DEVELOPMENT AND APPLICATIONS OF NOVEL SOLVENT-MINIMIZED TECHNIQUES IN THE DETERMINATION OF CHEMICAL WARFARE AGENTS AND THEIR DEGRADATION PRODUCTS LEE HOI SIM NANCY NATIONAL UNIVERSITY OF SINGAPORE 2008 DEVELOPMENT AND APPLICATIONS OF NOVEL SOLVENT-MINIMIZED TECHNIQUES IN THE DETERMINATION OF CHEMICAL WARFARE AGENTS AND THEIR DEGRADATION PRODUCTS LEE HOI SIM NANCY (M.Sc.), NUS A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CHEMISTRY NATIONAL UNIVERSITY OF SINGAPORE 2008 ACKNOWLEDGEMENTS My most sincere gratitude goes to my bosses at DSO National Laboratories, Ms Sng Mui Tiang, Dr Lee Fook Kay and Assoc Prof Lionel Lee Kim Hock, who gave me the opportunity to pursue a part-time higher degree and provided me with much encouragement and support throughout the course of my study I had the privilege of working under the expert guidance of Prof Lee Hian Kee and Dr Chanbasha Basheer of the Department of Chemistry at the National University of Singapore and would like to thank them for this enriching learning experience as well as their friendship over the years I sincerely appreciate the help and support from everyone at the Defense Medical and Environmental Research Institute, DSO National Laboratories, especially from the Organic Synthesis Group for providing the analytes used in the study and all users of the GC MSD for sharing the use of the instrument Even though people come and go, the memories of the exciting times especially during the Proficiency Tests, with Dr Ang Kiam Wee, Ms Chan Shu Cheng, Mr Leonard Chay Yew Leong, Dr Alex Chin Piao, Dr Chua Guan Leong, Ms Chua Hoe Chee, Mr Willy Foo, Dr Diana Ho Sook Chiang, Ms Krystin Kee Shwu Yee, Ms Kwa Soo Tin, Mr Le Tai Quoc, Dr Lee Fook Kay, Ms Leow Shee Yin, Ms Lim Hui, Mr Neo Tiong Cheng, Ms Ong Bee Leng, Ms Linda Siow Siew Lin, Ms Sng Mui Tiang, Ms Tan Sook Lan, Ms Tan Yuen Ling, Ms Jessica Woo Huizhen, Ms Veronica Yeo Mui Huang and Ms Yong Yuk Lin, will remain with me for a long time to come Many thanks also to DSO National Laboratories for the cosponsorship throughout the course of my study Lastly, special mention must be made of my family members, especially Mum and Tony, who showed me much concern despite being severely neglected while I worked long hours and throughout the weekends Thank you i TABLE OF CONTENTS Acknowledgements i Summary vii List of Abbreviations ix Chapter Introduction 1.1 The Chemical Weapons Convention 1.2 Chemicals Related To The Chemicals Weapons Convention 1.3 The Organization for the Prohibition of Chemical Weapons (OPCW) 1.4 The Official OPCW Proficiency Tests 1.5 Recommended Operating Procedures 13 1.6 Solvent Extraction 13 1.7 Solid-Phase Extraction 15 1.8 Motivation of the Project 16 Chapter 2.1 Development of Novel Solvent-Minimized Extraction Techniques Solid-Phase Microextraction 17 2.1.1 Sol-gel SPME Fibers 19 2.1.2 Molecularly Imprinted Polymers for SPME Fibers 22 2.1.2.1 Molecular Imprinting 22 2.1.2.2 Sol-Gel Molecularly Imprinted Polymers 28 2.1.2.3 Current Status 30 Development of Novel SPME Coatings 32 2.1.3 2.2 Liquid-Phase Microextraction 34 ii Chapter 3.1 Experimental Sol-gel MIPs 40 3.1.1 Materials 41 3.1.2 Synthesis of MIPs and NIPs 42 3.1.3 Procedures 44 3.1.3.1 Evaluation of the effect of endcapping 44 3.1.3.2 Evaluation of the effect of elution solvents and volume 3.1.3.3 Evaluation of binding properties 45 45 3.1.3.4 Comparison with other sample preparation techniques 46 3.1.4 48 3.1.5 3.2 Instrumental Analysis Synthesis of sol-gel MIP SPME fibers 48 49 3.2.1 Chemicals and Reagents 50 3.2.2 Preparation of PhPPP as a coating for SPME 50 3.2.3 Preparation of Stock Solutions and Samples 52 3.2.4 SPME Procedure 52 3.2.5 3.3 SPME using PhPPP-coated fibers Instrumental Analysis 52 HF-LPME 53 3.3.1 Chemicals and Reagents 54 3.3.2 Preparation of Stock Solutions and Samples 55 3.3.3 Typical HF-LPME Procedures 56 3.3.4 Typical SPME Procedures 57 3.3.5 Instrumental Analysis 58 iii 3.4 Chapter 4.1 Health and Safety Aspects 59 Results and Discussion Sol-gel MIPs 60 4.1.1 Effect of endcapping on PMPA-MIP-SPE 60 4.1.2 Evaluation of elution solvents and volume for PMPA-MIP-SPE 63 4.1.3 Evaluation of binding properties by PMPA-MIP-SPE 64 4.1.4 Comparison of PMPA-MIP-SPE with other sample preparation techniques 4.1.5 66 Evaluation of elution solvents and volume for TDG-MIP-SPE 67 4.1.6 Evaluation of binding properties by TDG-MIP-SPE 69 4.1.7 Comparison of TDG-MIP-SPE with other sample preparation techniques 4.1.8 70 Evaluation of elution solvents and volume for TEA-MIP-SPE 4.1.9 71 Evaluation of binding properties by TEA-MIP-SPE 72 4.1.10 Comparison of TEA-MIP-SPE with other sample preparation techniques 74 4.1.11 Evaluation of elution solvents and volume for 3Q-MIP-SPE 4.1.12 Evaluation of binding properties by 3Q-MIP-SPE 75 76 4.1.13 Comparison of 3Q-MIP-SPE with other sample preparation techniques 77 iv 4.1.14 Evaluation of elution solvents for MIP-SPE using a mixture of MIPs 78 4.1.15 Comparison of MIP-SPE using a mixture of MIPs with other sample preparation techniques 79 4.1.16 Preparation of sol-gel MIP fibers 4.1.17 Conclusion SPME using PhPPP-coated fibers 83 Optimization of SPME conditions 85 4.2.2 Method validation 88 4.2.3 Comparison with commercial SPME fibers 89 4.2.4 4.3 81 4.2.1 4.2 81 Conclusion 90 HF-LPME 4.3.1 91 Optimization of parameters for HF-LPME of chemical agents 91 4.3.2 Method validation for HF-LPME of chemical agents 96 4.3.3 Comparison of HF-LPME of chemical agents with SPME 97 4.3.4 Optimization of parameters for HF-LPME of CWA degradation products 4.3.5 Method validation for HF-LPME of CWA degradation products 4.3.6 109 Comparison of HF-LPME of CWA degradation products with SPME 4.3.7 100 110 Optimization of parameters for HF-LPME of basic degradation products 111 v 4.3.8 Method validation for HF-LPME of basic degradation products 4.3.9 122 Comparison of HF-LPME of basic degradation products with SPME 123 4.3.10 Analysis of a 20th Official OPCW Proficiency Test water sample 124 4.3.11 Conclusion 127 Chapter Concluding Remarks 128 Chapter References 131 Appendix List of Schedule 1-3 Chemicals 156 Appendix Total Ion Chromatograms from the MIP-SPE Study 160 Appendix Mass Spectra 166 Appendix List of Poster Presentations and Publications 173 Appendices vi SUMMARY Two approaches towards the development of solvent-minimized microextraction techniques are presented in this report The first approach involved an attempt to develop solid-phase microextraction (SPME) fibers based on molecularly imprinted polymers (MIP) synthesized via the sol-gel route for the extraction of degradation products of chemical warfare agents In the second approach, hollow fiber-protected liquid-phase microextraction (HF-LPME) was utilized for the determination of various chemical warfare agents and their degradation products Prior to the development of sol-gel MIPs as SPME fiber coatings, sol-gel MIPs were first synthesized as powder and evaluated as sorbent packings in solidphase extraction (SPE) cartridges A series of MIPs was synthesized using pinacolyl methylphosphonic acid (PMPA), thiodiglycol (TDG), triethanolamine (TEA) and 3quinuclidinol (3Q) as the templates A non-imprinted polymer (NIP) was also synthesized, but in the absence of a template The polymers were evaluated for their binding properties towards their respective target analytes in aqueous matrices using SPE The elution solvent and volume of elution solvent were optimized for each MIP The MIP-SPE procedure was compared with other sample preparation procedures, namely strong anion-exchange (SAX) SPE and strong cation-exchange (SCX) SPE as well as a direct rotary evaporation procedure for the analysis of a range of analytes in an aqueous sample containing polyethylene glycol (PEG) Commercially-available SPME fibers in which the polymer coatings have been stripped-off or damaged but with an intact fused silica backbone were used for the preparation of sol-gel MIP SPME fibers Several attempts to synthesize the sol-gel MIP SPME fibers did not proceed well as the fiber coatings cracked and flaked off vii upon drying Hence, efforts were focused on the evaluation of a novel SPME coating based on poly(1-hydroxy-4-dodecyloxy-p-phenylene) polymer (PhPPP) PhPPP was investigated as a coating for the SPME of Lewisites from aqueous samples Several extraction parameters, namely the choice of derivatizing agent, pH, salting, and extraction time were thoroughly optimized Upon optimization of the extraction parameters, the performance of the novel coating was compared against that of commercially-available SPME coatings HF-LPME was investigated for the extraction of various chemical warfare agents and their degradation products from aqueous samples Optimization of several extraction parameters was carried out where the effects of the extraction solvent, the derivatizing agent, derivatization procedure, the amount of derivatizing agent (for degradation products), salting, stirring speed and extraction time were thoroughly investigated Upon optimization of the extraction parameters, the HF-LPME technique was compared against SPME In addition, the applicability of the technique for a 20th Official OPCW (Organization for the Prohibition of Chemical Weapons) Proficiency Test sample was demonstrated viii APPENDIX Total Ion Chromatograms from the MIP-SPE Study Abundance Abundance (a) Direct TIC: V2.D (d) Absorptivity of PMPA-MIP-SPE TIC: P5_A.D 3e+07 3.2e+07 2.8e+07 3e+07 2.6e+07 2.8e+07 2.6e+07 2.4e+07 2.4e+07 2.2e+07 2.2e+07 2e+07 2e+07 1.8e+07 1.8e+07 1.6e+07 1e+07 8000000 1.4e+07 1.2e+07 1e+07 8000000 6000000 4000000 TPP TPP 6000000 CMPA-TMS 1.2e+07 PMPA-TMS 1.4e+07 MPA-TMS IMPA-TMS EMPA-TMS 1.6e+07 4000000 2000000 2000000 8.00 10.00 12.00 14.00 16.00 18.00 20.00 8.00 22.00 Time > 10.00 12.00 14.00 16.00 18.00 20.00 22.00 Time > Abundance Abundance (b) SCX TIC: SCX1.D (e) Washing of PMPA-MIP-SPE TIC: P5_W.D 3.2e+07 4500000 3e+07 MPA-TMS 2.8e+07 2.6e+07 2.4e+07 3500000 CMPA-TMS 2.2e+07 4000000 2e+07 1.4e+07 1.2e+07 8000000 3000000 2500000 2000000 TPP 1e+07 IMPA-TMS EMPA-TMS 1.6e+07 PMPA-TMS 1.8e+07 1500000 1000000 TPP 6000000 4000000 500000 2000000 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 8.00 Time > 10.00 12.00 14.00 16.00 18.00 20.00 22.00 Time > Abundance Abundance (c) SAX 1e+07 9500000 6000000 7500000 7000000 6500000 2500000 1500000 5000000 4500000 4000000 3500000 3000000 2500000 2000000 1000000 TPP TPP 2000000 5500000 CMPA-TMS 3000000 6000000 PMPA-TMS 3500000 8000000 CMPA-TMS 4000000 8500000 PMPA-TMS 4500000 9000000 IMPA-TMS EMPA-TMS 5000000 IMPA-TMS EMPA-TMS 5500000 MPA-TMS 6500000 (f) Recovery of PMPA-MIP-SPE TIC: P5_R.D MPA-TMS TIC: SAX2.D 7000000 1500000 1000000 500000 500000 8.00 Time > 10.00 12.00 14.00 16.00 18.00 20.00 22.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 Time > Figure A2-1 Total ion chromatograms of samples upon (a) direct rotary evaporation; (b) SCX; (c) SAX; (d) loading onto PMPA-MIP-SPE; (e) washing of PMPA-MIP-SPE; (f) elution of PMPA-MIP-SPE cartridges 160 Abundance Abundance (a) Direct TIC: VAP1.D TIC: T4_A.D (d) Absorptivity of TDG-MIP-SPE 1.8e+07 6000000 TDGSO-TMS 1.7e+07 1.6e+07 1.5e+07 1.4e+07 1.3e+07 1.2e+07 5500000 5000000 4500000 1.1e+07 TDGS-TMS 1e+07 9000000 8000000 7000000 TDG-TMS TPP 6000000 5000000 4000000 3000000 4000000 3500000 3000000 2500000 2000000 TDG-TMS TPP 1500000 1000000 1000000 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 Time > 500000 Abundance 6.00 (b) SCX TIC: SCX3.D TDGSO-TMS 2000000 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 Time > 1.6e+07 1.5e+07 Abundance TDGSO-TMS 1.4e+07 1.3e+07 1.2e+07 1.1e+07 (e) Recovery of TDG-MIP-SPE 5000000 TDGSO-TMS 1e+07 TIC: T4_R.D 5500000 4500000 TDGS-TMS 9000000 8000000 7000000 5000000 4000000 2000000 3500000 3000000 2500000 TDG-TMS TPP 3000000 4000000 2000000 1000000 1500000 8.00 10.00 12.00 TDGS-TMS TDG-TMS TPP 6000000 14.00 16.00 18.00 20.00 22.00 1000000 Time > 500000 Abundance (c) SAX TIC: SAX4.D 2000000 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 Time > 1800000 1600000 1400000 1200000 TPP 1000000 800000 600000 400000 200000 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 Time > Figure A2-2 Total ion chromatograms of samples upon (a) direct rotary evaporation; (b) SCX; (c) SAX; (d) loading onto TDG-MIP-SPE; (e) elution of TDG-MIP-SPE cartridges 161 Abundance Abundance TIC: VAP5.D (d) Absorptivity of TEA-MIP-SPE TIC: TPEG4_A.D TPP (a) Direct 3.6e+07 2100000 3.4e+07 2000000 3.2e+07 1900000 3e+07 1800000 1600000 2.6e+07 MDEA-TMS 1500000 2.4e+07 1400000 1200000 1.8e+07 1100000 1.2e+07 1e+07 1000000 900000 800000 700000 600000 500000 8000000 400000 TPP 6000000 4000000 TEA-TMS 1.4e+07 EDEA-TMS 1.6e+07 TEA-TMS 1300000 2e+07 MDEA-TMS 2.2e+07 EDEA-TMS 1700000 2.8e+07 300000 200000 2000000 100000 8.00 10.00 12.00 14.00 16.00 18.00 20.00 8.00 22.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 Time > Time > Abundance Abundance TIC: SCX5.D (b) SCX 3.2e+07 3e+07 (e) Recovery of TEA-MIP-SPE TIC: TPEG4_R.D 1.9e+07 1.8e+07 1.7e+07 2.8e+07 1.6e+07 2.6e+07 1.5e+07 2.4e+07 1.4e+07 1.3e+07 2.2e+07 1.2e+07 2e+07 1.1e+07 1.8e+07 1e+07 1.6e+07 9000000 7000000 1e+07 6000000 5000000 4000000 TPP 6000000 4000000 3000000 2000000 2000000 TEA-TMS 1.2e+07 8000000 MDEA-TMS 8000000 TPP EDEA-TMS 1.4e+07 1000000 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 Time > 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 Time > Abundance TIC: SAX5.D (c) SAX 2600000 TPP 2400000 2200000 2000000 1800000 1600000 1400000 1200000 1000000 800000 600000 400000 200000 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 Time > Figure A2-3 Total ion chromatograms of samples upon (a) direct rotary evaporation; (b) SCX; (c) SAX; (d) loading onto TEA-MIP-SPE; (e) elution of TEA-MIP-SPE cartridges 162 Abundance Abundance TIC: VAP5.D 2.4e+07 (a) Direct TIC: 3Q_DCM_A.D 2600000 2.2e+07 (d) Absorptivity of 3Q-MIP-SPE 2400000 2e+07 2200000 1.8e+07 2000000 1.6e+07 1800000 1.4e+07 1600000 1.2e+07 1400000 8000000 6000000 1000000 800000 600000 TPP 4000000 3Q-TMS 1200000 3Q-TMS 1e+07 TPP 400000 2000000 200000 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 7.00 Time > 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 Time > Abundance Abundance (b) SCX TIC: 3Q_DCM_R.D TIC: SCX5.D 2e+07 2.2e+07 1.8e+07 (e) Recovery of 3Q-MIP-SPE 2e+07 1.6e+07 1.8e+07 1.4e+07 1.6e+07 1.2e+07 1.4e+07 1e+07 1.2e+07 3Q-TMS 1e+07 8000000 8000000 6000000 6000000 2000000 TPP TPP 4000000 4000000 2000000 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 7.00 Time > 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 Time > Abundance TIC: SAX5.D (c) SAX TPP 1400000 1300000 1200000 1100000 1000000 900000 800000 700000 600000 500000 400000 300000 200000 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 Time > Figure A2-4 Total ion chromatograms of samples upon (a) direct rotary evaporation; (b) SCX; (c) SAX; (d) loading onto 3Q-MIP-SPE; (e) elution of 3Q-MIP-SPE cartridges 163 Abundance Abundance TIC: VAP5.D (a) Direct 3.6e+07 TIC: MET4_A.D 4000000 3.4e+07 3Q-TMS 3.2e+07 3500000 3e+07 2.8e+07 3000000 (d) Absorptivity of MIP-SPE 2.6e+07 2.4e+07 2500000 2e+07 1.4e+07 8000000 4000000 1000000 TPP 6000000 1500000 TEA-TMS 1e+07 2000000 TDG-TMS 1.2e+07 PMPA-TMS 3Q-TMS 1.6e+07 TDG-TMS 1.8e+07 TPP TEA-TMS 2.2e+07 500000 2000000 8.00 10.00 12.00 14.00 16.00 18.00 20.00 8.00 22.00 Time > 10.00 12.00 14.00 16.00 18.00 20.00 22.00 Time > Abundance Abundance TIC: (b) SCX TIC: SCX5.D 2.8e+07 MET4_R.D (e) Recovery of MIP-SPE with EtOH 1.3e+07 1.25e+07 1.2e+07 2.6e+07 1.15e+07 1.1e+07 2.4e+07 1.05e+07 2.2e+07 1e+07 9500000 2e+07 9000000 8500000 1.8e+07 8000000 7500000 1.6e+07 7000000 1.4e+07 6500000 6000000 1.2e+07 3500000 3000000 2500000 2000000 1500000 1000000 500000 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 8.00 Time > 10.00 12.00 TEA-TMS 2000000 4000000 TDG-TMS TPP 4000000 4500000 PMPA-TMS 6000000 5000000 TDG-TMS TPP PMPA-TMS 8000000 3Q-TMS 5500000 1e+07 14.00 16.00 18.00 20.00 22.00 Time > Abundance TIC: SAX5.D 2800000 (c) SAX TPP 2600000 PMPA-TMS 2400000 2200000 2000000 1800000 1600000 1400000 1200000 1000000 800000 600000 400000 200000 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 Time > 164 Abundance Abundance TIC: MTFA4_A.D 6000000 5500000 5000000 TIC: MTE4_A.D 3Q-TMS 3Q-TMS (f) Absorptivity of MIP-SPE 7000000 6500000 6000000 (h) Absorptivity of MIP-SPE 5500000 4500000 5000000 4000000 4500000 3500000 4000000 TPP 3000000 3500000 2500000 1000000 2000000 TEA-TMS 1500000 500000 1500000 1000000 500000 8.00 8.00 10.00 12.00 14.00 TEA-TMS TDG-TMS 2000000 TDG-TMS TPP 3000000 2500000 16.00 18.00 20.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 22.00 Time > Time > Abundance Abundance TIC: MTFA4_R.D 1.5e+07 (g) Recovery of MIP-SPE with 1% TFA in water 1.4e+07 TIC: MTE4_R.D 1.4e+07 1.3e+07 (i) Recovery of MIP-SPE with 1% TE in water 1.2e+07 1.3e+07 1.1e+07 1.2e+07 1.1e+07 1e+07 1e+07 9000000 9000000 8000000 8000000 7000000 7000000 6000000 Time > 10.00 12.00 14.00 2000000 1000000 16.00 18.00 20.00 8.00 22.00 10.00 12.00 TEA-TMS 8.00 3000000 TDG-TMS TPP 1000000 TPP 2000000 4000000 PMPA-TMS 3000000 5000000 TEA-TMS 4000000 3Q-TMS 5000000 PMPA-TMS 3Q-TMS 6000000 14.00 16.00 18.00 20.00 22.00 Time > Figure A2-5 Total ion chromatograms of samples upon (a) direct rotary evaporation; (b) SCX; (c) SAX; (d) loading onto MIP-SPE; (e) elution of MIP-SPE cartridges with EtOH; (f) loading onto MIP-SPE; (g) elution of MIP-SPE cartridges with 1% TFA in water; (h) loading onto MIPSPE; (i) elution of MIP-SPE cartridges with 1% TE in water 165 APPENDIX MASS SPECTRA 20PPMCWA #81-89 RT: 5.52-5.54 AV: SB: 18 5.34-5.45 , 5.81-5.96 NL: 2.28E5 T: + c EI Full ms [40.00-209.00] 99 100 20PPMCWA #792-796 RT: 9.28-9.30 AV: SB: 12 7.28-8.54 , 9.63-10.37 NL: 1.38E5 T: + c EI Full ms [40.00-139.00] 126 100 99 90 90 80 80 O 60 P O 50 F 40 O 70 Relative Abundance Relative Abundance 70 125 60 P 69 41 30 20 20 57 83 43 81 81 10 43 47 59 79 67 F 40 30 10 98 100 82 O 82 50 45 126 55 67 70 49 85 98 86 79 125 100 40 50 60 70 80 90 100 110 120 130 140 150 40 60 80 100 120 m/z m/z Figure A3-1 Mass spectrum of GB (MW: 140) 80 80 P O Relative Abundance 133 50 Cl 70 44 60 180 90 N 70 160 20PPMCWA #1235-1250 RT: 11.66-11.70 AV: SB: 32 10.93-11.38 , 12.26-13.38 NL: 3.77E4 T: + c EI Full ms [40.00-162.00] 109 100 O 90 140 Figure A3-2 Mass spectrum of GD (MW: 182) 20PPMCWA #1051 RT: 10.65 AV: SB: 9.66-10.35 , 11.06-11.49 NL: 1.52E5 T: + c EI Full ms [40.00-165.00] 70 100 43 Relative Abundance 127 N 40 162 Cl S 60 50 40 111 106 30 30 158 63 117 160 20 20 108 47 10 65 55 71 60 90 76 92 135 136 119 93 45 47 10 147 59 73 65 96 58 57 161 163 123 95 98 81 162 125 113 0 40 50 60 70 80 90 100 110 120 130 140 150 160 40 170 50 60 70 80 90 100 110 120 130 140 150 160 m/z m/z Figure A3-3 Mass spectrum of GA (MW: 162) Figure A3-4 Mass spectrum of HD (MW: 158) 20PPMCWA #2515-2522 RT: 18.39-18.41 AV: NL: 2.29E5 T: + c EI Full ms [40.00-267.00] 114 100 50ET #1966-1972 RT: 15.49-15.52 AV: NL: 3.72E5 T: + c EI Full ms [40.00-264.00] 136 100 90 Cl 90 O 77 80 80 145 O 60 70 S Relative Abundance Relative Abundance N P 70 50 40 30 40 100 51 20 112 85 49 56 61 87 115 161 171 135 101 79 84 43 115 10 139 144 98 167 49 252 61 60 63 75 148 150 124 134 89 84 173 197 163 175 187 151 60 80 100 120 140 160 m/z 180 200 220 240 260 40 60 Figure A3-5 Mass spectrum of VX (MW: 267) Cl 70 Cl 203 260 147 205 30 85 63 75 79 100 87 50 40 197 258 229 143 149 163 159 193 60 80 100 120 20 231 140 160 m/z 175 180 262 207 208 40 173 165 148 161 124 200 223 59 61 10 45 233 58 57 62 109 75 87 89 100 175 161 196 203 240 Figure A3-7 Mass spectrum of L2-ET (MW: 258) 260 40 60 80 100 120 140 160 m/z 180 200 260 231 199 150 135 122 220 S 171 108 197 119 122 94 260 60 173 59 58 61 240 As Cl 30 229 45 262 220 S 70 Relative Abundance 258 171 50 40 200 136 145 113 180 80 60 10 160 m/z 90 As 80 140 148 S 90 20 120 50ET #2221-2225 RT: 16.84-16.86 AV: NL: 7.63E5 T: + c EI Full ms [40.00-264.00] 107 100 136 107 100 Figure A3-6 Mass spectrum of L3 (MW: 258) 50ET #2093-2097 RT: 16.16-16.18 AV: NL: 3.88E5 T: + c EI Full ms [40.00-264.00] 100 80 258 201 40 Relative Abundance Cl 147 30 127 70 Cl 113 50 72 20 10 As 110 60 223 220 261 233 240 260 Figure A3-8 Mass spectrum of L1-ET (MW: 258) 166 50PT #2294-2298 RT: 17.22-17.24 AV: NL: 3.74E5 T: + c EI Full ms [40.00-278.00] 43 100 Cl 80 Cl 80 272 274 107 127 110 84 20 203 136 85 30 119 101 59 61 94 75 40 185 213 239 45 101 58 59 73 75 76 277 60 80 100 120 140 160 m/z 180 200 220 240 260 280 40 201 225 214 193 60 100 Cl 60 145 50 41 288 164 40 147 171 73 60 149 176 75 80 100 280 50 40 314 169 41 20 225 197 232 207 251 120 140 160 180 200 220 240 47 291 260 257 130 143 171 55 10 290 193 225 139 58 101 110 75 87 89 S 100 40 Cl 259 253 228 60 80 100 120 140 160 180 m/z 200 220 260 240 50EDT #2791-2794 RT: 19.85-19.86 AV: SB: 17 19.34-19.69 , 20.41-20.56 NL: 9.06E3 T: + c EI Full ms [40.00-281.00] 61 100 260 317 279 280 300 320 SH S 165 90 S 107 224 221 Figure A3-12 Mass spectrum of L1-BT (MW: 314) 167 As 90 227 280 Figure A3-11 Mass spectrum of L2-BT (MW: 286) 50EDT #2212-2218 RT: 16.79-16.82 AV: NL: 7.54E5 T: + c EI Full ms [40.00-234.00] 197 183 316 205 206 201 145 m/z 80 260 164 231 205 173 135 40 240 60 229 203 161 119 89 220 S 57 107 141 110 100 200 30 107 55 10 Relative Abundance 286 84 180 204 As Cl 70 58 59 160 S 80 70 47 140 90 As Cl 80 20 120 Figure A3-10 Mass spectrum of L1-PT (MW: 286) S 90 85 100 50BT #2870-2874 RT: 20.27-20.29 AV: NL: 1.72E6 T: + c EI Full ms [40.00-320.00] 50BT #2502-2507 RT: 18.33-18.34 AV: NL: 6.35E5 T: + c EI Full ms [40.00-293.00] 57 100 30 80 289 246 m/z Figure A3-9 Mass spectrum of L2-PT (MW: 272) As 121 80 Cl 228 Cl 70 Relative Abundance 70 Relative Abundance 288 245 187 152 117 94 243 213 151 136 40 Relative Abundance 185 165 139 10 233 175 76 116 20 276 197 159 286 211 143 211 173 51 107 231 45 10 S 50 30 205 169 60 169 229 171 161 Relative Abundance 150 50 Cl 150 43 70 60 40 As 90 145 70 S 176 100 As 90 Relative Abundance 50PT #2593-2600 RT: 18.81-18.82 AV: NL: 8.85E5 T: + c EI Full ms [40.00-292.00] S 60 50 40 50 40 168 145 107 230 30 60 30 123 119 167 147 20 20 200 45 10 58 60 46 57 110 100 75 121 118 123 85 92 139 142 136 147 169 174 156 10 202 193 232 204 94 63 53 161 100 169 136 196 173 149 85 92 75 84 132 198 203 184 159 228 231 40 60 80 100 120 140 m/z 160 180 200 220 40 50PDT #2467-2474 RT: 18.14-18.17 AV: NL: 6.44E5 T: + c EI Full ms [40.00-248.00] S 100 80 100 120 140 160 180 200 220 240 260 280 300 Cl Figure A3-14 Mass spectrum of L2-EDT (MW: 290) 50PDT #2914-2918 RT: 20.50-20.52 AV: NL: 1.42E5 T: + c EI Full ms [40.00-282.00] 107 100 242 As 90 80 60 m/z Figure A3-13 Mass spectrum of L1-EDT (MW: 228) SH S 90 S 80 107 As Cl Cl 70 70 149 60 181 50 244 40 Relative Abundance Relative Abundance 110 59 45 47 60 50 40 106 73 30 30 106 148 20 165 20 41 47 45 10 46 58 64 49 40 60 73 100 75 78 85 93 80 100 110 132 153 112 121 120 145 142 156 140 160 168 171 183 184 180 10 207 201 209 75 49 61 246 109 79 100 88 133 112 132 167 147 149 136 169 181 197 203 207 157 200 220 240 m/z Figure A3-15 Mass spectrum of L1-PDT (MW: 242) 40 60 80 100 120 140 160 180 m/z 200 220 229 242 240 260 280 300 Figure A3-16 Mass spectrum of L2-PDT (MW: 304) 167 20PPM_10MT #293-300 RT: 11.46-11.47 AV: NL: 4.04E6 T: + c EI Full ms [40.00-310.00] 20_10SI #358-369 RT: 7.76-7.77 AV: NL: 2.29E4 T: + c EI Full ms [41.00-318.00] 153 100 O 90 90 P 80 Relative Abundance 60 O 70 O Si 50 75 40 P 80 O 70 Relative Abundance 153 100 O 73 O 60 Si 50 40 181 30 30 45 20 20 77 59 56 61 49 10 51 79 65 70 121 102 86 91 98 107 84 93 137 154 151 123 119 169 155 144 130 172 187 173 167 196 45 47 60 80 100 120 m/z 140 160 154 155 121 73 77 59 180 40 200 60 137 107 84 91 0 40 75 10 181 80 100 120 151 179 140 m/z 160 182 183 195 180 223 200 220 240 Figure A3-17 Mass spectrum of EMPA-TMS (MW: 196) Figure A3-18 Mass spectrum of EMPA-TBDMS (MW: 238) 20_10SI #445 RT: 8.16 AV: NL: 4.39E4 T: + c EI Full ms [40.00-209.00] 20PPM_10MT #370-379 RT: 11.81-11.82 AV: NL: 2.87E6 T: + c EI Full ms [40.00-269.00] 153 100 80 P 70 O 60 Si 50 P 70 O Relative Abundance Relative Abundance O 90 80 40 30 20 153 100 O 90 O O 60 Si 50 40 30 75 43 151 20 77 45 10 73 47 49 61 55 65 72 79 155 135 139 40 60 80 100 120 140 195 197 168 170 179 160 180 73 77 41 45 57 209 154 75 10 137 123 119 106 169 154 121 107 91 84 92 121 84 220 40 60 80 100 120 140 160 20_10SI #559 RT: 8.69 AV: NL: 7.80E4 T: + c EI Full ms [41.00-243.00] 200 220 240 260 Figure A3-20 Mass spectrum of IMPA-TBDMS (MW: 252) 20PPM_10MT #1078 RT: 15.10 AV: NL: 3.69E6 T: + c EI Full ms [40.00-326.00] 225 100 267 100 O 90 O 90 P 80 Si 80 O 70 Si 50 77 133 30 P Si O 70 O 60 Relative Abundance Relative Abundance 180 m/z Figure A3-19 Mass spectrum of IMPA-TMS (MW: 210) 73 237 193 196 200 m/z 40 195 155 151 137 107 O 60 Si 50 40 30 268 20 10 47 135 147 227 105 59 58 61 72 89 115 121 107 123 91 92 137 138 40 20 226 45 60 80 100 120 151 140 m/z 165 160 180 200 228 135 75 57 59 241 105 121 220 240 Figure A3-21 Mass spectrum of MPA-TMS (MW: 240) REFSTD5 #505-508 RT: 10.95-10.98 AV: NL: 2.22E6 T: + c EI Full ms [40.00-342.00] 40 60 80 100 120 153 147 154 140 195 181 160 197 212 225 213 226 180 200 m/z 220 309 251 240 270 260 280 300 320 Figure A3-22 Mass spectrum of MPA-TBDMS (MW: 324) 20PPM_10MT #1422-1429 RT: 16.72-16.73 AV: NL: 7.50E6 T: + c EI Full ms [40.00-426.00] 253 100 295 100 O 90 O 90 80 80 P Si 70 O 60 Si 50 40 30 135 73 45 59 75 40 60 80 121 105 117 136 100 140 120 195 254 181 Si 40 296 20 255 237 165 O 50 211 147 149 Si O 60 30 226 225 20 10 P 70 O Relative Abundance Relative Abundance 269 10 240 209 195 210 196 181 73 209 224 228 297 73 10 268 241 135 41 59 75 121 147 165 181 195 182 198 223 240 253 279 298 337 338 160 m/z 180 200 220 240 260 Figure A3-23 Mass spectrum of nPPA-TMS (MW: 268) 50 100 150 200 m/z 250 300 350 Figure A3-24 Mass spectrum of nPPA-TBDMS (MW: 352) 168 20_10SI #1084-1097 RT: 11.13-11.16 AV: NL: 1.99E4 T: + c EI Full ms [41.00-237.00] 20PPM_10MT #990-994 RT: 14.70-14.71 AV: NL: 4.18E6 T: + c EI Full ms [40.00-310.00] 153 100 153 100 O 90 P 80 Relative Abundance 60 Si 50 41 40 75 57 O 60 Si 50 40 169 151 121 O 70 O 30 P 80 O 70 Relative Abundance O 90 30 195 73 20 20 43 69 137 77 45 55 10 85 91 61 154 237 196 168 136 135 138 107 120 103 163 154 10 170 179 181 197 198 41 237 73 69 57 75 77 85 107 40 60 80 100 120 140 160 180 200 220 240 260 40 60 121 151 155 123 137 80 100 120 140 182 179 160 m/z 195 193 196 180 211 238 212 200 220 240 279 260 280 300 m/z Figure A3-25 Mass spectrum of PMPA-TMS (MW: 252) Figure A3-26 Mass spectrum of PMPA-TBDMS (MW: 294) 20PPM #649-651 RT: 14.10-14.13 AV: NL: 1.50E6 T: + c EI Full ms [40.00-600.00] 20PPMPA #1393-1397 RT: 15.97-15.98 AV: NL: 2.90E6 T: + c EI Full ms [40.00-310.00] 153 100 O 90 O 90 80 80 P 70 P 70 O 60 Relative Abundance Relative Abundance 153 100 O Si 50 169 40 O 60 O Si 50 40 30 30 20 20 75 73 67 77 84 10 41 55 137 121 107 154 151 155 167 40 60 80 100 120 140 160 41 221 73 55 67 180 200 220 240 260 154 75 10 170 179 40 60 211 77 84 121 107 80 100 155 179 120 140 160 m/z 235 220 240 260 280 300 BAMT #1345-1349 RT: 22.74-22.75 AV: NL: 2.47E6 T: + c EI Full ms [40.00-445.00] 255 100 297 100 90 90 Si 80 O 70 Relative Abundance O Si 60 50 O 73 40 Si 80 O 70 Relative Abundance 212 Figure A3-28 Mass spectrum of CMPA-TBDMS (MW: 292) BASI #1006 RT: 18.53 AV: NL: 2.95E6 T: + c EI Full ms [41.00-361.00] 30 O Si 60 50 147 O 73 371 40 30 298 256 399 165 20 20 165 45 74 105 59 50 148 115 135 100 372 239 147 10 239 166 179 150 207 225 200 257 240 250 300 166 10 329 330 258 59 357 75 77 133 105 167 209 225 350 50 400 100 150 200 250 m/z Figure A3-29 Mass spectrum of BA-TMS (MW: 372) 373 374 300 325 300 350 401 441 400 450 Figure A3-30 Mass spectrum of BA-TBDMS (MW: 456) Si S 100_10MT #831-835 RT: 11.60-11.60 AV: NL: 1.21E5 T: + c EI Full ms [40.00-208.00] 89 100 20_10SI #385-396 RT: 7.89-7.91 AV: NL: 6.02E4 T: + c EI Full ms [41.00-180.00] 73 100 400 299 240 241 268 281 m/z O 163 90 90 Si S 80 80 O 70 60 Relative Abundance 70 Relative Abundance 200 m/z Figure A3-27 Mass spectrum of CMPA-TMS (MW: 250) 75 50 89 40 163 45 119 30 59 20 10 195 196 180 137 152 47 77 87 91 93 116 105 86 60 80 45 178 101 72 62 70 10 120 40 119 57 41 20 88 58 55 40 30 103 75 50 61 73 61 43 49 60 100 120 133 135 140 164 147 47 164 91 56 53 180 77 72 88 85 93 101 117 115 121 135 160 180 m/z Figure A3-31 Mass spectrum of EHES-TMS (MW: 178) 40 60 80 100 120 140 m/z 205 166 149 160 180 200 220 Figure A3-32 Mass spectrum of EHES-TBDMS (MW: 220) 169 20_10SI #1420 RT: 12.69 AV: NL: 3.22E4 T: + c EI Full ms [41.00-284.00] 73 100 20PPM_10MT #1805-1809 RT: 18.48-18.48 AV: NL: 2.15E5 T: + c EI Full ms [40.00-338.00] 147 100 90 90 Si 80 Si S O 80 O Si 73 Si S O O 70 Relative Abundance Relative Abundance 70 60 50 40 116 75 60 50 293 40 147 30 30 87 103 20 133 45 47 10 105 106 93 77 59 117 101 60 80 100 120 10 149 161 176 154 165 135 120 40 140 160 m/z 180 200 220 240 50 120 134 100 150 Si Si S O O O Relative Abundance 117 30 89 104 50 40 40 60 80 100 120 140 160 180 m/z 223 10 265 238 167 177 191 Si 60 117 147 284 267 135 147 133 122 136 148 283 O 75 87 239 264 87 47 200 220 240 260 280 300 40 239 88 59 45 285 101 66 268 Figure A3-35 Mass spectrum of TDGS-TMS (MW: 282) 60 80 116 118 133 148 131 139 97 90 115 100 120 140 167 160 193 180 m/z 200 220 240 260 S 280 300 O O Si S 20PPM_10MT #2799-2801 RT: 23.10-23.11 AV: NL: 3.11E5 T: + c EI Full ms [40.00-400.00] 219 100 90 90 Si 80 S O O 80 Si S 70 Relative Abundance 70 Relative Abundance 286 240 255 Figure A3-36 Mass spectrum of TDGSO-TMS (MW: 298) Si 20_10SI #2577 RT: 18.07 AV: NL: 2.74E4 T: + c EI Full ms [41.00-236.00] 73 100 60 50 40 30 60 50 40 73 30 117 75 20 103 159 20 220 119 45 10 47 49 59 61 87 86 130 101 104 66 177 176 134 178 147 149 161 50 100 150 75 10 210 217 200 45 236 221 87 59 103 133 148 161 179 195 207 222 250 300 50 100 150 200 353 251 250 m/z 300 350 400 m/z Figure A3-37 Mass spectrum of QOH-TMS (MW: 326) Figure A3-38 Mass spectrum of QOH-TBDMS (MW: 410) Si S Si S O 20_10SI #3156 RT: 20.76 AV: NL: 7.50E4 T: + c EI Full ms [41.00-282.00] 73 100 O O 20PPM_10MT #3325-3331 RT: 25.55-25.57 AV: NL: 1.37E5 T: + c EI Full ms [41.00-324.00] 219 100 90 90 Si 80 S Si S O 80 O O 70 Relative Abundance 70 Relative Abundance 350 20 166 66 335 300 S 30 75 59 250 O 70 40 45 47 296 265 O Si 80 50 103 116 234 219 200 m/z 90 60 10 190 165 Figure A3-34 Mass spectrum of TDG-TBDMS (MW: 350) O 20 294 295 163 103 99 20PPM_T #842-844 RT: 16.49-16.52 AV: NL: 8.18E5 T: + c EI Full ms [40.00-600.00] 73 100 90 70 66 233 149 260 20PPM_T #829-830 RT: 16.33-16.35 AV: NL: 9.30E5 T: + c EI Full ms [40.00-600.00] 73 100 80 45 148 133 101 84 242 251 192 Figure A3-33 Mass spectrum of TDG-TMS (MW: 266) Relative Abundance 189 119 87 61 66 49 75 20 59 60 50 40 103 60 50 73 40 116 30 30 75 159 117 20 45 87 59 10 47 72 86 20 101 104 91 133 10 149 163 174 178 87 45 59 220 115 75 177 119 103 81 133 207 161 134 170 191 221 222 281 295 50 100 150 200 250 300 m/z Figure A3-39 Mass spectrum of TOH-TMS (MW: 370) 50 100 150 200 250 300 350 400 m/z Figure A3-40 Mass spectrum of TOH-TBDMS (MW: 454) 170 20_5NSI #444-449 RT: 9.42-9.43 AV: NL: 1.63E6 T: + c EI Full ms [40.00-372.00] 20_5NMT #1038-1040 RT: 12.47-12.48 AV: SB: 11.78-12.34 , 12.59-13.26 NL: 3.36E6 T: + c EI Full ms [40.00-281.00] 114 100 114 100 90 90 80 Si N O 70 Relative Abundance Relative Abundance 80 Si N 70 60 50 40 30 O 60 50 40 30 72 20 20 72 10 73 43 70 61 59 49 40 115 86 75 60 94 100 103 80 116 100 128 120 10 202 144 145 160 43 217 203 56 59 115 73 75 70 100 147 116 128 144 100 86 120 140 160 180 200 220 40 60 80 140 m/z Figure A3-41 Mass spectrum of DIPAE-TMS (MW: 217) 200 220 240 260 Figure A3-42 Mass spectrum of DIPAE-TBDMS (MW: 259) 20_5NSI #767-770 RT: 11.46-11.48 AV: NL: 3.15E6 T: + c EI Full ms [40.00-267.00] 20_5NMT #2074-2080 RT: 16.85-16.87 AV: NL: 5.95E6 T: + c EI Full ms [40.00-351.00] 160 100 202 100 90 90 80 Si N Si 80 Si O N Si O O O 70 Relative Abundance 70 Relative Abundance 180 244 245 259 233 202 160 160 m/z 60 50 40 30 60 50 40 30 73 20 203 20 73 161 10 147 117 42 45 59 75 70 84 86 101 116 162 130 60 80 100 248 144 148 40 10 120 140 75 59 42 263 84 101 116 130 204 147 159 200 160 m/z 180 200 220 240 260 50 100 150 290 291 205 200 m/z 250 332 300 350 Figure A3-43 Mass spectrum of MDEA-TMS (MW: 263) Figure A3-44 Mass spectrum of MDEA-TBDMS (MW: 347) 20_5NSI #876-880 RT: 12.15-12.16 AV: NL: 1.84E6 T: + c EI Full ms [40.00-281.00] 20_5NMT #2193-2200 RT: 17.36-17.38 AV: NL: 5.84E6 T: + c EI Full ms [40.00-365.00] 174 100 90 80 Si N 80 Si O 60 50 40 30 59 72 117 75 84 86 101 116 50 40 80 100 120 10 144 148 140 217 73 176 130 60 60 20 175 147 45 Si O 30 20 40 N 70 73 10 Si O O Relative Abundance 70 Relative Abundance 216 100 90 172 160 m/z 244 188 180 200 220 240 262 75 89 101 115 130 57 59 277 260 280 50 100 147 218 159 214 150 304 219 200 m/z 250 346 300 350 Figure A3-45 Mass spectrum of EDEA-TMS (MW: 277) Figure A3-46 Mass spectrum of EDEA-TBDMS (MW: 361) 20_5NSI #1424-1428 RT: 15.64-15.66 AV: NL: 4.71E6 T: + c EI Full ms [40.00-369.00] 50PPM_1 #1820 RT: 20.18 AV: SB: 20.00-20.13 , 20.23-20.25 NL: 1.25E5 T: + c EI Full ms [40.00-537.00] 262 100 90 Si O 80 70 Relative Abundance 70 Relative Abundance Si 90 O 80 346 100 60 Si 50 N Si O O 40 30 Si 60 N Si O O 73 50 40 347 30 263 73 20 20 348 264 10 45 50 59 75 86 101 100 117 130 147 148 174 350 351 265 10 57 41 75 101 130 144 115 221 172 186 267 281 295 313 344 355 401 150 200 m/z 250 300 350 Figure A3-47 Mass spectrum of TEA-TMS (MW: 365) 50 100 150 200 250 300 350 400 434 476 450 500 m/z Figure A3-48 Mass spectrum of TEA-TBDMS (MW: 491) 171 20_5NMT #460-467 RT: 10.03-10.06 AV: SB: 53 9.52-9.87 , 10.19-10.26 NL: 8.21E4 T: + c EI Full ms [40.00-207.00] 42 100 20_5NSI #677-680 RT: 10.90-10.91 AV: SB: 10.25-10.81 , 10.97-11.04 NL: 8.94E4 T: + c EI Full ms [40.00-207.00] 73 100 90 90 OH 80 O Si N 80 199 129 96 N 127 70 Relative Abundance Relative Abundance 70 60 50 40 58 43 184 50 198 40 101 42 98 30 60 70 55 57 44 69 10 54 52 45 83 71 73 96 99 40 50 60 70 80 93 94 90 m/z 108 100 44 126 10 128 86 79 81 110 120 130 52 40 Figure A3-49 Mass spectrum of 3Q (MW: 127) 100_5NMT #1407-1411 RT: 14.03-14.05 AV: NL: 7.75E4 T: + c EI Full ms [40.00-245.00] 110 100 55 53 113 100 156 70 20 112 110 84 67 65 59 145 75 82 20 110 30 108 82 59 68 61 60 80 130 83 94 126 120 m/z 200 157 141 140 100 170 142 127 87 92 80 116 140 146 147 158 159 160 185 172 186 180 201 200 Figure A3-50 Mass spectrum of 3Q-TMS (MW: 199) 184 90 O 80 Relative Abundance 70 Si N 96 60 73 50 185 75 40 241 41 101 30 84 49 59 20 55 141 127 86 70 108 111 157 142 115 68 94 226 131 81 10 156 126 132 143 144 158 170 171 172 186 240 198 213 214 242 227 243 40 60 80 100 120 140 m/z 160 180 200 220 240 Figure A3-51 Mass spectrum of 3Q-TBDMS (MW: 241) 172 APPENDIX LIST OF POSTER PRESENTATIONS AND PUBLICATIONS Poster Presentations [1] N.H.S Lee, M.T Sng, C Basheer, H.K Lee, Sol-Gel Molecularly Imprinted Polymers for Solid Phase Extraction, 4th Singapore International Symposium on Protection Against Toxic Substances (4th SISPAT) in association with Chemical and Biological Medical Treatment Series, 6-10 December 2004, Shangri-La Hotel, Singapore [2] N.H.S Lee, M.T Sng, C Basheer, H.K Lee, Hollow-Fibre Protected LiquidPhase Microextraction for the Analysis of Chemical Warfare Agents and Degradation Products, Workshop on the Analysis related to Chemical Weapons to Mark the Tenth Anniversary of the Entry into Force of the Convention, - September 2007, Gustavelund Conference Hotel, Tuusula, Finland [3] N.H.S Lee, M.T Sng, C Basheer, H.K Lee, Hollow-Fibre Protected LiquidPhase Microextraction for the Determination of Basic Degradation Products of Chemical Warfare Agents, SICC-5: Singapore International Chemistry Conference & APCE 2007: 7th Asia-Pacific International Symposium on Microscale Separation and Analysis, 16-19 December 2007, Singapore International Convention & Exhibition Centre (Suntec Singapore), Singapore Publications [1] H.S.N Lee, C Basheer, H.K Lee, J Chromatogr A 1124 (2006) 91 [2] H.S.N Lee, M.T Sng, C Basheer, H.K Lee, J Chromatogr A 1148 (2007) [3] H.S.N Lee, M.T Sng, C Basheer, H.K Lee, J Chromatogr A 1196-1197 (2008) 125 173 This document was created with Win2PDF available at http://www.win2pdf.com The unregistered version of Win2PDF is for evaluation or non-commercial use only This page will not be added after purchasing Win2PDF .. .DEVELOPMENT AND APPLICATIONS OF NOVEL SOLVENT- MINIMIZED TECHNIQUES IN THE DETERMINATION OF CHEMICAL WARFARE AGENTS AND THEIR DEGRADATION PRODUCTS LEE HOI SIM NANCY (M.Sc.), NUS A THESIS... determination of various chemical warfare agents and their degradation products This approach allows the miniaturization of the extraction procedure in terms of reducing the amount of sample, extracting solvents... uptake of the plastic antibody was compared against that of the NIP and the imprinting efficiency was found to be 1.3 The imprinting efficiency is defined as the ratio of the binding ratio of the MIP