1. Trang chủ
  2. » Giáo Dục - Đào Tạo

A study on ultrasonic vibration cutting of difficult to cut materials

210 557 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 210
Dung lượng 9,74 MB

Nội dung

A STUDY ON ULTRASONIC VIBRATION CUTTING OF DIFFICULT-TO-CUT MATERIALS CHANDRA NATH NATIONAL UNIVERSITY OF SINGAPORE 2008 A STUDY ON ULTRASONIC VIBRATION CUTTING OF DIFFICULT-TO-CUT MATERIALS CHANDRA NATH (B.Sc Engg. (Hons.), BUET) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF MECHANICAL ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2008 To my Mother, Honorable teacher M. A. Bashar and Beloved wife i Acknowledgements First I express my deepest and heartfelt gratitude to my supervisor Professor Dr. Mustafizur Rahman for his continuous supervision, valuable time, untiring efforts, strong guidance, immense and continuous supports and inspirations for completion the entire research work. He has always provided me a global view of research, background knowledge, constructive criticisms and invaluable timely feedbacks and suggestions to finish my research successfully. I sincerely appreciate his pronounced individualities, positive attitudes, humanistic and warm personal approaches. I sincerely thank Mr. K. S. Neo of Advanced Manufacturing Laboratory (AML) for his continuous supports during the tests, time and patience in criticizing the experimental results and helping to solve machine and instruments related problems. I also express my deepest thanks to the lab officer Mr. Tan Choon Huat, the technicians Mr. Nelson Yeo Eng Huat, Lim Soon Cheong, Wong Chian Loong, Simon from AML and Mr. Au Siew Kong, Lee Chiang Soon from Workshop-2 for their time, supports, and patience in operating the machine and instruments for the experimental tests. Special thanks go to my labmates and friends: Subramanyam, Hesamoddin, Indraneel, Tanveer, Rubina, Sadiq, Wahab, Lingling, Sharon, Shaon, Lingling, Sazid, Pervej, Haiyan, Muntakim, Tarik, Kim Tho, Asma, Wang Xue, Woon, Jianjian and friends around for their supports and inspirations at various stages of this project. Sincere thanks go to my mom, wife, family members for their continuous supports and encouragements, which help me to finish this work successfully within due time. I also thank National University of Singapore (NUS) for providing me a research scholarship and the excellent and advanced facilities for this research work. ii Contents Acknowledgements………………………… …………………………ii Contents . iii Summary ix List of Tables xi List of Figures . xiii Nomenclature .xix Abbreviations .xxi Chapter 1: Introduction…………………………………………… .…1 1.1 Background .1 1.2 Ultrasonic Vibration Cutting (UVC) Method .3 1.2.1 Conventional UVC (CUVC) Method .4 1.2.2 Ultrasonic Elliptical Vibration Cutting (UEVC) Method .5 1.3 Comparison between the CC, CUVC and UEVC Methods 1.4 Motivation, Scope and Main Objectives .7 1.5 Organization of This Dissertation .8 Chapter 2: Literature Review .11 2.1 Review on the CUVC method 11 2.1.1 Surface Roughness, Roundness, and Waviness .14 2.1.2 Cutting Force, Cutting System Stability and Tool Wear .15 iii 2.1.3 Effect of Parameters in CUVC Performances .17 2.1.4 Tool-Workpiece Combinations in the CUVC Method 19 2.2 Review on the UEVC Method 21 2.2.1 Surface Roughness and Roundness .21 2.2.2 Cutting Force, Cutting System Stability and Tool Wear .24 2.2.3 Effect of Parameters on UEVC Performances .25 2.2.4 Tool-Workpiece Combinations in the UEVC Method 26 2.2.5 Tool Wear Behavior in the UEVC Method .27 2.2.6 Critical DOC and Maximum Thickness of Material Cut in UEVC .28 2.3 Concluding Remarks .30 Chapter 3: Experimental Details .32 3.1 Introduction .32 3.2 Experimental Details for the CUVC Tests 32 3.2.1 Lathe Machine: Okuma LH-35N .32 3.2.2 CUVC Device: Sonic Impulse SB-150 33 3.2.3 Workpiece Material .34 3.2.4 Tool Inserts 35 3.2.5 Measuring Instruments .35 3.2.6 Experimental Procedures .37 3.3 Experimental Details for the UEVC tests .38 3.3.1 Toshiba Ultraprecision Machine 38 3.3.2 UEVC Device: EL-50∑ .38 3.3.3 Workpiece Material .39 3.3.4 Tool Inserts 40 iv 3.3.5 Measuring Instruments .41 3.3.6 Experimental Procedures .43 Chapter 4: Study on Machining Parameters in CUVC method……48 4.1 Introduction .48 4.2 Theory .50 4.2.1 Study of the CUVC Mechanism 50 4.2.2 The Effect of Tool Vibration Frequency .53 4.2.3 The Effect of Tool Vibration Amplitude .54 4.2.4 The Effect of Workpiece Cutting Speed 56 4.3 Verification of Theoretical Studies .58 4.4 Cutting Conditions 59 4.5 Results and Discussions 60 4.5.1 Effect of Cutting Speed on Cutting Force and on Tool Wear 60 4.5.2 Effect of Feed Rate on Cutting Force and on Tool Wear 66 4.5.3 Tool Wear vs. Cutting Time 68 4.5.4 Analysis of Chip Formation .70 4.5.5 Effect of Cutting Speed and Feed Rate on Surface Roughness .72 4.6 Comparative Analysis between the CC and CUVC Methods 75 4.7 Concluding Remarks .76 Chapter 5: UEVC of Sintered Tungsten Carbide .78 5.1 Introduction .78 5.2 The UEVC Principle .79 5.3 Cutting Conditions 83 v 5.4 Results and Discussions 84 5.4.1 Effect of Cutting Parameters on Force Components .84 5.4.2 Effect of Cutting Parameters on Tool Flank Wear 89 5.4.3 Effect of Cutting Parameters on Surface Roughness .91 5.4.4 Parameters for Improving Cutting Performance: a Case Study .…… 94 5.4.5 Performance Comparison: the UEVC and CC Methods 97 5.5 Effect of Tool Geometry in UEVC .101 5.5.1 Effects of Nose Radius: the Theoretical Phenomenon 103 5.5.2 Effect of Nose Radius on Force Components 104 5.5.3 Effect of Nose Radius on Tool Wear .106 5.5.4 Effect of Nose Radius on Surface Roughness…………………………108 5.6 Concluding Remarks .111 Chapter 6: PCD Tool Wear Mechanism in UEVC Method .114 6.1 Introduction .114 6.2 Theoretical Aspects: Effect of Speed Ratio 115 6.3 Cutting Conditions for Tool Wear Experiments .118 6.4 Results and Discussions 119 6.4.1 Cutting Force and Tool Flank Wear Analyses .119 6.4.2 Tool Wear Progression and Mechanism 124 6.4.3 Chip Analysis .129 6.4.4 EDX Analyses of Tool Nose and Chips 132 6.4.5 Surface Roughness Analysis 132 6.5 Concluding Remarks .137 vi Chapter 7: Modeling of Maximum Thickness of Cut in UEVC 140 7.1 Introduction .140 7.2 Theoretical Analyses .141 7.2.1 Effect of DOC on Finished Surface .142 7.2.2 Condition to Obtain a Reduced TOCm .145 7.2.3 Maximum TOC (TOCm) at a Rs within the Rscr 146 7.2.4 Maximum TOC ( TOC m ) at the Rscr ( TOC cm ) .148 7.2.5 Maximum and Minimum TOCs at a Rs beyond the Rscr 148 7.2.6 Maximum TOC Ratio ( TOCmr ) at Different Rs .149 7.2.7 Effect of Rs on Cycle-Overlap ( x1 − x3 ) , TOC m and TOC mr 149 7.2.8 Determination of the Critical Speed Ratio, Rscr 151 7.3 Effects of Machining Parameters 153 7.3.1 Effect of Cutting Speed 153 7.3.2 Effect of Tool Vibration Frequency .154 7.3.3 Effect of Tangential Vibration Amplitude .155 7.3.4 Effect of Thrust Vibration Amplitude 156 7.3.5 Selection Criteria of Parameters for Ductile Mode Cutting .158 7.3.6 Increasing the Cutting speed for Higher Machining Rate at Rscr .158 7.4 Experimental Verification of the Model .160 7.5 Concluding Remarks .166 Chapter 8: Conclusions and Recommendations 168 8.1 Main Contributions .168 8.2 Recommendations for Future Work 170 vii References 172 List of Publications .181 Appendix A 183 Appendix B 185 Appendix C……………………………….….……………… .187 viii References References Arsecularatnea, J.A., Zhanga, L.C. and Montross, C., Wear and tool life of tungsten carbide, PCBN and PCD cutting tools, International Journal of Machine Tools and Manufacture, 46(5), pp.482-491. 2006. Astashev, V.K. and Babitsky, V.I., Ultrasonic cutting as a nonlinear (vibro-impact) process, Ultrasonics, 36(1-5), pp.89-96. 1998. Babitsky, V.I., Kalashnikov, A.N., Meadows, A., and Wijesundara, A.A.H.P., Ultrasonically assisted turning of aviation materials, Journal of Materials Processing Technology, 132(1–3), pp.157-167. 2003. Babitsky, V.I., Mitrofanov, A.V., and Silberschmidt, V.V., Ultrasonically assisted turning of aviation materials: simulations and experimental study, Ultrasonics, 42(1–9), pp.81-86. 2004. Baidya, K.K., A Study on Machinability of Inconel 718 in Turning Operation, M. Engg. Thesis, Department of Mechanical Engineering, National University of Singapore, Singapore, 2000. Balamuth, L., Ultrasonic assistance to conventional metal removal, Ultrasonics, 4(3), pp.125-130. 1966. Blackley, W.S. and Scattergood, R.O., Ductile regime model for diamond turning of brittle materials, Journal of Precision Engineering, 13(2), pp.95–102. 1991. Brehl, D.E. and Dow, T.A., Review of vibration-assisted machining, Precision Engineering, 32(3), pp.153-172. 2008. 172 References Chen, W., Cutting forces and surface finish when machining medium hardness steel using CBN tools, International Journal of Machine Tools and Manufacture, 40(3), P.455-466. 2000. Egashira, K., Mizutani, K. and Nagao, T., Ultrasonic vibration drilling of microholes in Glass, CIRP Annals - Manufacturing Technology, 51(1), pp. 339-342. 2002. Gao, C. and Liu, Z., A study of ultrasonically aided micro-electrical-discharge machining by the application of workpiece vibration, Journal of Materials Processing Technology, 139 (1-3), P.226-228. 2003. Gao, G.F., Zhao, B., Jiao, F. and Liu, C.S., Research on the influence of the cutting conditions on the surface microstructure of ultra-thin wall parts in ultrasonic vibration cutting, Journal of Materials Processing Technology, 129(1-3), pp.6670. 2002. Guo, Z.N., Lee, T.C., Yue, T.M. and Lau, W.S., A study on ultrasonic-aided wire electrical discharge machining, Journal of Materials Processing Technology, 63(13), pp.823-828.1997. Heo, S.-J., Machining characteristics of cemented carbides in micro cutting within SEM, International Journal of Precision Engineering and Manufacturing, 5(3), pp.35-42. 2004. Isaev, A. and Anokhin, V., Ultrasonic vibration of a metal cutting tool, 41, 1961 (in Russian). Japitana, F.H., Morishige, K. and Takeuchi, Y., 6-Axis control cutting of overhanging curved grooves by means of non-rotational tool with application of ultrasonic vibrations, International Journal of Machine Tools and Manufacture, 44(5), pp.479-486. 2004. 173 References Japitana, F.H., Morishige, K. and Takeuchi, Y., Highly efficient manufacture of groove with sharp corner on adjoining surfaces by 6-axis control ultrasonic vibration cutting, Precision Engineering, 29(4), pp.431–439. 2005. Jin, M. and Murakawa, M., Development of a practical ultrasonic vibration cutting tool system, Journal of Materials Processing Technology, 113(1-3), pp.342-347. 2001. Kim, J.-D. and Choi, I.-H., Micro surface phenomenon of ductile cutting in the ultrasonic vibration cutting of optical plastics, Journal of Materials Processing Technology, 68(1), pp.89-98. 1997. Kim, J.-D. and Lee, E.-S., A study of the ultrasonic-vibration cutting of carbon-fiber reinforced plastics, Journal of Materials Processing Technology, 43(2-4), pp.259277. 1994. Kim, J.-D. and Choi, I.-H., Characteristics of chip generation by ultrasonic vibration cutting with extremely low cutting velocity, The International Journal of Advanced Manufacturing Technology, 14(1), pp.2-6. 1998. Kim, G.D. and Loh, B.G., An ultrasonic elliptical vibration cutting device for micro V-groove machining: Kinematical analysis and micro V-groove machining characteristics, Journal of Materials Processing Technology, 190(1-3), pp.181– 188. 2007. Kumabe, J., Vibration cutting - fundamentals and applications, Jikkyo Shuppan Co. Ltd., 13. 1979. Kumabe, J. and Hachisuka, M., Super-precision cylindrical machining, Precision Engineering, 6(2), pp.67-72. 1984. Kumabe, J., Fuchizawa, K., Soutome, T. and Nishimoto, Y., Ultrasonic superposition vibration cutting of ceramics, Precision Engineering, 11(2), pp.71-77. 1989. 174 References Lane, C., The effect of different reinforcements on PCD tool life for aluminum composites, Proceedings of the Machining of Composite Materials Symposium, ASM Material Week, Chicago, IL, pp.17-27. 1992. Lee, J.S., Lee, D.W., Jung, Y.H. and Chung, W.S., A study on micro-grooving characteristics of planar lightwave circuit and glass using ultrasonic vibration cutting, Journal of Materials Processing Technology, 130-131, pp.396-400. 2002. Li, X. and Zhang, D., Ultrasonic elliptical vibration transducer driven by single actuator and its application in precision cutting, Journal of Materials Processing Technology, 180(1-3), pp.91-95. 2006. Liu, C.R. and Liu, T.M., Automated chatter suppression by tool geometry control, Journal of Engineering for Industry-Transaction of ASME, 107, pp.95-98. 1985. Liu, C.S., Zhao, B., Gao, G.F., Jiao, F., Research on the characteristics of the cutting force in the vibration cutting of a particle-reinforced metal matrix composites SiCp/Al, Journal of Materials Processing Technology, 129(1-3), pp.196-199. 2002. Liu, K., Li, X.P., Rahman, M. and Liu, X.D., CBN tool wear in ductile cutting of tungsten carbide, Wear, 255(7-12), pp.1344-1351. 2003. Ma, C., Shamoto, E., Moriwaki, T. and Wang, L., Study of machining accuracy in ultrasonic elliptical vibration cutting, International Journal of Machine Tools and Manufacture, 44(12-13), pp.1305-1310. 2004. Ma, C., Shamoto, E., Moriwaki, T., Zhang, Y. and Wang, L., Suppression of burrs in turning with ultrasonic elliptical vibration cutting, International Journal of Machine Tools and Manufacture, 45(11), pp.1295-1300. 2005a. Ma, C., Wang, Y., Shamoto, E. and Moriwaki, T., Influence of ultrasonic vibrated diamond tool on the critical depth of cut of brittle materials, Chinese Journal of Mechanical Engineering, 41(6), pp.198-202. 2005b. 175 References Mitrofanov, A.V., Babitsky, V.I. and Silberschmidt. V.V., Finite element simulations of ultrasonically assisted turning, Computational Materials Science, 28(3-4), pp.645-653. 2003. Mitrofanov, A.V., Babitsky, V.I., Silberschmidt, V.V., Finite element analysis of ultrasonically assisted turning of Inconel 718, Journal of Materials Processing Technology, 153-154, pp.233-239. 2004. Mitrofanov A.V., Babitsky, V.I. and Silberschmidt. V.V., Thermomechanical finite element simulations of ultrasonically assisted turning, Computational Materials Science, 32 (3-4), pp.463-471. 2005a. Mitrofanov, A.V., Ahmed, N., Babitsky, V.I., and Silberschmidt, V.V., Effect of lubrication and cutting parameters on ultrasonically assisted turning of Inconel 718, Journal of Materials Processing Technology, 162–163, pp.649-654. 2005b. Moriwaki, T. and Shamoto, E., Ultraprecision diamond turning of stainless steel by applying ultrasonic vibration, CIRP Annals – Manufacturing Technology, 40(1), pp.559-562. 1991. Moriwaki, T., Shamoto, E., Ultrasonic elliptical vibration cutting. CIRP Annals – Manufacturing Technology, 44(1), pp.31-34. 1995. Moriwaki, T., Shamoto, E., Song, Y.C. and Kohda, S., Development of an Elliptical Vibration Milling Machine, CIRP Annals – Manufacturing Technology, 53(1), pp.341-344. 2004. Nath, C., Rahman, M. and Andrew, S.S.K., A study on ultrasonic vibration cutting of low alloy steel, Journal of Materials Processing Technology, 192-193, pp.159165. 2007. 176 References Nath, C. and Rahman, M., Effect of machining parameters in ultrasonic vibration cutting, International Journal of Machine Tools and Manufacture, 48(9), pp.965974. 2008. Nath, C., and Rahman, M., Evaluation of Ultrasonic Vibration Cutting while Machining Inconel 718, International Journal of Precision Engineering and Manufacturing, 9(2), pp.63-68. 2008. Oomen, J.M. and Eisses, J., Wear of monocrystalline diamond tools during ultraprecision machining of nonferrous metals, Precision Engineering, 14(4), pp.206-218. 1992. Shamoto, E. and Moriwaki, T., Fundamental study on elliptical vibration cutting, 8th American Society for Precision Engineering (ASPE) Annual Meeting, Proceedings. pp.162-165. 1993. Shamoto, E., Moriwaki, T., Study on elliptical vibration cutting, CIRP Annals – Manufacturing Technology, 43(1), pp.35-38. 1994. Shamoto, E., Moriwaki, T. and Matsuo, M., Ultraprecision diamond cutting of die steel by applying ultrasonic elliptical vibration cutting, International Conference and Exhibition on Design and Production of Dies and Molds, Istanbul, Turkey, pp.105-110. 1997. Shamoto, E. and Moriwaki, T., Ultraprecision diamond cutting of hardened steel by applying elliptical vibration cutting, CIRP Annals - Manufacturing Technology, 48(1), pp.441-444. 1999a. Shamoto, E., Morimoto, Y. and Moriwaki, T., Elliptical vibration cutting (2nd report): Study on effects of vibration conditions, Journal of the Japan Society for Precision Engineering (JSPE), 65(3), pp.411-416. 1999b. 177 References Shamoto, E., Suzuki, N., Moriwaki, T., Naoi, Y., Development of ultrasonic vibration controller for elliptical vibration cutting. CIRP Annals - Manufacturing Technology, 51(1), pp.327-330. 2002. Shamoto, E., Suzuki, N., Tsuchiya, E., Hori, Y., Inagaki, H. and Yoshino, K., Development of DOF ultrasonic vibration tool for elliptical vibration cutting of sculptured surfaces, CIRP Annals - Manufacturing Technology, 54(1), pp.321324. 2005. Skelton, R.C., Turning with an oscillating tool, International Journal of Machine Tool Design and Research, 8(4), pp.239-259. 1968. Skelton, R.C., Effect of ultrasonic vibration on the turning process, International Journal of Machine Tool Design and Research, 9(4), pp.363-374. 1969. Suzuki, H., Moriwaki, T., Okino, T. and Ando, Y., Development of ultrasonic vibration assisted polishing machine for micro aspheric die and mold, CIRP Annals - Manufacturing Technology, 55(1), pp.385-388. 2006. Suzuki, N., Nakamura, A., Shamoto, E., Harada, K., Matsuo, M. and Osada, M., Ultraprecision micromachining of hardened steel by applying ultrasonic elliptical vibration cutting. Proceedings of the International Symposium on MicroMechatronics and Human Science, Nagoya, Japan, pp.221-226. 2003. Suzuki, N., Masuda, S., Haritani, M. and Shamoto, E., Ultraprecision micromachining of brittle materials by applying ultrasonic elliptical vibration cutting. Proceedings of the International Symposium on Micro-NanoMechatronics and Human Science, Nagoya, Japan, pp.133-138. 2004. Suzuki, N., Haritani, M., Yang, J., Hino, R. and Shamoto, E., Elliptical vibration cutting of tungsten alloy molds for optical glass parts, CIRP Annals – Manufacturing Technology, 56(1), pp.127-130. 2007. 178 References Tarng, Y.S., Young, H.T. and Lee, B.Y., An analytical model of chatter vibration in metal cutting, International Journal of Machine Tools and Manufacture, 34(2), pp.183-197. 1994. Uddin, M.S, Seah, K.H.W., Li, X.P., Rahman, M. and Liu, K., Effect of crystallographic orientation on wear of diamond tools for nano-scale ductile cutting of silicon, Wear, 257(7-8), pp.751-759. 2004. Voronin, A. A. and Marknov, A. I., Stanki lnstruments, 31, pp.169. 1960. (In Russian). Vyas, A. and Shaw, M.C., Mechanics of saw-tooth chip information in metal cutting, Journal of Manufacturing Science and Engineering, Transaction of the ASME, 121, pp.163-172. 1999. Wang, Z.G., Rahman, M. and Wong, Y.S., Tool wear characteristics of binderless CBN tools used in high-speed milling of titanium alloys, Wear, 258(5-6), pp.752758. 2005. Weinert, K. and König, W., A consideration of tool wear mechanism when machining metal matrix composites (MMC), CIRP Annals – Manufacturing Technology, 42(1), pp.95-98. 1993. Xiao, M., Karube, S., Soutome, T., Sato, K., Analysis of chatter suppression in vibration cutting, International Journal of Machine Tools and Manufacture, 42(15), pp.1677-1685. 2002. Xiao, M., Sato, K., Karube, S., and Soutome, T., The effect of tool nose radius in ultrasonic vibration cutting of hard metal, International Journal of Machine Tools and Manufacture, 43(13), pp.1375-1382. 2003. Xiao, M., Wang, Q.M., Sato, K., Karube, S., Soutome, T., and Xu, H., The effect of tool geometry on regenerative stability in ultrasonic vibration cutting, 179 References International Journal of Machine Tools and Manufacture, 46(5), pp.492–499. 2006. Yuan, Z.J., Geng, L. and Dong, S., Ultraprecision machining of SiCw/Al composites, Annals of the CIRP 42(1), pp.107-109. 1993. Zahn, S., Schneider Y. and Rohm, H., Ultrasonic cutting of foods: Effects of excitation magnitude and cutting velocity on the reduction of cutting work, Innovative Food Science and Emerging Technologies, 7(4), pp.288–293. 2006. Zhao, B., Liu, C.S., Zhu, X.S. and Xu, K.W., Research on the vibration cutting performance of particle reinforced metallic matrix composites SiCp/Al, Journal of Materials Processing Technology, 129(1-3), pp.380-384. 2002. Zhang, Y.-L., Zhou, Z.-M., Xia, Z.-H., Diamond turning of titanium alloy by applying ultrasonic vibration. Transactions of the Nonferrous Metals Society of China. 15(Special 3), pp. 279-282. Nov. 2005. Zhou, M., Wang, X.J., Ngoi, B.K.A., and Gan, J.G.K., Brittle-ductile transition in the diamond cutting of glasses with the aid of ultrasonic vibration, Journal of Materials Processing Technology, 121(2-3), pp.243-251. 2002. Zhou, M., Eow, Y.T., Ngoi, B.K.A. and Lim, E.N., Vibration-assisted precision machining of steel with PCD tools, Materials and Manufacturing Processes, 18(5), pp.825-834. 2003. Zhou, M., Ngoi, B.K.A., Yusoff, M.N. and Wang, X.J., Tool wear and surface finish in diamond cutting of optical glass, Journal of Materials Processing Technology, 174(1-3), pp.29-33. 2006. 180 List of Publications List of Publications Journal papers: 1. Chandra Nath, M. Rahman, Effect of machining parameters in ultrasonic vibration cutting, International Journal of Machine Tools and Manufacture, Vol.48, No.9, pp.965-974, 2008. 2. Chandra Nath, Mustafizur Rahman, Evaluation of ultrasonic vibration cutting while machining Inconel 718, International Journal of Precision Engineering and Manufacturing, Vol.9, No.2, pp.63-68, 2008. 3. Chandra Nath, M. Rahman, S.S.K. Andrew, A study on ultrasonic vibration cutting of low alloy steel, Journal of Materials Processing Technology, Vol.192– 193, pp.159–165, 2007. 4. Chandra Nath, M. Rahman, K.S. Neo, A study on ultrasonic elliptical vibration cutting of tungsten carbide, Journal of Materials Processing Technology, Vol.209, No.9, pp. 4459–4464, 2009. 5. Chandra Nath, Mustafizur Rahman, Ken Soon Neo, Enhancing the performance of polycrystalline diamond tools for machining WC by ultrasonic elliptical vibration cutting method, Journal of Vacuum Science and Technology-B, Vol.27, No.3, pp.1241-1246, 2009. 6. Chandra Nath, Mustafizur Rahman, Ken Soon Neo, A study on the effect of tool nose radius in ultrasonic elliptical vibration cutting of tungsten carbide (Accepted in Journal of Materials Processing Technology). 7. C. Nath, M. Rahman, K.S. Neo, Machinability study of tungsten carbide with PCD tools applying ultrasonic elliptical vibration cutting technique (Under review in International Journal of Machine Tools and Manufacture) 8. C. Nath, M. Rahman, K.S. Neo, Tool wear and surface finish in ultrasonic elliptical vibration cutting of tungsten carbide (Under review in Journal of Materials Processing Technology). 9. C. Nath, M. Rahman, K.S. Neo, Modeling of the effect of machining parameters on maximum thickness of cut in ultrasonic elliptical vibration cutting (Under review in Transaction of ASME, Journal of Manufacturing Science and Engineering). 10. Chandra Nath, Mustafizur Rahman, Ken Soon Neo, Ductile machining of tungsten carbide by applying ultrasonic elliptical vibration cutting technique, (Submitted to Journal of Materials Processing Technology). 181 List of Publications Conference papers: 1. Chandra Nath, M. Rahman, S.K. Andrew, A study on ultrasonic vibration cutting of low alloy steel, Proceedings of 7th Asia-Pacific Conference on Materials Processing (APCMP), 4-6 Dec, 2006, NUS, Singapore, pp.239-245, ISBN 81-904262-2-2. 2. Chandra Nath, M. Rahman, Evaluation of ultrasonic vibration cutting for machining of Inconel 718, Proceedings of the 2nd International Conference of Asian Symposium for Precision Engineering and Nanotechnology (ASPEN), 6-9 Nov, 2007, GIST, Gwangju, Korea, pp.85-90, ISBN: 978-89-959384-5-4 98550. 3. C. Nath, M. Rahman, K.S. Neo, A study on ultrasonic elliptical vibration cutting of tungsten carbide, Proceedings of the 8th Asia-Pacific Conference on Materials Processing (APCMP), 15-20 Jun, 2008, Guilin-Guangzhou, China, pp.618-623, ISBN: 978-0-9580692-9-8. 4. Chandra Nath, Mustafizur Rahman, Ken Soon Neo, Enhancing the performance of PCD tools for machining WC by ultrasonic elliptical vibration cutting method, The 1st International Conference on Nanomanufacturing (nanoMan2008), 14-16 Jul, 2008, SMU, Singapore, Manuscript ID: 260. 5. C. Nath, M. Rahman, K.S. Neo, Ultraprecision micromachining of tungsten carbide by ultrasonic elliptical vibration cutting technique, Proceedings of the 2nd International and 23rd All India Manufacturing Technology, Design and Research (AIMTDR), 15-17 Dec, 2008, IIT Madras, India, Paper ID: 192. 6. Chandra Nath, Mustafizur Rahman, Ken Soon Neo, Ductile mode machining of tungsten carbide using ultrasonic elliptical vibration cutting technique (Submitted to the 3rd International Conference of Asian Society for Precision Engineering and Nanotechnology (ASPEN), To be held 11-13 Nov, 2009, Kitakyushu, Japan). Related Publication(s): M. Rahman, A.B.M.A. Asad, T. Masaki, T. Saleh, C. Nath, Y.S. Wong, A.S. Kumar, H.S. Lim, Tool-based compound micro/nano-machining, International Conference on Multi-Material Micro-Manufacture (4M) and the International Conference on MicroManufacture (ICOMM), To be held 23-25 Sep, 2009, KIT, Karlsruhe, Germany. Book Chapter: C. Nath, K.K. Baidya, M. Rahman, “Development, Properties, Applications and Machinability of Superalloy Inconel” (Submitted on invitation by the editor of the NOVA publisher, NY, USA). 182 Appendices Appendix A Effect of speed ratio, R s on the cycle-overlap, TOC m and TOC mr at various depth of cut, a p (Thrust directional vibration amplitude, b = 1.5 µm). Condition: a p > b. No. Speed ratio, Rs Cycleoverlap, (x -x ) (m) TOC m (m) at TOC m (m) at TOC mr (= TOC m /a p ) at a p = m a p = m a p = m a p = m a p = m a p = m a p = m a p = m a p = m 0.0 -3.0000E-06 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.00000E+00 0.00000E+00 0.0000E+00 0.005 -2.8822E-06 2.0000E-09 2.0000E-09 2.0000E-09 2.0000E-03 2.0000E-03 2.0000E-03 6.66667E-04 5.00000E-04 4.0000E-04 0.010 -2.7645E-06 6.0000E-09 6.0000E-09 6.0000E-09 6.0000E-03 6.0000E-03 6.0000E-03 2.00000E-03 1.50000E-03 1.2000E-03 0.015 -2.6469E-06 1.3000E-08 1.3000E-08 1.3000E-08 1.3000E-02 1.3000E-02 1.3000E-02 4.33333E-03 3.25000E-03 2.6000E-03 0.020 -2.5294E-06 2.3000E-08 2.3000E-08 2.3000E-08 2.3000E-02 2.3000E-02 2.3000E-02 7.66667E-03 5.75000E-03 4.6000E-03 0.025 -2.4119E-06 3.6000E-08 3.6000E-08 3.6000E-08 3.6000E-02 3.6000E-02 3.6000E-02 1.20000E-02 9.00000E-03 7.2000E-03 0.030 -2.2945E-06 5.1000E-08 5.1000E-08 5.1000E-08 5.1000E-02 5.1000E-02 5.1000E-02 1.70000E-02 1.27500E-02 1.0200E-02 0.035 -2.1772E-06 7.0000E-08 7.0000E-08 7.0000E-08 7.0000E-02 7.0000E-02 7.0000E-02 2.33333E-02 1.75000E-02 1.4000E-02 0.040 -2.0599E-06 9.1000E-08 9.1000E-08 9.1000E-08 9.1000E-02 9.1000E-02 9.1000E-02 3.03333E-02 2.27500E-02 1.8200E-02 10 0.045 -1.9428E-06 1.1500E-07 1.1500E-07 1.1500E-07 1.1500E-01 1.1500E-01 1.1500E-01 3.83333E-02 2.87500E-02 2.3000E-02 11 0.050 -1.8257E-06 1.4100E-07 1.4100E-07 1.4100E-07 1.4100E-01 1.4100E-01 1.4100E-01 4.70000E-02 3.52500E-02 2.8200E-02 12 0.055 -1.7086E-06 1.7200E-07 1.7200E-07 1.7200E-07 1.7200E-01 1.7200E-01 1.7200E-01 5.73333E-02 4.30000E-02 3.4400E-02 13 0.060 -1.5917E-06 2.0500E-07 2.0500E-07 2.0500E-07 2.0500E-01 2.0500E-01 2.0500E-01 6.83333E-02 5.12500E-02 4.1000E-02 183 Appendices 14 0.065 -1.4748E-06 2.4100E-07 2.4100E-07 2.4100E-07 2.4100E-01 2.4100E-01 2.4100E-01 8.03333E-02 6.02500E-02 4.8200E-02 15 0.070 -1.3580E-06 2.8100E-07 2.8100E-07 2.8100E-07 2.8100E-01 2.8100E-01 2.8100E-01 9.36667E-02 7.02500E-02 5.6200E-02 16 0.075 -1.2413E-06 3.2700E-07 3.2700E-07 3.2700E-07 3.2700E-01 3.2700E-01 3.2700E-01 1.09000E-01 8.17500E-02 6.5400E-02 17 0.080 -1.1246E-06 3.7500E-07 3.7500E-07 3.7500E-07 3.7500E-01 3.7500E-01 3.7500E-01 1.25000E-01 9.37500E-02 7.5000E-02 18 0.085 -1.0081E-06 4.3000E-07 4.3000E-07 4.3000E-07 4.3000E-01 4.3000E-01 4.3000E-01 1.43333E-01 1.07500E-01 8.6000E-02 19 0.090 -8.9158E-07 4.8260E-07 4.8260E-07 4.8260E-07 4.8260E-01 4.8260E-01 4.8260E-01 1.60867E-01 1.20650E-01 9.6520E-02 20 0.095 -7.7516E-07 5.5320E-07 5.5320E-07 5.5320E-07 5.5320E-01 5.5320E-01 5.5320E-01 1.84400E-01 1.38300E-01 1.1064E-01 21 0.100 -6.5882E-07 6.1340E-07 6.1340E-07 6.1340E-07 6.1340E-01 6.1340E-01 6.1340E-01 2.04467E-01 1.53350E-01 1.2268E-01 22 0.105 -5.4255E-07 7.0310E-07 7.0310E-07 7.0310E-07 7.0310E-01 7.0310E-01 7.0310E-01 2.34367E-01 1.75775E-01 1.4062E-01 23 0.110 -4.2635E-07 7.9280E-07 7.9280E-07 7.9280E-07 7.9280E-01 7.9280E-01 7.9280E-01 2.64267E-01 1.98200E-01 1.5856E-01 24 0.115 -3.1024E-07 9.0930E-07 9.0930E-07 9.0930E-07 9.0930E-01 9.0930E-01 9.0930E-01 3.03100E-01 2.27325E-01 1.8186E-01 25 0.120 -1.9419E-07 1.0326E-06 1.0326E-06 1.0326E-06 1.0326E+00 1.0326E+00 1.0326E+00 3.44200E-01 2.58150E-01 2.0652E-01 26 0.125 -7.8225E-08 1.2267E-06 1.2267E-06 1.2267E-06 1.2267E+00 1.2267E+00 1.2267E+00 4.08900E-01 3.06675E-01 2.4534E-01 27 0.130 3.7667E-08 2.9000E-06 3.9000E-06 4.9000E-06 2.9000E+00 3.9000E+00 4.9000E+00 9.66667E-01 9.75000E-01 9.8000E-01 28 0.135 1.5348E-07 2.8920E-06 3.8920E-06 4.8920E-06 2.8920E+00 3.8920E+00 4.8920E+00 9.64000E-01 9.73000E-01 9.784E-01 29 0.140 2.6922E-07 2.8830E-06 3.8830E-06 4.8830E-06 2.8830E+00 3.8830E+00 4.8830E+00 9.61000E-01 9.70750E-01 9.766E-01 30 0.145 3.8489E-07 2.8750E-06 3.8750E-06 4.8750E-06 2.8750E+00 3.8750E+00 4.8750E+00 9.58333E-01 9.68750E-01 9.750E-01 31 0.150 5.0048E-07 2.8680E-06 3.8680E-06 4.8680E-06 2.8680E+00 3.8680E+00 4.8680E+00 9.56000E-01 9.67000E-01 9.736E-01 184 Appendices Appendix B Effect of speed ratio, R s on the TOC m and TOC mr at different values of b (µm). Conditions: a p = μm and a p > b. No. Speed ratio, Rs TOC m (m) at TOC m TOC mr (= TOC m /a p ) at (m) at b = m b = 1.5 m b = m b = m b = 1.5 m b = m b = m b = 1.5 m b = m 0.0 0.0000E+00 0.0000E+00 0.0000000 0.0000 0.0000E+00 0.00000 0.000000 0.0000E+00 0.000000 0.005 1.0000E-09 2.0000E-09 2.0000E-09 0.0010 2.0000E-03 0.00200 0.000250 5.00000E-04 0.000500 0.010 3.9000E-09 6.0000E-09 8.0000E-09 0.0039 6.0000E-03 0.00800 0.000975 1.50000E-03 0.002000 0.015 8.6000E-09 1.3000E-08 1.7000E-08 0.0086 1.3000E-02 0.01700 0.002150 3.25000E-03 0.004250 0.020 1.5300E-08 2.3000E-08 3.0000E-08 0.0153 2.3000E-02 0.03000 0.003825 5.75000E-03 0.007500 0.025 2.3800E-08 3.6000E-08 4.7000E-08 0.0238 3.6000E-02 0.04700 0.005950 9.00000E-03 0.011750 0.030 3.4100E-08 5.1000E-08 6.9000E-08 0.0341 5.1000E-02 0.06900 0.008525 1.27500E-02 0.017250 0.035 4.6400E-08 7.0000E-08 9.3000E-08 0.0464 7.0000E-02 0.09300 0.011600 1.75000E-02 0.023250 0.040 6.0500E-08 9.1000E-08 1.2100E-07 0.0605 9.1000E-02 0.12100 0.015125 2.27500E-02 0.030250 10 0.045 7.6600E-08 1.1500E-07 1.5400E-07 0.0766 1.1500E-01 0.15400 0.019150 2.87500E-02 0.038500 11 0.050 9.4500E-08 1.4100E-07 1.9000E-07 0.0945 1.4100E-01 0.19000 0.023625 3.52500E-02 0.047500 12 0.055 1.1450E-07 1.7200E-07 2.2900E-07 0.1145 1.7200E-01 0.22900 0.028625 4.30000E-02 0.057250 13 0.060 1.3640E-07 2.0500E-07 2.7300E-07 0.1364 2.0500E-01 0.27300 0.034100 5.12500E-02 0.068250 185 Appendices 14 0.065 1.6080E-07 2.4100E-07 3.2200E-07 0.1608 2.4100E-01 0.32200 0.040200 6.02500E-02 0.080500 15 0.070 1.8820E-07 2.8100E-07 3.7700E-07 0.1882 2.8100E-01 0.37700 0.047050 7.02500E-02 0.094250 16 0.075 2.1740E-07 3.2700E-07 4.3600E-07 0.2174 3.2700E-01 0.43600 0.054350 8.17500E-02 0.109000 17 0.080 2.5050E-07 3.7500E-07 5.0000E-07 0.2505 3.7500E-01 0.50000 0.062625 9.37500E-02 0.125000 18 0.085 2.8930E-07 4.3000E-07 5.7400E-07 0.2893 4.3000E-01 0.57400 0.072325 1.07500E-01 0.143500 19 0.090 3.2500E-07 4.8260E-07 6.5200E-07 0.3250 4.8260E-01 0.65200 0.081250 1.20650E-01 0.163000 20 0.095 3.6500E-07 5.5320E-07 7.3600E-07 0.3650 5.5320E-01 0.73600 0.091250 1.38300E-01 0.184000 21 0.100 4.1600E-07 6.1340E-07 8.3100E-07 0.4160 6.1340E-01 0.83100 0.104000 1.53350E-01 0.207750 22 0.105 4.6960E-07 7.0310E-07 9.3540E-07 0.4696 7.0310E-01 0.93540 0.117400 1.75775E-01 0.233850 23 0.110 5.3390E-07 7.9280E-07 1.0722E-06 0.5339 7.9280E-01 1.07220 0.133475 1.98200E-01 0.268050 24 0.115 6.1000E-07 9.0930E-07 1.2211E-06 0.6100 9.0930E-01 1.22110 0.152500 2.27325E-01 0.305275 25 0.120 7.0130E-07 1.0326E-06 1.4061E-06 0.7013 1.0326E+00 1.40610 0.175325 2.58150E-01 0.351525 26 0.125 8.2350E-07 1.2267E-06 1.6663E-06 0.8235 1.2267E+00 1.66630 0.205875 3.06675E-01 0.416575 27 0.130 3.9327E-06 3.9000E-06 3.8660E-06 3.9327 3.9000E+00 3.86600 0.983175 9.75000E-01 0.966500 28 0.135 3.9280E-06 3.8920E-06 3.8560E-06 3.9280 3.8920E+00 3.85600 0.982000 9.73000E-01 0.964000 29 0.140 3.9231E-06 3.8830E-06 3.8460E-06 3.9231 3.8830E+00 3.84600 0.980775 9.70750E-01 0.961500 30 0.145 3.9181E-06 3.8750E-06 3.8360E-06 3.9181 3.8750E+00 3.83600 0.979525 9.68750E-01 0.959000 31 0.150 3.9129E-06 3.8680E-06 3.8260E-06 3.9129 3.8680E+00 3.82600 0.978225 9.67000E-01 0.956500 186 Appendices Appendix C Generation of ductile mode mirror surfaces of sintered WC: Workpiece dia 40 mm 34 mm (a) Machined dia 40 mm 34 mm (b) Fig. : Mirror surfaces generated (with ‘NUS’ reflection) from sintered WC (~ 15% Co, DOC cr ≈ 0.6 µm) by applying the UEVC technique using (a) PCD; and (b) SCD tools for the same machining conditions: µm DOC (i.e. a p ), µm/rev feed rate, 20 rpm spindle speed, a = µm, b = µm, f = 38.87 kHz, R s = 0.073 at 34 mm dia and zero at center, TOC m : about 0.412 µm at 34 mm dia and µm at the center. Tool conditions and achievements: (a) PCD tool (Sumitomo DA150), r n = 0.6 mm, R a = 7.6 nm, R z = 44 nm, V B = 34 µm; (b) SCD tool (NewD), r n = mm, R a = 4.6 nm, R z = 28.4 nm, V B = 21 µm. (rake angle: 0o, clearance angle: 11o, workpiece dia.: 40 mm, machined dia.: 34 mm, and machined area ≈ 908 mm2, machining time: 283.33 mins). 187 [...]... in UEVC, µm TOC m Maximum thickness of cut of material in each UEVC cycle, µm TOC cm Maximum thickness of cut of material at the critical speed ratio, µm TOC mr Maximum thickness of cut ratio TOC min Minimum thickness of cut of material beyond the critical speed ratio, µm xx Abbreviations 1-D UVC 1-Directional Ultrasonic Vibration Cutting 2-D UVC 2-Directional Ultrasonic Vibration Cutting BUE Built-Up-Edge... at a feed rate of 20 µm/rev and cutting speed of 7.54 m/min: a) thrust component; b) tangential component; and c) axial component… 86 Effect of feed rate on the force components against cutting time at a DOC of 4 µm and cutting speed of 7.54 m/min: a) thrust component; b) tangential component and c) axial component…… 87 Effect of cutting speed on the force components against cutting time at a DOC of. .. Carbide xxi Chapter 1 Introduction Chapter 1 Introduction High quality machining of difficult- to- cut materials is an important concern of the manufacturing industries Among all the machining technologies, nowadays, ultrasonic vibration cutting (UVC) technology has received a lot of attention because this technique can be successfully applied to such difficult- to- cut materials This study aims to apply the... summarized in a table Finally, the motivation, scopes and main research objectives are described This section outlines the organization of this dissertation Chapter 2 reviews the previous research studies done on the CUVC and the UEVC methods while machining various difficult- to- cut materials The tool-material combinations, the vibration and cutting parameters and the tool geometry considered for each... experimental conditions (^ Grinding; - Not mentioned; #edge radius; *Simulation studies) References Materials Parameters Vibration Cutting Tool geometry Tool Balamuth, 1966^ Skelton, 1969 Kumabe and Hachisuka, 1984 Kumabe et al., 1989 Kim and Lee, 1994 Kim and Choi., 1997 Astashev and Babitsky, 1998* Jin and Murakawa, 2001 Workpiece f a n vc ap fr   Ks rn Diamond Carbide Carbide K10 Ti6Al4V, tool steel...Summary High quality machining of difficult- to- cut materials such as Ni- and Ti-based alloys, tungsten carbide, glass, ceramics, hardened steels etc is very important in current advanced technological applications, e.g aerospace and turbine engine parts, precise die and molds, cutting tools, optical and electronic devices, etc However, conventional cutting (CC) technique to machine these materials. .. sintered WC and to investigate the effect of related cutting and vibration parameters, tool geometry on the cutting performances in cutting of these materials The main objectives of this project are listed as follows:  To investigate the relation between the cutting performance and relevant parameters in the CUVC process theoretically, 7 Chapter 1 Introduction  To verify the effect of those parameters... can overcome the difficulties in the conventional and the economical infeasibility in nonconventional machining methods as discussed above and can achieve highly precise surface finish of such difficult- to- cut materials (Skelton et al., 1969; Kumabe et al., 1979; Gao et al., 2002; Shamoto and Moriwaki, 1994; Baibitsky et al., 2002; 3 Chapter 1 Introduction Suzuki et al., 2004 & 2007) For these reasons,... Literature Review Chapter 2 Literature Review The ultrasonic vibration assisted machining technique has been found to be a promising cutting technology for machining difficult- to- cut materials, like glass, ceramics, Ni-based and Ti-based alloys, hardened and stainless steels and composite materials, etc Since the 1960s, the CUVC (1-D UVC) method has been applied to these materials, whereas the application... final section 1.5, which outlines the organization of this dissertation 1.1 Background High quality machining of difficult- to- cut materials, such as WC, glass, ceramics, Niand Ti-based alloys, hardened and stainless steels, etc is one of the major concerns of manufacturing industries These high performance materials possess unique physical, mechanical, thermal, and chemical properties and are widely . A STUDY ON ULTRASONIC VIBRATION CUTTING OF DIFFICULT- TO- CUT MATERIALS CHANDRA NATH NATIONAL UNIVERSITY OF SINGAPORE 2008 A STUDY ON. Effect of Cutting Speed on Cutting Force and on Tool Wear 60 4.5.2 Effect of Feed Rate on Cutting Force and on Tool Wear 66 4.5.3 Tool Wear vs. Cutting Time 68 4.5.4 Analysis of Chip Formation. Special thanks go to my labmates and friends: Subramanyam, Hesamoddin, Indraneel, Tanveer, Rubina, Sadiq, Wahab, Lingling, Sharon, Shaon, Lingling, Sazid, Pervej, Haiyan, Muntakim, Tarik,

Ngày đăng: 14/09/2015, 14:10

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w