and lizards (Grimont et al., 1980) E tarda was formerly . FUNCTIONAL STUDIES OF A TYPE III AND A NOVEL SECRETION SYSTEM IN EDWARDSIELLA TARDA ZHENG JUN NATIONAL UNIVERSITY OF SINGAPORE 2006 FUNCTIONAL STUDIES OF A TYPE III. bromo-4-chloro-3-indolyl-β-D-galactopyranoside xv SUMMARY Edwardsiella tarda is an opportunistic gram-negative bacterial pathogen affecting both animals and humans. The ability of E. tarda to cause disease is. Animal studies 45 II.6.1 Animal model and maintenance 45 II.6.2 Fifty percent median lethal dose (LD 50 ) studies 46 II.7 Statistical Analysis 46 Chapter III. Regulation of a Type III and

Ngày đăng: 15/09/2015, 17:11

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN