Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 203 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
203
Dung lượng
3,94 MB
Nội dung
POLYMER ELECTROLYTE MEMBRANES FOR DIRECT METHANOL FUEL CELLS PEI HAIQIN NATIONAL UNIVERSITY OF SINGAPORE 2007 POLYMER ELECTROLYTE MEMBRANES FOR DIRECT METHANOL FUEL CELLS PEI HAIQIN (M.SCI., Tianjin University) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CHEMICAL & BIOMOLECULAR ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2007 ACKNOWLEDGEMENTS First of all, I genuinely wish to express my deepest appreciation and thanks to my supervisors, Professor Lee Jim Yang and Associate Professor Hong Liang, for their intellectually-stimulating guidance and invaluable encouragement throughout my candidature as a Ph.D student at the National University of Singapore. Professor Lee’s comprehensive knowledge and incisive insight on fuel cell materials as well as his uncompromising and prudent attitude toward research and insistence on quality works have deeply influenced me and will definitely benefit my future study. His invaluable advice, patience, constant encouragement and painstaking revisions of my manuscripts and this thesis are indispensable to the timely completion of this project. I am also grateful to Professor Hong Liang. His immense background and experience in polymer materials enabled me to work through many technical problems smoothly. His selfless help was indispensable to the completion of my thesis work. I am grateful for the Research Scholarship from the National University of Singapore (NUS) that enables me to pursue my Ph.D degree. I am also indebted to the Department of Chemical & Biomolecular Engineering of NUS for the research infrastructure support. Thanks are also due to my fellow students and researchers in our group, Dr. Yang Jun, Mr. Zeng Jianhuang, Miss Liu Fang, Dr. Zhou Weijiang, Mr. Zhang Shuo, Mr. Zhang Qingbo, Mr. Yang Jinhua, Mr. Dengda and the laboratory technicians, for all the handy helps, technical supports, invaluable discussion and suggestions. Last but not least, I am most grateful to my family, especially my parents and my husband, for their absolute love, encouragement and support during my struggle for my Ph.D’s degree in Singapore. i TABLE OF CONTENTS ACKNOWLEDGEMENT i TABLE OF CONTENTS ii SUMMARY viii LIST OF FIGURES xi LIST OF TABLES xv LIST OF SCHEMES CHAPTER INTRODUCTION xvi 1.1 Background 1.2 Objective and Scope of Thesis 1.3 Organization of This Thesis CHAPTER LETERATURE REVIEW 2.1 Fuel Cell 2.2 The Development of Polymer Electrolyte Membranes 15 2.3 Performance Indicators for Polymer Electrolyte Membranes 18 2.3.1 Proton Conductivity 18 2.3.2 Methanol Crossover 20 2.3.3 Water Uptake and Degree of Swelling 23 2.3.4 Mechanical Properties 24 2.3.5 Other Requirements for PEMs 24 2.4 Modifications of Nafion® Membrane 25 ii 2.4.1 Bulk Modifications of Nafion® Membrane 25 2.4.2 Surface Modifications of Nafion® Membranes 28 2.5 Alternative PEMs Materials and Their Composites 30 2.5.1 Acid-base Polymer Membranes 30 2.5.2 Non-Nafion® based Inorganic-Organic Composite Membrane 34 2.5.3 New Polymer Electrolyte Membranes 37 CHAPTER EMBEDDED POLYMERIZATION DRIVERN 46 ASYMMETRIC PEM FOR DIRECT METHAOL FUEL CELLS 3.1 Introduction 46 3.2 Experimental 50 3.2.1 Materials 50 3.2.2 Preparation of Solution-Cast Membranes 51 3.2.3 Materials Characterizations 52 3.2.4 Water Uptake 54 3.2.5 Solvent Etching Test 54 3.2.6 Proton Conductivity 54 3.2.7 Swelling Tests in Methanol Solution 55 3.2.8 Dimensional Changes in Water and Methanol Solution 55 3.3 Results and Discussions 56 3.3.1 Structural and Swelling Characteristics of the TCPB Membrane 56 3.3.2 Embedded Polymerization-Induced Structural Changes 59 3.3.3 Thermal and Mechanical Properties 65 3.3.4 Proton Conductivity and Swelling Tests in Methanol 68 iii 3.3.5 Dimensional Stability in Water and Methanol Solutions 3.4 Conclusion CHAPTER POLYMER ELECTROLYTE MEMBRANE BASED ON 71 73 74 2-ACRYLAMIDO-2-METHYL PROPANESULFONIC ACID FABRICATED BY EMBEDDED POLYMERIZATION 4.1 Introduction 74 4.2 Experimental 74 4.2.1 Materials 75 4.2.2 Membrane Preparations 75 4.2.3 Membrane Characterizations 76 4.3 Results and Discussions 81 4.3.1 Embedded Polymerization-Induced Membrane Structure 81 4.3.2 Water Uptake and Ion-Exchange Capacity (IEC) 82 4.3.3 Proton Conductivity 85 4.3.4 Methanol Permeability 87 4.3.5 Mechanical Properties 89 4.4 Conclusion CHAPTER EMBEDDED HYDROPHILIC NANO-GRANULES WITH 91 92 RADIATING PROTON-CONDUCTING CHANNELS IN A HYDROPHOBIC MATRIX 5.1 Introduction 92 5.2 Experimental 94 5.2.1 Materials 94 iv 5.2.2 Membrane Preparation 94 5.2.3 Materials Characterizations 96 5.2.4 Water Sorption and State of Water 97 5.2.5 Ion Exchange Capacity (IEC) 97 5.2.6 Proton Conductivity 98 5.2.7 Methanol Permeability 99 5.2.8 Viscosity 99 5.3 Results and Discussions 100 5.3.1 Structure of the AMPS Copolymer-TCPB Blend 100 5.3.2 Structure-Dependent Water Uptake and Ion Exchange Capacity 108 5.3.3 Proton Conductivity 110 5.3.4 Methanol Permeability 114 5.4 Conclusion CHAPTER EFFECTS OF POLYANILINE CHAIN STRUCTURES ON 116 118 PROTON CONDUCTION IN A PEM HOST MATRIX 6.1 Introduction 118 6.2 Experimental Section 119 6.2.1 Materials 119 6.2.2 Preparation of Polyaniline 120 6.2.3 Preparation of PAn-AMPS-PEM 121 6.2.4 Characterizations 123 6.3 Results and Discussions 6.3.1 The Chain Configurations of Polyanilines 124 124 v 6.3.2 Oxidation State of Polyanilines 128 6.3.3 Interaction of PAn Colloidal Particles with P(AMPS-HEMA) 131 6.3.4 Promotional Effect of PAn on Proton Transport in the PEM Matrix 6.4 Conclusion CHAPTER POLYMER ELECTROLYTE MEMBRANES BASED ON 135 139 140 CROSSLINKED AMPHIPHILIC COPOLYMERS OF 3-SULFOPROPYL METHACRYLATE 7.1 Introduction 140 7.2 Experimental 142 7.2.1 Materials 142 7.2.2 Membrane Preparation 143 7.2.3 Characterizations of SPM Membranes 146 7.2.4 Ion Exchange Capacity (IEC) 146 7.2.5 Water Uptake 147 7.2.6 Proton Conductivity 147 7.2.7 Methanol Permeability 148 7.3 Results and Discussions 148 7.3.1 Structural Characteristic of the SPM Membranes 148 7.3.2 Structure-Dependent Water Uptake and Ion Exchange Capacity 153 7.3.3 Thermal Stability 156 7.3.4 Proton Conductivity 157 7.3.5 Methanol Permeability 160 7.4 Conclusion 162 vi CHAPTER CONCLUSIONS & RECOMMENDATIONS 164 REFERENCE 168 vii Summary This thesis study is aimed at producing proton-conducting polymer electrolyte membranes (PEMs) for direct methanol fuel cells (DMFCs), using relatively inexpensive monomers or polymers. A number of preparation methods and their variations have been explored, with fairly extensive characterizations of the resulting PEMs (Fourier transform infrared spectroscopy, thermal gravimetric analysis, scanning electron microscopy, differential scanning calorimetry and X-ray photoelectron spectroscopy). The properties of most relevance to DMFC applications, especially proton conductivity and methanol permeability, were measured and compared with those of Nafion®. The first method made use of a three-component acrylic polymer blend (TCPB) consisting of poly(4-vinylphenol-methyl methacrylate) P(4-VP-MMA), poly(butyl methacrylate) (PBMA) barrier. and Paraloid® B-82 acrylic copolymer resins as the methanol 2-acrylamido-2-methyl propanesulfonic acid (AMPS), 2-hydroxyethyl methacrylate (HEMA) and poly(ethylene glycol)dimethylacrylate (PEGDMA) were introduced to the TCPB matrix and polymerized there using embedded polymerization. The resulting membranes had an asymmetric laminar structure, where a hydrophilic network of AMPS-HEMA was sandwiched by two external layers with high TCPB contents. The two external layers also supported proton conduction in addition to their primary function as the methanol blocker. The middle layer was the embedded proton source with good water retention property. Low methanol permeability was the primary strength of these asymmetric membranes. viii Chen, N. and Hong, L. A Study on Polypyrrole-Coated Polystyrene Sulfonic Acid Microspheres-a Proton Electrolyte, European Polymer Journal, 37, pp.1027-1035. 2001. Chen, N. and Hong, L. Proton-Conducting Membrane Composed of Sulfonated Polystyrene Microspheres, Poly(Vinylpyrrolidone) and Poly(Vinylidene Fluoride), Solid State Ionics, 146, pp.377-385. 2002. Chen, S., Krishnan, L., Srinivasan, S., Benziger, J. and Bocarsly, A.B. Ion Exchange Resin/Polystyrene Sulfonate Composite Membranes for Pem Fuel Cells, Journal of Membrane Science, 243, pp.327-333. 2004. Cho, K.Y., Eom, J.Y., Jung, H.Y., Choi, N.S., Lee, Y.M., Park, J.K., Choi, J.H., Park, K.W. and Sung, Y.E. Characteristics of Pvdf Copolymer/Nafion Blend Membrane for Direct Methanol Fuel Cell (DMFC), Electrochemica Acta, 50, pp.580-585. 2004a. Cho, K.Y., Jung, H.Y., Choi, N.S., Sung, S.J., Park, J.K., Choi, J.H. and Sung, Y.E. A Coated Nafion Membrane with a Pvdf Copolymer/Nafion Blend for Direct Methanol Fuel Cells (DMFCs), Solid State Ionics, 176, pp.3027-3030. 2005. Cho, K.Y., Jung, H.Y., Shin, S.S., Choi, N.S., Sung, S.J., Park, J.K., Choi, J.H., Park, K.W. and Sung, Y.E. Proton Conducting Semi-Ipn Based on Nafion and Crosslinked Poly(AMPS) for Direct Methanol Fuel Cell, Electrochimica Acta, 50, pp.586-590. 2004b. Choi, W.C., Kim, J.D. and Woo, S.I. Modification of Proton Conducting Membrane for Reducing Methanol Crossover in a Direct-Methanol Fuel Cell, Journal of Power Sources, 96, pp.411-414. 2001. Claudia, R.S., Besse, J.P. and Fabrice, L. Polymerization of Sulfopropyl Methacrylate, a Surface Active Monomer, within Layered Double Hydroxide, Chemistry of Materials, 16, pp.5512-5517. 2004. Costamagna, P. and Srinivasan, S. Quantum Jumps in the Pemfc Science and Technology from the 1960s to the Year 2000: Part I. Fundamental Scientific Aspects, Journal of Power Sources, 102, pp.242-252. 2001. Cruickshank, J. and Scott, K. The Degree and Effect of Methanol Crossover in the Direct Methanol Fuel Cell, Journal of Power Sources, 70, pp.40-47. 1998. Deimede, V., Voyiatzis, G.A., Kallitsis, J.K., Qingfeng, L. and Bjerrum, N.J. Miscibility Behavior of Polybenzimidazole/Sulfonated Polysulfone Blends for Use in Fuel Cell Applications, Macromolecules, 33, pp.7609-7617. 2000. 170 Dillon, R., Srinivasan, S., Arico, A.S. and Antonucci, V. International Activities in Dmfc R&D: Status of Technologies and Potential Applications, Journal of Power Sources, 127, pp.112-126. 2004. Dimitrova, P., Friedrich, K.A., Stimming, U. and Vogt, B. Modified Nafion-Based Membranes for Use in Direct Methanol Fuel Cells, Solid State Ionics, 150, pp.115-122. 2002a. Dimitrova, P., Friedrich, K.A., Vogt, B. and Stimming, U. Transport Properties of Ionomer Composite Membranes for Direct Methanol Fuel Cells, Journal of Electroanalytical Chemistry, 532, pp.75-83. 2002b. Dohle, H., Divisek, J., Mergel, J., Oetjen, H.F., Zingler, C. and Stolten, D. Recent Developments of the Measurement of the Methanol Permeation in a Direct Methanol Fuel Cell, Journal of Power Sources, 105, pp.274-282. 2002. Dufour, A.U. Fuel Cells – a New Contributor to Stationary Power, Journal of Power Sources, 71, pp.19-25. 1998. Easton, E.B., Langsdorf, B.L., Hughes, J.A., Sultan, J., Qi, Z., Kaufman, A. and Pickup, P.G. Characteristics of Polypyrrole/Nafion Composite Membranes in a Direct Methanol Fuel Cell, Journal of the Electrochemcial Society, 150, pp.C735-C739. 2003. Eikerling, M. and Kornyshev, A.A. Proton Transfer in a Single Pore of a Polymer Electrolyte Membrane, Journal of Electroanalytical Chemistry, 502, pp.1-14. 2001. Einsla, B.R., Kim, Y.S., Hickner, M.A., Hong, Y.T., Hill, M.L., Pivovar, B.S. and McGrath, J.E. Sulfonated Naphthalene Dianhydride Based Polyimide Copolymers for Proton-Exchange-Membrane Fuel Cells Ii. Membrane Properties and Fuel Cell Performance, Journal of Membrane Science, 255, pp.141-148. 2005. Elabd, Y.A., Napadensky, E., Sloan, J.M., Crawford, D.M. and Walker, C.W. Triblock Copolymer Ionomer Membranes: Part I. Methanol and Proton Transport, Journal of Membrane Science, 217, pp.227-242. 2003. Every, H.A., Hickner, M.A., McGrath, J.E. and Jr.T.A., Z. An Nmr Study of Methanol Diffusion in Polymer Electrolyte Fuel Cell Membranes, Journal of Membrane Science, 250, pp.183-188. 2005. Fang, J., Guo, X., Harada, S., Watari, T., Tanaka, K., Kita, H. and Okamoto, K. Novel Sulfonated Polyimides as Polyelectrolytes for Fuel Cell Application. 1. Synthesis, Proton Conductivity, and Water Stability of Polyimides from 4,4'-Diaminodiphenyl Ether-2,2'-Disulfonic Acid, Macromolecules, 35, pp.9022-9028. 2002. 171 Furukawa, Y., Ueda, F., Hyodo, Y., Harada, I., Nakajima, T. and Kawagoe, T. Vibrational Spectra and Structure of Polyaniline, Macromolecules, 21, pp.1297-1305. 1988. Gan, L.M., Chow, P.Y., Liu, Z., Han, M. and Quek, C.H. The Zwitterion Effect in Proton Exchange Membranes as Synthesised by Polymerisation of Bicontinuous Microemulsions, Chem. Commun., 35, pp.4459-4461. 2005. Gao, Y., Robertson, G.P., Guiver, M.D. and Jian, X. Synthesis and Characterization of Sulfonated Poly(Phthalazinone Ether Ketone) for Proton Exchange Membrane Materials, Journal of Polymer Science: Part A: Polymer Chemistry, 41, pp.497-507. 2003a. Gao, Y., Robertson, G.P., Guiver, M.D., Jian, X., Mikhailenko, S.D., Wang, K. and Kaliaguine, S. Sulfonation of Poly(Phthalazinones) with Fuming Sulfuric Acid Mixtures for Proton Exchange Membrane Materials, Journal of Membrane Science, 227, pp.39-50. 2003b. Gharibi, H., Zhiani, M., Mirzaie, R.A., Kheirmand, M., Entezami, A.A., Kakaei, K. and Javaheri, M. Investigation of Polyaniline Impregnation on the Performance of Gas Diffusion Electrode (Gde) in Pemfc Using Binary of Nafion and Polyaniline Nanofiber, Journal of Power Sources, 157, pp.703-708. 2006. Gil, M., Ji, X., Li, X., Na, H., Hampsey, J.E. and Lu, Y. Direct Synthesis of Sulfonated Aromatic Poly(Ether Ether Ketone) Proton Exchange Membranes for Fuel Cell Applications, Journal of Membrane Science, 234, pp.75-81. 2004. Gogel, V., Frey, T., Zhu, Y., Friedrich, K.A., Jörissen, L. and Garche, J. Performance and Methanol Permeation of Direct Methanol Fuel Cells: Dependence on Operating Conditions and on Electrode Structure, Journal of Power Sources, 127, pp.172-180. 2004. Guo, Q., Pintauro, P.N., Tang, H. and O'Connor, S. Sulfonated and Crosslinked Polyphosphazene-Based Proton-Exchange Membranes, Journal of Membrane Science, 154, pp.175-181. 1999. Guo, X., Fang, J., Tanaka, K., Kita, H. and Okamoto, K. Synthesis and Properties of Novel Sulfonated Polyimides from 2,2'-Bis(4-Aminophenoxy) Biphenyl-5,5'-Disulfonic Acid, Journal of Polymer Science: Part A: Polymer Chemistry, 42, pp.1432-1440. 2004. Guo, X., Fang, J., Watari, T., Tanaka, K., Kita, H. and Okamoto, K. Novel Sulfonated Polyimides as Polyelectrolytes for Fuel Cell Application. 2. Synthesis and Proton Conductivity of Polyimides from 9,9-Bis(4-Aminophenyl) Fluorene-2,7-Disulfonic Acid, Macromolecules, 35, pp.6707-6713. 2002. 172 Hamaya, T., Inoue, S., Qiao, J. and Okada, T. Novel Proton-Conducting Polymer Electrolyte Membranes Based on Pva/Pamps/Peg400 Blend, Journal of Power Sources, 156, pp.311-314. 2006. Haraguchi, K., Usami, Y., Yamamura, K. and Matsumoto, S. Morphological Investigation of Hybrid Materials Composed of Phenolic Resin and Silica Prepared by in Situ Polymerization Polymer, 39, pp.6243-6250. 1998. Hickner, M.A. and Pivovar, B.S. The Chemical and Structural Nature of Proton Exchange Membrane Fuel Cell Properties, Fuel Cells, 5, pp.213-229. 2005. Higuchi, A. and Iiijia, T. Polymerics, 26, pp.1207. 1985. Hobson, L.J., Nakano, Y., Ozu, H. and Hayase, S. Targeting Improved Dmfc Performance, Journal of Power Sources, 104, pp.79-84. 2002. Hobson, L.J., Ozu, H., Yamaguchi, M. and Hayase, S. Modified Nafion 117 as an Improved Polymer Elelctrolyte Membrane for Direct Methanol Fuel Cells, Journal of the Electrochemcial Society, 148, pp.A1185-A1190. 2001. Hofmann, M.A., Ambler, C.M., Maher, A.E., Chalkova, E., Zhou, X.Y., Lvov, S.N. and Allcock, H.R. Synthesis of Polyphosphazenes with Sulfonimide Side Groups, Macromolecules, 35, pp.6490-6493. 2002. Honma, I., Nakajima, H., Nishikawa, O., Sugimoto, T. and Nomura, S. Organic/Inorganic Nano-Composites for High Temperature Proton Conducting Polymer Electrolytes, Solid State Ionics, 162-163, pp.237-245. 2003. Honma, I., Nomura, S. and Nakajima, H. Protonic Conducting Organic/Inorganic Nanocomposites for Polymer Electrolyte Membrane, Journal of Membranes Science, 185, pp.83-94. 2001. Honma, I., Takeda, Y. and Bae, J.M. Protonic Conducting Properties of Sol-Gel Derived Organic/Inganic Nanocomposites Membranes Doped with Acidic Funtional Molecules, Solid State Ionics, 120, pp.255-264. 1999. Hopkins, A.R., Sawall, D.D., Villahermosa, R.M. and Lipeles, R.A. Interfacial Synthesis of Electrically Conducting Polyaniline Nanofiber Composites, Thin Solid Films, 469-470, pp.304-308. 2004. Jiang, R., Kunz, H.R. and Fenton, J.M. Multilayer Structure Membranes with Sulfonated Hydrocarbon Methanol Barrier for Direct Methanol Fuel Cells, Journal of the Electrochemical Society, 153, pp.A1554-1561. 2006. 173 Jorissen, L., Gogel, V., Kerres, J. and Garche, J. New Membranes for Direct Methanol Fuel Cells, Journal of Power Source, 105, pp.267-273. 2002. Jung, B., Kim, B. and Yang, J.M. Transport of Methanol and Protons through Partially Sulfonated Polymer Blend Membranes for Direct Methanol Fuel Cell, Journal of Membrane Science, 245, pp.61-69. 2004. Kang, E.T., Neoh, K.G. and Tan, K.L. Polyaniline: A Polymer with Many Interesting Intrinsic Redox States Progress in Polymer Science, 23, pp.277-324. 1998. Kang, M.S., Choi, Y.J. and Moon, S.H. Water-Swollen Cation-Exchange Membranes Prepared Using Poly(Vinyl Alcohol) (PVA)/Poly(Styrene Sulfonic Acid-Co-Maleic Acid) (PSSA-MA), Journal of Membrane Science, 207, pp.157-170. 2002. Karlsson, L.E., Wesslen, B. and Jannasch, P. Water Absorption and Proton Conductivity of Sulfonated Acrylamide Copolymers, Electrochimica Acta, 47, pp.3269-3275. 2002. Kawahara, M., Rikukawa, M. and Sanui, K. Relationship between Absorbed Water and Proton Conductivity in Sulfopropylated Poly(Benzimidazole), Polymers for advanced technologies, 11, pp.544-547. 2000. Kim, D.S., Park, H.B., Rhim, J.W. and Lee, Y.M. Preparation and Characterization of Crosslinked Pva/Sio2 Hybrid Membranes Containing Sulfonic Acid Groups for Direct Methanol Fuel Cell Applications, Journal of Membrane Science, 240, pp.37-48. 2004a. Kim, D.S., Park, H.B., W., R.J. and Lee, Y.M. Proton Conductivity and Methanol Transport Behavior of Cross-Linked Pva/Paa/Silica Hybrid Membranes, Solid State Ionics, 176, pp.117-126. 2005. Kim, D.W., Choi, H.S., Lee, C., A., B. and Kang, Y. Investigation on Methanol Permeability of Nafion Modified by Self-Assembled Clay-Nanocomposite Multilayers, Electrochemica Acta, 50, pp.656-659. 2004b. Kim, H.J., Kim, H.J., Shul, Y.G. and Han, H.S. Nafion-Nafion/Polyvinylidene Fluoride-Nafion Laminated Polymer Membrane for Direct Methanol Fuel Cells, Journal of Power Sources, 135, pp.66-71. 2004c. Kim, J.D. and Honma, I. Proton Conducting Polydimethylsiloxane/Zirconium Oxied Hyrid Membranes Added with Phosphotungstic Acid, Electrochimica Acta, 48, pp.3633-3638. 2003. 174 Kim, Y.J., Choi, W.C., Woo, S.I. and Hong, W.H. Proton Conductivity and Methanol Permeation in Nafion/Ormosil Prepared with Various Organic Silanes, Journal of Membrane Science, 238, pp.213-222. 2004d. Kim, Y.M., Park, K.W., Choi, J.H., Park, I.S. and Sung, Y.E. A Pd-Impregnated Nanocomposite Nafion Membrane for Use in High-Concentration Methanol Fuel in Dmfc, Electrochemistry Communications, 5, pp.571-574. 2003a. Kim, Y.S., Dong, L., Hickner, M.A., Pivovar, B.S. and McGrath, J.E. Processing Induced Morphological Development in Hydrated Sulfonated Poly(Arylene Ether Sulfone) Copolymer Membranes, Polymer, 44, pp.5729-5736. 2003b. Kim, Y.S., Hickner, M.A., Dong, L., Pivovar, B.S. and McGrath, J.E. Sulfonated Poly(Arylene Ether Sulfone) Copolymer Proton Exchange Membranes: Composition and Morphology Effects on the Methanol Permeability, Journal of Membrane Science, 243, pp.317-326. 2004e. Kreuer, K.D. Proton Conductivity: Materials and Applications, Chemistry of Materials, 8, pp.610-641. 1996. Kreuer, K.D. On the Development of Proton Conducting Polymer Membranes for Hydrogen and Methanol Fuel Cells, Journal of Membrane Science, 185, pp.29-39. 2001. Kreuer, K.D., Paddison, S.J., Spohr, E. and Schuster, M. Transport in Proton Conductors for Fuel-Cell Applications: Simulations, Elementary Reactions, and Phenomenology, Chem. Rev., 104, pp.4637-4678. 2004. Lafitte, B., Karlsson, L.E. and Jannasch, P. Sulfophenylation of Polysulfones for Proton-Conducting Fuel Cell Membranes, Macromol. Rapid Commun., 23, pp.896-900. 2002. Larminie, J. and Dicks, A. Fuel Cell Systems Explained, Second Edition, Chapter 6, 2003. Lassegues, J.C., Grondin, J., Hernandez, M. and Maree, B. Proton Conducting Polymer Blends and Hybrid Organic Inorganic Materials, Solid State Ionics, 145, pp.37-45. 2001. Lee, C.H., Park, H.B., Lee, Y.M. and Lee, R.D. Importance of Proton Conductivity Measurement in Polymer Electrolyte Membrane for Fuel Cell Application, Ind. Eng. Chem. Res, 44, pp.7617-7626. 2005. Li, L., Xu, L. and Wang, Y. Novel Proton Conducting Composite Membranes for Direct Methanol Fuel Cell, Materials Letters, 57, pp.1406-1410. 2003a. 175 Li, L., Zhang, J. and Wang, Y. Sulfonated Poly(Ether Ether Ketone) Membranes for Direct Methanol Fuel Cell, Journal of Membrane Science, 226, pp.159-167. 2003b. Li, L., Zhang, J. and Wang, Y. Sulfonated Polyether Ether Ketone Membranes Cured with Different Methods for Direct Methanol Fuel Cells, Journal of Materials Science Letters, 22, pp.1595-1597. 2003c. Li, Q., He, R., Jensen, J.O. and Bjerrum, N.J. Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100 °C, Chemistry of Materials, 15, pp.4896-4915. 2003d. Li, S. and Liu, M. Synthesis and Conductivity of Proton-Electrolyte Membranes Based on Hybrid Inorganic-Organic Copolymers, Electrochimica Acta, 48, pp.4271-4476. 2003. Li , X., Chen, D., Xu, D., Zhao, C., Wang, Z., Lu, H. and Na, H. Speekk/Polyaniline (Pani) Composite Membranes for Direct Methanol Fuel Cell Usages, Journal of Membrane Science, 275, pp.134-140. 2006. Li, X., Liu, C., Lu, H., Zhao, C., Wang, Z., Xing, W. and Na, H. Preparation and Characterization of Sulfonated Poly(Ether Ether Ketone Ketone) Proton Exchange Membranes for Fuel Cell Application, Journal of Membrane Science, 255, pp.149-155. 2005. Lin, H.L., Yu, T.L., Huang, L.N., Chen, L.C., Shen, K.S. and Jung, G.B. Nafion/Ptfe Composite Membranes for Direct Methanol Fuel Cell Applications, Journal of Power Sources, 150, pp.11-19. 2005. Lin, J., Lee, J.K., Kellner, M., Wycisk, R. and Pintauroa, P.N. Nafion-Flourinated Ethylene-Propylene Resin Membrane Blends for Direct Methanol Fuel Cells, Journal of the Electrochemcial Society, 153, pp.A1325-A1331. 2006. Liu, J., Wang, H., Cheng, S. and Chan, K.Y. Nafion-Polyfurfuryl Alcohol Nanocomposite Membranes for Direct Methanol Fuel Cells, Journal of Membrane Science, 246, pp.95-101. 2004. Liu, J.G., Zhao, T.S., Liang, Z.X. and Chen, R. Effect of Membrane Thickness on the Performance and Efficiency of Passive Direct Methanol Fuel Cells, Journal of Power Sources, 153, pp.61-67. 2006. Lufrano, F., Squadrito, G., Patti, A. and Passalacqua, E. Sulfonated Polysulfone as Promising Membranes for Polymer Electrolyte Fuel Cells, Journal of Applied Polymer Science, 77, pp.1250-1257. 2000. 176 Ma, Z.Q., Cheng, P. and Zhao, T.S. A Palladium-Alloy Deposited Nafion Membrane for Direct Methanol Fuel Cells, Journal of Membrane Science, 215, pp.327-336. 2003. Marie, E., Rothe, R., Antonietti, M. and Landfester, K. Synthesis of Polyaniline Particles Via Inverse and Direct Miniemulsion, Macromolecules, 36, pp.3967-3973. 2003. Mecerreyes, D., Grande, H., Miguel, O., Ochoteco, E., Marcilla, R. and Cantero, I. Porous Polybenzimidazole Membranes Doped with Phosphoric Acid: Highly Proton-Conducting Solid Electrolytes, Chemistry of Materials, 16, pp.604-607. 2004. Mikhailenko, S.D., Wang, K., Kaliaguine, S., Xing, P., Robertson, G.P. and Guiver, M.D. Proton Conducting Membranes Based on Cross-Linked Sulfonated Poly(Ether Ether Ketone) (Speek), Journal of Membrane Science, 233, pp.93-99. 2004. Milhailenko, S.D., Zaidi, S.M.J. and Kaliaguine, S. Sulfonated Polyether Ether Ketone Based Composite Polymer Electrolyte Membranes, Catalysis Today, 67, pp.225-236. 2001. Miyake, N., Wainright, J.S. and Savinell, R.F. Evaluation of a Sol-Gel Derived Nafion/Silica Hybrid Membrane for Polymer Elelctrolyte Membrane Fuel Cell Applications (Methanol Uptake and Methanol Permeability), Journal of the Electrochemcial Society, 148, pp.A905-A909. 2001a. Miyake, N., Wainright, J.S. and Savinell, R.F. Evaluation of a Sol-Gel Derived Nafion/Silica Hybrid Membranes for Proton Electrolyte Membrane Fuel Cell Applications (Proton Conductivity and Water Content), Journal of the Electrochemcial Society, 148, pp.A898-A904. 2001b. Miyatake, K., Zhou, H., Matsuo, T., Uchida, H. and Watanabe, M. Proton Conductive Polyimide Electrolytes Containing Trifluoromethyl Groups: Synthesis, Properties, and Dmfc Performance, Macromolecules, 37, pp.4961-4966. 2004. Mukoma, P., Jooste, B.R. and Vosloo, H.C.M. Synthesis and Characterization of Cross-Linked Chitosan Membranes for Application as Alternative Proton Exchange Membrane Materials in Fuel Cells, Journal of Power Sources, 136, pp.16-23. 2004. Nakajima, H., Nomura, S., Sugimoto, T., Nishikawa, S. and Honma, I. High Temperature Proton Conducting Organic/Inorganic Nanohybrids for Polymer Electrolyte Membrane Part П, Journal of the Electrochemcial Society, 149, pp.A953-A959. 2002. 177 Navarra, M.A., Materazzi, S., Panero, S. and Scrosati, B. Pvdf-Based Membranes for Dmfc Applications, Journal of the Electrochemcial Society, 150(11), pp.A1528-A1532. 2003. Ng, S.W., Neoh, K.G., Sampanthar, J.T. and Kang, E.T. Conversion of Polyaniline from Insulating to Conducting State in Aqueous Viologen Solutions, J. Phys. Chem. B, 105, pp.5618-5625. 2001. Nunes, S.P., Ruffmann, B., Rikowski, E., Vetter, S. and Richau, K. Inorganic Modification of Proton Conductive Polymer Membranes for Direct Methanol Fuel Cells, Journal of Membrane Science, 203, pp.215-225. 2002. Odian, G. Principles of Polymerization, 4th Ed., John Wiley & Sons, Hoboken, New Jersey, Chapter 6, 2004. Park, H.S., Kim, Y.J., Hong, W.H. and Lee, H.K. Physical and Electrochemcial Properties of Nafion/Polypyrrole Composite Membranes for Dmfc, Journal of Membrane Science, 272, pp.28-36. 2006. Park, Y. and Nagai, M. Proton-Conducting Properties of Inorganic-Organic Nanocomposites Proton-Exchange Nanocomposite Membranes Based on 3-Glycidoxypropyltrimethoxysilane and Tetraethylorthosilicate, Journal of the Electrochemcial Society, 148, pp.A616-A623. 2001. Park, Y.S. and Yamazaki, Y. Novel Nafion/Hydroxyapatite Composite Membrane with High Crystallinity and Low Methanol Crossover for Dmfcs, Polymer Bulletin, 53, pp.181-192. 2005. Pei, H.Q., Hong, L. and Lee, J.Y. Embedded Polymerization Driven Asymmetric Pem for Direct Methanol Fuel Cells, Journal of Membrane Science, 270, pp.169-178. 2006a. Pei, H.Q., Hong, L. and Lee, J.Y. Polymer Electrolyte Membrane Based on 2-Acrylamido-2-Methyl Propanesulfonic Acid Fabricated by Embedded Polymerization, Journal of Power Sources, 160, pp.949-956. 2006b. Pivovar, B.S., Wang, Y. and Cussler, E.L. Pervaporation Membranes in Direct Methanol Fuel Cells, Journal of Membrane Science, 154, pp.155-162. 1999. Ponce, M.L., Prado, L., Ruffmann, B., Richau, K., Mohr, R. and Nunes, S.P. Reduction of Methanol Permeability in Polyetherketone/Heteropolyacid Membranes, Journal of Membrane Science, 217, pp.5-15. 2003. Prakash, G.K.S., Smart, M.C., Wang, Q., Atti, A., Pleynet, V., Yang, B., McGrath, K., Olah, G.A., Narayanan, S.R., Chun, W., Valdez, T. and Surampudi, S. High Efficiency Direct Methanol Fuel Cell Based on Poly(Styrenesulfonic) Acid 178 (Pssa)/poly(Vinylidene Fluoride) (Pvdf) Composite Membranes, Journal of Fluorine Chemistry, 125, pp.1217-1230. 2004. Pu, H., Liu, Q. and Liu, G. Methanol Permeation and Proton Conductivity of Acid-Doped Poly(N-Ethylbenzimidazole) and Poly(N-Methylbenzimidazole), Journal of Membrane Science, 241, pp.169-175. 2004. Qiao, J., Hamaya, T. and Okada, T. New Highly Proton-Conducting Membrane Poly(Vinylpyrrolidone)(PVP) Modified Poly(Vinyl Alcohol) / 2-Acrylamido-2-Methyl-1-Propanesulfonic Acid (PVA–PAMPS) for Low Temperature Direct Methanol Fuel Cells (DMFCs), Polymer, 46, pp.10809-10816. 2005. Ramani, V., Kunz, H.R. and Fenton, J.M. Stabilized Heteropolyacid/Nafion Composite Membranes for Elevated Temperature/Low Relative Humidity Pefc Operation, Electrochemica Acta, 50, pp.1181-1187. 2004. Randin, J.P. Ion-Containing Polymers as Semisolid Electrolytes in Wo3-Based Electrochromic Devices, Journal of the Electrochemcial Society, 129, pp.1215-1220. 1982. Ravikumar, M.K. and Shukla, A.K. Effect of Methanol Crossover in a Liquid-Feed Polymer-Electrolyte Direct Methanol Fuel Cell, Journal of the Electrochemcial Society, 143, pp.2601-2606. 1996. Ren, S., Li, C., Zhao, X., Wu, Z., Wang, S., Sun, G., Xin, Q. and Yang, X. Surface Modification of Sulfonated Poly(Ether Ether Ketone) Membranes Using Nafion Solution for Direct Methanol Fuel Cells, Journal of Membrane Science, 247, pp.59-63. 2005. Ren, X., Springer, T.E. and Gottesfeld, S. Water and Methanol Uptakes in Nafion Membranes and Membrane Effects on Direct Methanol Cell Performance, Journal of the Electrochemcial Society, 147, pp.92-98. 2000a. Ren, X., Springer, T.E., Zawodzinski, T.A. and Gottesfeld, S. Methanol Transport through Nafion Membraens Electro-Osmotic Drag Effects on Potential Step Measurements, Journal of the Electrochemcial Society, 147, pp.466-474. 2000b. Ren, X., Zawodzinski, T.A., Uribe, F., Dai, H. and Gottesfeld, S. Proton Conducting Membranes Fuel Cells 1, S. Gottesfeld, G. Halpert and A. Landgrebe Eds. The Electrochemical Society, Pennington, NJ, 95-23, pp.284. 1995. Roeder, J., Silva, H., Nunes, S.P. and Pires, A.T.N. Mixed Conductive Blends of Speek/Pani, Solid State Ionics, 176, pp.1411-1417. 2005. Samuel, P.K., Sano, K., Sudoh, M. and Kensaka, M. Purif. Technol., 18, pp.141. 2000. 179 Sauk, J., Byun, J. and Kim, H. Grafting of Styrene on to Nafion Membranes Using Supercritical Co2 Impregnation for Direct Methanol Fuel Cells, Journal of Power Sources, 132, pp.59-63. 2004. Schauer, J. and Brozov, L. Heterogeneous Ion-Exchange Membranes Based on Sulfonated Poly(1,4-Phenylene Sulfide) and Linear Polyethylene: Preparation, Oxidation Stability, Methanol Permeability and Electrochemical Properties, Journal of Membrane Science, 250, pp.151-157. 2005. Schultz, T., Zhou, S. and Sundmacher, K. Current Status of and Recent Developments in the Direct Methanol Fuel Cell, 24, pp.1223-1233. 2001. Shao, Z.G. and Hsing, I.M. Nafion Membrane Coated with Sulfonated Poly(Vinyl Alcohol)-Nafion Film for Direct Methanol Fuel Cells, Electrochemical and solid-state letters, 5, pp.A185-A187. 2002. Shao, Z.G., Wang, X. and Hsing, I.M. Composite Nafion/Polyvinyl Alcohol Membranes for the Direct Methanol Fuel Cell, Journal of Membrane Science, 210, pp.147-153. 2002. Shen, M., Roy, S., Kuhlmann, J.W., Scott, K., Lovell, K. and Horsfall, J.A. Grafted Polymer Electrolyte Membrane for Direct Methanol Fuel Cells, Journal of Membrane Science, 251, pp.121-130. 2005. Shim, J.H., Koo, I.G. and Lee, W.M. Nafion-Impregnated Polyethylene-Terephthalate Film Used as the Electrolyte for Direct Methanol Fuel Cells, Electrochemica Acta, 50, pp.2385-2391. 2005. Shim, J.W., Kim, J.W., Han, S.H., Chang, I.S., Kim, H.K., Kang, H.H., Lee, O.S. and Suh, K.D. Zinc Oxide/Polymethylmethacrylate Composite Microspheres by in Situ Suspension Polymerization and Their Morphological Study Colloids and Surfaces A: Physicochemical and Engineering Aspects 207, pp.105-111. 2002. Si, Y., Lin, J.C., Kunz, H.R. and Fenton, J.M. Trilayer Membranes with a Methanol-Barrier Layer for Dmfcs, Journal of the Electrochemcial Society, 151, pp.A463-A469. 2004. Silva, V.S., Ruffmann, B., Silva, H., Gallego, Y.A., Mendes, A., Madeira, L.M. and Nunes, S.P. Proton Electrolyte Membrane Properties and Direct Methanol Fuel Cell Performance I. Characterization of Hybrid Sulfonated Poly(Ether Ether Ketone)/Zirconium Oxide Membranes, Journal of Power sources, 140, pp.34-40. 2005. 180 Siroma, Z., Fujiwara, N., Ioroi, T., Yamazaki, S., Yasuda, K. and Miyazaki, Y. Dissolution of Nafion Membrane and Recast Nafion Film in Mixtures of Methanol and Water, Journal of Power Sources, 126, pp.41-45. 2004. Smit, M.A., Ocampo, A.L., Espinosa-Medina, M.A. and Sebastian, P.J. A Modified Nafion Membrane with in Situ Polymerized Polypyrrole for the Direct Methanol Fuel Cell, Journal of Power Sources, 124, pp.59-64. 2003. Smitha, B., Sridhar, S. and Khan, A.A. Synthesis and Characterization of Proton Conducting Polymer Membranes for Fuel Cells, Journal of Membrane Science, 225, pp.63-76. 2003. Smitha, B., Sridhar, S. and Khan, A.A. Polyelectrolyte Complexes of Chitosan and Poly(Acrylic Acid) as Proton Exchange Membranes for Fuel Cells, Macromolecules, 37, pp.2233-2239. 2004. Song, C.S. Fuel Processing for Low-Temperature and High-Temperature Fuel Cells: Challenges, and Opportunities for Sustainable Development in the 21st Century, Catalysis Today, 77, pp.17-49. 2002. Song, M.K., Kim, Y.T., Fenton, J.M., Kunz, H.R. and Rhee, H.W. Chemically-Modified Nafion/Poly(Vinylidene Fluoride) Blend Ionomers for Proton Exchange Membrane Fuel Cells, Journal of Power Sources, 117, pp.14-21. 2003. Sopian, K. and Daud, W.R.W. Challenges and Future Developments in Proton Exchange Membrane Fuel Cells, Renewable Energy, 31, pp.719-727. 2006. Staiti, P., Arico, A.S., Baglio, V., Lufrano, F., Passalacqua, E. and Antonucci, V. Hybrid Nafion-Silica Membranes Doped with Heteropolyacids for Application in Direct Methanol Fuel Cells, Solid State Ionics, 145, pp.101-107. 2001. Staiti, P., Minutoli, M. and Hocevar, S. Membranes Based on Phosphotungstic Acid and Polybenzimidazole for Fuel Cell Application, Journal of Power Sources, 90, pp.231-235. 2000. Stone, C. and Morrison, A.E. From Curiosity To "Power to Change the World®", Solid State Ionics, 152-153, pp.1-13. 2002. Su, Y.H., Liu, Y.L., Sun, Y.M., Lai, J.Y., Guiver, M.D. and Gao, Y. Using Silica Nanoparticles for Modifying Sulfonated Poly(Phthalazinone Ether Ketone) Membrane for Direct Methanol Fuel Cell: A Significant Improvement on Cell Performance, Journal of Power Sources, 155, pp.111-117. 2006. Swier, S., Ramani, V., Fenton, J.M., Kunz, H.R., Shaw, M.T. and Weiss, R.A. Polymer Blends Based on Sulfonated Poly(Ether Ketone Ketone) and Poly(Ether Sulfone) 181 as Proton Exchange Membranes for Fuel Cells, Journal of Membrane Science, 256, pp.122-133. 2005. Tang, H.L., Pan, M., Jiang, S.P., Wan, Z.H. and Yuan, R.Z. Self-Assembling Multi-Layer Pd Nanoparticles onto Nafion Membrane to Reduce Methanol Crossover, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 262, pp.65-70. 2005a. Tang, H.L., Pan, M., Jiang, S.P. and Yuan, R.Z. Modification of Nafion Membrane to Reduce Methanol Crossover Via Self-Assembled Pd Nanoparticles, Materials Letters, 59, pp.3766-3770. 2005b. Thangamuthu, R. and Lin, C.W. Dbsa-Doped Peg/Sio2 Proton-Conducting Hybrid Membranes for Low-Temperature Fuel Cell Applications, Solid State Ionics, 176, pp.531-538. 2005a. Thangamuthu, R. and Lin, C.W. Dbsa-Doped Peg/Sio2 Proton-Conducting Hybrid Membranes for Low-Temperature Fuel Cell Applications, Solid State Ionics, 176, pp.531-538. 2005b. Tricoli, V. Proton and Methanol Transport in Poly(Perfluorosulfonate) Membranes Containing Cs+ and H+ Cations, Journal of the Electrochemcial Society, 145, pp.3798-3801. 1998. Tricoli, V., Carretta, N. and Bartolozzi, M. A Comparative Investigation of Proton and Methanol Transport in Fluorinated Ionomeric Membranes, Journal of the Electrochemcial Society, 147, pp.1286-1290. 2000. Vetter, S., Ruffmann, B., Buder, I. and Nunes, S.P. Proton Conductive Membranes of Sulfonated Poly(Ether Ketone Ketone), Journal of Membrane Science, 260, pp.181-186. 2005. Vishnupriya, B., Ramya, K. and Dhathathreyan, K.S. Synthesis and Characterization of Sulfonated Poly(Phenylene Oxide) as Membranes for Polymer Electrolyte Membrane Fuel Cells, Journal of Applied Polymer Science, 83, pp.1792-1798. 2002. Volkov, V.I., Korotchkova, S.A., Ohya, H. and Guo, Q. Self-Diffusion of Water-Ethanol Mixtures in Polyacrylic Acidpolysulfone Composite Membranes Obtained by Pulsed-Field Gradient Nuclear Magnetic Resonance Spectroscopy, Journal of Membrane Science, 100, pp.273-286. 1995. Volkov, V.I., Popkov, Y.M., Timashev, S.F., Bessarabov, D.G., Sanderson, R.D. and Twardowski, Z. Self-Diffusion of Water and Fluorine Ions in Anion-Exchange Polymeric Materials (Membranes and Resin) as Determined by Pulsed-Field 182 Gradient Nuclear Magnetic Resonance Spectroscopy, Journal of Membrane Science, 180, pp.1-13. 2000. Wainright, J.S., Wang, J.T., Weng, D., Savinell, R.F. and Litt, M. Acid-Doped Polybenzimidazoles: A New Polymer Electrolyte, Journal of the Electrochemical Society, 142, pp.L121-L123. 1995. Wakizoe, M., Velev, O.A. and Srinivasan, S. Analysis of Proton Exchange Membrane Fuel Cell Performance with Alternate Membranes, Electrochimica Acta, 40, pp.335-344. 1995. Walker, J.C.W. Proton-Conducting Polymer Membrane Comprised of a Copolymer of 2-Acrylamido-2-Methylpropanesulfonic Acid and 2-Hydroxyethyl Methacrylate, Journal of Power Sources, 110, pp.144-151. 2002. Walker, J.C.W. Proton-Conducting Interpenetrating Polymer Network with Reduced Methanol Permeability, JOurnal of the Electrochemical Society, 151, pp.A1797-A1803. 2004. Walker, M., Baumgartner, K.M., Kaiser, M., Kerres, J., Ullrich, A. and Rauchle, E. Proton-Conducting Polymers with Reduced Methanol Permeation, Journal of Applied Polymer Science, 74, pp.67-73. 1999. Watari, T., Fang, J., Tanaka, K., Kita, H., Okamoto, K. and Hirano, T. Synthesis, Water Stability and Proton Conductivity of Novel Sulfonated Polyimides from 4,4'-Bis(4-Aminophenoxy)Biphenyl-3,3'-Disulfonic Acid, Journal of Membrane Science, 230, pp.111-120. 2004. Won, J., Choi, S.W., Kang, Y.S., Ha, H.Y., Oh, I., Kim, H.S., Kim, K.T. and Jo, W.H. Structural Characterization and Surface Modification of Sulfonated Polystyrene-(Ethylene-Butylene)-Styrene Triblock Proton Exchange Membranes, Journal of Membrane Science, 214, pp.245-257. 2003a. Won, J., Park, H.H., Kim, Y.J., Choi, S.W., Ha, H.Y., Oh, I., Kim, H.S., Kang, Y.S. and Ihn, K.J. Fixation of Nanosized Proton Transport Channels in Membranes, Macromolecules, 36, pp.3228-3234. 2003b. Woo, Y., Oh, S.Y., Kang, Y.S. and Jung, B. Synthesis and Characterization of Sulfonated Polyimide Membranes for Direct Methanol Fuel Cell, Journal of Membrane Science, 220, pp.31-45. 2003. Woong, J.C., Venkataramani, S. and Kim, S.C. Modification of Nafion Membrane Using Poly(4-Vinyl Pyridine) for Direct Methanol Fuel Cell, Polymer International, 55, pp.491-499. 2006. 183 Wu, H., Wang, Y. and Wang, S. A Methanol Barrier Polymer Electrolyte Membrane in Direct Methanol Fuel Cells, Journal of New Materials for Electrochemical Systems, 5, pp.251-254. 2002. Wu, H.L., Ma, C.C.M., Kuan, H.C., Wang, C.C., Chen, C.Y. and Chiang, C.L. Sulfonated Poly(Ether Ether Ketone)/Poly(Vinylpyrrolidone) Acid–Base Polymer Blends for Direct Methanol Fuel Cell Application, Journal of Polymer Science: Part B: Polymer Physics, 44, pp.565-572. 2006. Wycisk, R., Lee, J.K. and Pintauro, P.N. Sulfonated Polyphosphazene-Polybenzimidazole Membranes for Dmfcs, Journal of the Electrochemical Society, 152, pp.A892-A898. 2005. Xing, P., Robertson, G.P., Guiver, M.D., Mikhailenko, S.D., Wang, K. and Kaliaguine, S. Synthesis and Characterization of Sulfonated Poly(Ether Ether Ketone) for Proton Exchange Membranes, Journal of Membrane Science, 229, pp.95-106. 2004. Xu, F., Innocent, C., Bonnet, B., Jones, D.J. and Roziere, J. Chemcial Modification of Perfluorosulfonated Membranes with Pyrrole for Fuel Cell Application: Preparation, Characterisation and Methanol Transport, Fuel Cells, 3, pp.398-405. 2005a. Xu, W., Lu, T., Liu, C. and Xing, W. Low Methanol Permeable Composite Nafion/Silica/Pwa Membranes for Low Temperature Direct Methanol Fuel Cells, Electrochemica Acta, 50, pp.3280-3285. 2005b. Yang, B. and Manthiram, A. Sulfonated Poly(Ether Ether Ketone) Membranes for Direct Methanol Fuel Cells, Electrochemcial and solid-state Letters, 6, pp.A229-A231. 2003. Yang, B. and Manthiram, A. Multilayered Membranes with Suppressed Fuel Crossover for Direct Methanol Fuel Cells, Electrochemistry Communications, 6, pp.231-236. 2004. Yang, S.J., Jang, W., Lee, C., Shul, Y.G. and Han, H. The Effect of Crosslinked Networks with Poly(Ethylene Glycol) on Sulfonated Polyimide for Polymer Electrolyte Membrane Fuel Cell, Journal of Polymer Science: Part B: Polymer Physics, 43, pp.1455-1464. 2005. Yin, Y., Fang, J., Cui, Y., Tanaka, K., Kita, H. and Okamoto, K. Synthesis, Proton Conductivity and Methanol Permeability of a Novel Sulfonated Polyimide from 3-(2′,4′-Diaminophenoxy)Propane Sulfonic Acid, Polymer, 44, pp.4509-4518. 2003. 184 Yoon, S.R., Hwang, G.H., Cho, W.I., Oh, I.H., Hong, S.A. and Ha, H.Y. Modification of Polymer Electrolyte Membranes for Dmfcs Using Pd Films Formed by Sputtering, Journal of Power Sources, 106, pp.215-223. 2002. Zeng, X.R. and Ko, T.M. Structure and Properties of Chemically Reduced Polyanilines, Polymer, 39, pp.1187-1195. 1998. Zhang, G. and Zhou, Z. Organic/Inorganic Composite Membranes for Application in Dmfc, Journal of Membrane Science, 261, pp.107-113. 2005. Zhang, W., Gogel, V., Friedrich, K.A. and Kerres, J. Novel Covalently Cross-Linked Poly(Etheretherketone) Ionomer Membranes, Journal of Power Sources, 155, pp.3-12. 2006. Zhang, X., Liu, S. and Yin, J. Synthesis and Characterization of a New Block Copolymer for Proton Exchange Membrane, Journal of Membrane Science, 258, pp.78-84. 2005. Zhou, X., Weston, J., Chalkova, E., Hofmann, M.A., Ambler, C.M., Allcock, H.R. and Lvov, S.N. High Temperature Transport Properties of Polyphosphazene Membranes for Direct Methanol Fuel Cells, Electrochimica Acta, 48, pp.2173-2180. 2003. Zhu, J., Sattler, R.R., Garsuch, A., Yepez, O. and Pickup, P.G. Optimisation of Polypyrrole/Nafion Composite Membranes for Direct Methanol Fuel Cells, Electrochimica Acta, 51, pp.4052-4060. 2006. 185 [...]... 2003; Sopian and Daud, 2006) 11 The general design of most fuel cells is similar except for the electrolyte The five major types of fuel cells as defined by their electrolyte are: alkaline fuel cells (AFCs), phosphoric acid fuel cells (PAFCs), molten carbonate fuel cells (MCFCs), solid oxide fuel cells (SOFCs) and polymer electrolyte membrane fuel cells (PEMFCs) Their main features and intended applications... on fuel cells have been ongoing ever since the first fuel cell was demonstrated in the mid 19th century 1 Among various types of fuel cells, the direct methanol fuel cells (DMFCs) are an attractive option for portable and electric vehicle applications because they offer advantages such easy refueling and a simplified system design (Gogel, et al., 2004; Yang and Manthiram, 2004) The DMFCs work on methanol. .. by a succinct but fairly updated account of recent development in the direct methanol fuel cells (DMFCs), focusing on topics which are most relevant to this thesis study: polymer electrolyte membranes (PEMs), methanol crossover and the prevailing methods of preparation of PEMs for DMFC applications 2.1 Fuel Cell The principles of fuel cell were discovered in 1839 by Sir William R Grove, using the reaction... methanol directly without the need for onboard fuel reforming into hydrogen Their quick start-up characteristics and the ability to operate at relatively low temperatures compare favorably with hydrogen polymer electrolyte membrane fuel cells (PEMFC) At present, one of the major impediments to the commercialization of DMFCs is methanol crossover from the anode to the cathode through the polymer electrolyte. .. general introduction to the polymer electrolyte membranes 2.2 The Development of Polymer Electrolyte Membranes The success of PEMFCs is owed to a large part to the availability of good polymer electrolyte membranes The first generation membranes used in the sixties were based on polystyrene sulfonic acids and were infamous for their degradation problem They were replaced by membranes based on perfluorosulfonic... TCPB, M-0 and M-1 membranes (b) M-3 and M-4 membranes 68 xi Fig.3.10 Effect of sulfonic group content on membrane proton conductivity 70 Fig.3.11 Extent of water and methanol uptakes for various tested membranes 70 Fig.3.12 Volume expansions of AMPS membranes in water after 24h 72 Fig.3.13 Volume expansions of AMPS membranes in 90% methanol solutions after 24h 72 Fig 4.1 The diagram of methanol diffusion... melting curve of hydrated B3 and B4 membranes 109 Fig 5.7 Proton conductivities of AMPS copolymer –TCPB blend membranes 111 Fig 5.8 Temperature dependence of proton conductivity of AMPS copolymer-TCPB blend membranes and Nafion®117 113 Fig 5.9 Methanol permeabilities of Nafion®117 and AMPS copolymer-TCPB blend membranes 115 Fig 5.10 Viscosity of TCPB at MEK and methanol- containing MEK 116 Fig.6.1 FESEM... 2 → 2 H + + 2e − Electrolyte Air + Water Cathode O2 + 4 H + + 4 e − → 2 H 2 O Figure 2.1 Principles of PEMFCs 12 However, the acceptance of hydrogen fuel cells has been hampered by nontrivial issues such as hydrogen storage and refueling The wide availability and portability of methanol as a liquid fuel has made DMFC a very attractive alternative to hydrogen fuel cells Compared to fuel cell systems... the anode leaving little un-reacted methanol to diffuse through the electrolyte and onto the cathode (2) The fuel to the anode is controlled Clearly, the lower the methanol concentration at the anode, the lower it will be in the electrolyte, and hence at the cathode 14 (3) Thicker electrolyte membranes than what is normal for PEMFCs are used This will clearly reduce fuel crossover but at the expense... electrolyte membrane Methanol crossover not only wastes fuel but also causes performance losses at the cathode due to the creation of a mixed potential and catalyst deactivation (Tricoli, et al., 2000; Choi, et al., 2001; Shao and Hsing, 2002) While poly(perfluorosulfonic acid) (Nafion®) membranes are the most commonly used solid polymer electrolyte in fuel cells, they are not suitable for DMFC applications . POLYMER ELECTROLYTE MEMBRANES FOR DIRECT METHANOL FUEL CELLS PEI HAIQIN NATIONAL UNIVERSITY OF SINGAPORE 2007 POLYMER ELECTROLYTE MEMBRANES FOR DIRECT. 9 2.1 Fuel Cell 9 2.2 The Development of Polymer Electrolyte Membranes 15 2.3 Performance Indicators for Polymer Electrolyte Membranes 18 2.3.1 Proton Conductivity 18 2.3.2 Methanol. aimed at producing proton-conducting polymer electrolyte membranes (PEMs) for direct methanol fuel cells (DMFCs), using relatively inexpensive monomers or polymers. A number of preparation methods