1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Molecular analysis of the breeding biology of the asian arowana (scleropages formosus)

184 327 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 184
Dung lượng 3,52 MB

Nội dung

Molecular Analysis of the Breeding Biology of the Asian Arowana (Scleropages formosus) by Chang Kuok Weai Alex Thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Biological Science National University of Singapore 2010 Supervisor: Associate Professor Laszlo Orban PhD committee members : Emeritus Professor Lam Toong Jin Dr Hong Yan Dr Gregory Jedd Associate Prof Laszlo Orban 1|Page Acknowledgements Throughout my project, Prof. Laszlo Orban, my supervisor, was generous with his time and knowledge and on target with his counsel and instilling in me a real appreciation for the scientific method. . I gratefully acknowledge the essential contributions of my Supervisory Committee, Emeritus Professor Toong Jin Lam (chair), Dr Yan Hong and Dr Gregory Jedd, and I also thank Professor Lam for chairing my Examination Committee. I commend the administration of the Temasek Life Sciences Laboratory (TLL) and Qian Hu Fish Farm for facilitating the educational pursuits of their employees I also thank Yap Kim Choon and his staff at Qian Hu Fish Farm believing in me and providing me such a important platform to work on this wonderful species and I am grateful to Kenny Yap for providing invaluable early assistance. I am grateful to my colleagues, Woei Chang Liew, Hsiao Yuen Kwan, Rajini Srineevasan, Felicia Feng, Dr. Xingang Wang, Dr. Richard Bartfai for help and collaborative work; and to Chin Heng Goh, Dr. Patrick Gilligan, and Dr. Gen Hua Yue, who quickly and patiently replied to questions relating to material herein. I thank the contribution of several attachment students, Wee Kee, Qi Feng, Zi Jie, Say Aik, Serene, and Daniel who brightened up the sky every time they were around. In addition, I fondly acknowledge the help and support of numerous TLL colleagues and PIs. Also, special thanks to Dr Robert Brooks, who patiently guided me through the advanced analysis of some of my results (in understanding mating systems. I also thank Aaron Chuah and Graham Wright, who provided computing advice and code, Prof Rudolf Meier and Prof Tan Heok Hui, who helped me in understanding the interesting phylogenetic studies. Lastly, I thank my Dad for getting me hooked on fishes and fisheries science early on. 2|Page Dedication To my family, especially my dad and mum, my wife Cynthia, my son Andre Jacob and friends, for their unwavering kindness, patience, and support. 3|Page TABLE OF CONTENT ABSTRACT . 11 List of Tables . 12 List of Figures 13 List of Abbreviations . 23 INTRODUCTION . 27 1.1 Taxonomy of bonytongues 27 1.2 The general biology of Asian arowana . 31 1.3 The Asian arowana has at least six main colour strains 34 1.4 Sex and strain identification of teleosts using classical tools 42 1.5 Mating system and parental care in fishes 46 1.6 Molecular approaches in fish biology and aquaculture research 50 1.7 The aims of my research . 62 MATERIALS AND METHODS . 63 2.1 The origin of fish studied 63 2.2 Arowana breeding and holding facilities in QH 64 2.3 Field Observations . 64 4|Page 2.4 Sample collection 65 2.5 DNA isolation . 66 2.6 Isolation and genotyping of microsatellites 68 2.7 Detection of steroid hormone levels using an Enzyme Immunosorbent Assay kit …………………………………………………………………………… .69 2.8 Bradford total soluble protein (TSP) Assay 69 2.9 Amplified Fragment Length Polymorphism (AFLP) 70 2.10 Fluorescent Motif Enhanced Polymorphisms (FluoMEP) 72 2.11 Determining single nucleotide polymorphisms in the mitogenome to confirm the gender of the mouthbrooder . 72 2.12 Computational and statistical analysis . 74 2.12.1 Microsatellite genotyping 74 2.12.2 Analysis of AFLP-based phylogenetic relationship between the colour strains …………………………………………………………………………75 2.12.3 Analysis of kinship between the brooders for understanding egg thievery event …………………………………………………………………………75 2.12.4 Study of the genetic similarity among the colour strains . 76 2.13 Morphometric measurements 76 5|Page 2.13.1 External morphometric differences 76 2.13.2 Internal morphometric differences – moulding/roughness index and touch-based examination . 77 2.13.3 Morphometry of the eggs and larvae . 79 RESULTS 80 3.1 The reproduction biology of Asian arowana is very different from that of most teleosts . 80 3.1.1 3.2 Observation of mating - temporal and spatial data 80 Differences in the productivity and survival rate of colour strains and dependence of breeding events on environmental factors . 84 3.2.1 There were significant differences in offspring number per brooder and their survival between several colour strains . 84 3.3 The early development of Asian arowana larvae is a slow process 87 3.3.1 Fertilised eggs 88 3.3.2 Juveniles . 89 3.4 Sexing the brooders with classical and molecular tools 91 3.4.1 External morphometric measurements on sexually mature adults showed significant differences between the two sexes . 91 6|Page 3.4.2 Internal morphometry – The surface of the buccal cavity transformed in mouthbrooding males . 92 3.4.3 3.5 Hormonal measurements from mucus . 95 Identification of the sex of the mouthbrooding parent in the MG variety of Asian arowana 96 3.6 Genotyping data reveals complex relationships between the brooders in the ponds …………………………………………………………………………… .99 3.7 Change in breeding pattern following the loss of a male in pond WH001 105 3.8 No signs of possible inbreeding or incompatibility avoidance were observed …………………………………………………………………………….106 3.9 The Asian arowanas display an unusual phenomenon of egg thievery . 107 3.10 Transient morphological modification of the surface of buccal cavity in Asian arowana during mouthbrooding . 111 3.11 Most colour variants of Asian arowana can be differentiated from the others using molecular analysis . 113 3.11.1 Differentiation of the colour strains using microsatellite-based genotypes . 113 3.11.2 FluoMEP was able to differentiate between two commercially important colour strains 115 7|Page 3.11.3 The microsatellite-based phylogenetic tree of the colour variants of Asian arowana was congruent with geographical reconstruction of prehistoric events in South-East Asia 117 3.11.4 Bayesian clustering analysis allowed for differentiation of most colour strains ……………………………………………………………………… 119 3.12 Pairwise comparison of the FST value indicated that the colour strains are likely to be one species 121 DISCUSSION 123 4.1 Microsatellites allow for accurate parentage analysis and reveal breeding relationships of Asian arowana 123 4.2 The Asian arowana male protects its eggs by transient morphological modification of the surface of its buccal cavity during mouthbrooding 130 4.3 The advantages of being able to sex the adult Asian arowanas 132 4.4 The change in the breeding relationships in a pond after the death of a highly productive male indicates the presence of a complex hierarchical breeding system …………………………………………………………………………….138 4.5 Our data not show inbreeding or incompatibility avoidance, indicating unique mate choice and strategy 139 4.6 Egg thievery: Why Asian arowanas steal each other‟s eggs? 141 8|Page 4.7 Asian arowanas provide another example for a positive correlation between egg size and parental care 144 4.8 Genetic confirmation of a paternal care in the Malaysian golden variety of Asian arowana 145 4.9 Strong positive effect of a mating strategy involving multiple mates, number of reproductive events (broods) and lack of difference between the sexes . 146 4.10 Genetic analysis detects distinct differences between Asian arowana strains ………………………………………………………………………….150 4.11 The divergence of the different colour strains seems to be consistent with the change of the land mass configuration of South East Asia 152 4.12 The different colour strains are likely to be geographically isolated populations and not different species . 154 POSSIBILITIES FOR THE FUTURE 156 5.1 Selective breeding program – production of the first hybrids in preparation for linkage mapping . 156 REFERENCE . 158 SUPPLEMENTARY TABLES . 178 9|Page ABSTRACT The dragonfish or Asian arowana (Scleropages formosus Müller & Schlegel, 1844) is one of the few living, „near-basal‟ teleosts belonging to the family Osteoglossidae. This CITES-protected species possesses a fascinating collection of biologically interesting characters that could be important for the study of basal vertebrate breeding biology, mating behavior and mate preference. We report here, to the best of our knowledge, the most detailed documentation of the breeding behavior, including mate choice and observed mating strategy, of S. formosus. For the analysis of mate choice, we created the “genetic mating map” for three ponds containing the total of more than 60 brooders over a yr period, using 12 highly polymorphic microsatellites. Our data indicated that there were no multiple paternities, only single paternity in the 100 clutches of offspring sampled. The interspawning interval ranged from months to 17 months. Parentage assignment, together with identification of the maternal and paternal genotypes using mitochondrial haplotyping, demonstrated that Asian arowana practiced both polygamy and monogamy. We also reported the unusual form of egg thievery practiced by the Asian arowana and a transient modification of the buccal cavity in the male brooders in preparation for the mouthbrooding event. Our data are important not only for better understanding the breeding biology of this unusually interesting bonytongue, but also for their potential to improve the existing aquaculture programs. 10 | P a g e 200. Pitcher TJ, editor (1993) Behaviour of teleost fishes. 2nd ed. London: Chapman and Hall. 715 p. 201. Godinho HP, Santos JE, Formagio PS, Guimarães-Cruz RJ (2005) Gonadal morphology and reproductive traits of the Amazonian fish Arapaima gigas(Schinz, 1822). Acta Zoologica 86: 289-294. 202. Milinski M (2003) The function of mate choice in sticklebacks: optimizing MHC genetics. J Fish Biol 63: 1-16. 203. Kokko H, Brooks R, Jennions MD, Morley J (2003) The evolution of mate choice and mating biases. P Roy Soc Lond B Bio 270: 653-664. 204. Kokko H, Brooks R, McNamara JM, Houston AI (2002) The sexual selection continuum. P Roy Soc Lond B Bio 269: 1331-1340. 205. Servedio MR, Wolf J (2007) Male versus female mate choice: sexual selection and the evolution of species recognition via reinforcement. Evolution 61: 2772-2789. 206. Santangelo N, Itzkowitz M (2006) How does competition influence mate choice decisions for males and females in the monogamous convict cichlid fish, Archocentrus nigrofasciatus? Behaviour 143: 619-642. 207. Draud MJ, Itzkowitz M (2004) Mate numbers or mate quality: female mate choice in the polygynandrous variegated pupfish (Cyprinodon variegatus). Ethol Ecol Evol 16: 1-13. 208. Amundsen T, Forsgren E (2001) Male mate choice selects for female coloration in a fish. P Natl Acad Sci USA 98: 13155-13160. 209. Nutten S, Sansonetti P, Huet G, Bourdon-Bisiaux C, Meresse B, et al. (2002) Epithelial inflammation response induced by Shigella flexneri depends on mucin gene expression. Microbes Infect 4: 1121-1124. 210. Gitlin JD (1988) Transcriptional regulation of ceruloplasmin gene expression during inflammation. J Biol Chem 263: 6281-6287. 211. Brain SD, Williams TJ (1985) Inflammatory oedema induced by synergism between calcitonin gene-related peptide (CGRP) and mediators of increased vascular permeability. Brit J Pharm 86: 855-860. 212. Brain SD, Williams TJ (1989) Interactions between the tachykinins and calcitonin gene-related peptide lead to the modulation of oedema formation and blood flow in rat skin. British Journal of Pharmacology 97: 77-82. 213. Magurran AE, Garcia CM (2000) Sex differences in behaviour as an indirect consequence of mating system. Journal of Fish Biology 57: 839-857. 214. Parker GA (1992) The evolution of sexual size dimorphism in fish. Journal of Fish Biology 41: 1-20. 215. Meyer A (1987) Phenotypic plasticity and heterochrony in Cichlasoma managuense (Pisces, Chichlidae) and their implications for speciation in Cichlid fishes. Evolution 41: 1357-1369. 216. Swain DP, Ridell BE, Murray CB (1991) Morphological differences between hatchery and wild populations of coho salmon (Oncoryhynchus kisutch): environmental versus genetic origin. Can J Fish Aquat Sci 48: 1783-1791. 169 | P a g e 217. Bembo DG, Carvalho GR, Cingolani N, Arneri E, Giannetti G, et al. (1996) Allozymic and morphometric evidence for two stocks of the European anchovy Engraulis encrasicolus in Adriatic waters. Mar Biol 126: 529-538. 218. Rohlf FJ (1990) Morphometrics. Ann Rev Ecol Syst 21: 299-316. 219. Idler DR, Hwang SJ, Crim LW, Reddin D (1981) Determination of sexual maturation stages in alantic salmon (Salmo salar) captured at sea. Can J Fish Aquat Sci 38: 405-413. 220. Chaves-Pozo E, Arjona FJ, García-López A, García-Alcázar A, Meseguer J, et al. (2008) Sex steroids and metabolic parameter levels in a seasonal breeding fish (Sparus aurata L.). Gen Comp Endocr 156: 531-536. 221. Minamimoto M, Sakakura Y, Soyano K, Akaba Y, Hagiwara A (2006) Plasma sex steroid levels and steroidogenesis in the gonad of the self-fertilizing fish Rivulus marmoratus. Environ Biol Fish 75: 159-166. 222. Sepúlveda MS, Johnson WE, Higman JC, Denslow ND, Schoeb TR, et al. (2002) An evaluation of biomarkers of reproductive function and potential contaminant effects in Florida largemouth bass (Micropterus salmoides floridanus) sampled from the St. Johns River. SciTotal Environ 289: 133-144. 223. Spanò L, Tyler CR, Aerle R, Devos P, Mandiki SNM, et al. (2004) Effects of atrazine on sex steroid dynamics, plasma vitellogenin concentration and gonad development in adult goldfish (Carassius auratus). Aquat Toxicol 66: 369-379. 224. Schultz DR, Perez N, Mendez AJ, Snodgrass D, Serafy JE, et al. (2007) Tracking gender factors in fish surface mucus: temporal patterns in individual Koi (Cyprinus carpio). J Appl Ichthyol 23: 184-188. 225. Schultz DR, Perez N, Tan C-K, Mendez AJ, Capo TR, et al. (2005) Concurrent levels of 11-ketotestosterone in fish surface mucus, muscle tissue and blood doi:10.1111/j.1439-0426.2005.00650.x. Journal of Applied Ichthyology 21: 394-398. 226. Schultz DR, Perez NF, Snodgrass D, Serafy JE, Prince ED, et al. (2006) Enzymelinked immunosorbent assays and billfish gender: testing muscle tissue and surface mucus in tagging studies. Bulletin of Marine Science 79: 859-864. 227. Thorarensen H, Young GL, Davie PS (1996) 11-ketotestosterone stimules growth of heart and red muscle in rainbow trout. Can J Fish Aquat Sci 74: 912-917. 228. Fine ML, Johnson MS, Matt DW (2004) Seasonal variation in androgen levels in the Oyster Toadfish. Copeia 2004: 235-244. 229. Weltzien FA, Taranger GL, Karlsen Ø, Norberg B (2002) Spermatogenesis and related plasma androgen levels in Atlantic halibut (Hippoglossus hippoglossus L.). Comp Biochem Phys A 132: 567-575. 230. Lokman PM, Young G (1998) Gonad histology and plasma steroid profiles in wild New Zealand freshwater eels (Anguilla dieffenbachii and A. australis) before and at the onset of the natural spawning migration. II. Males. Fish Physiol Biochem 19: 339-347. 231. Cheng MF (1986) Female cooing promotes ovarian development in ring doves. Physiol Behav 37: 371-374. 170 | P a g e 232. Desjardins JK, Hazelden MR, Van der Kraak GJ, Balshine S (2006) Male and female cooperatively breeding fish provide support for the "Challenge Hypothesis". Behav Ecol 17: 149-154. 233. Magee SE, Neff BD, Knapp R (2006) Plasma levels of androgens and cortisol in relation to breeding behavior in parental male bluegill sunfish, Lepomis macrochirus. Horm Behav 49: 598-609. 234. Oliveira RF, Hirschenhauser K, Carneiro LA, Canario AVM (2002) Social modulation of androgen levels in male teleost fish. Comp Biochem Phys B 132: 203-215. 235. Borg B, Mayer I (1995) Androgens and behaviour in the three-spined Stickleback. Behaviour 132: 1025-1035. 236. Hofmann HA, Benson ME, Fernald RD (1999) Social status regulates growth rate: Consequences for life-history strategies. P Natl Acad Sci USA 96: 14171-14176. 237. Wingfield JC, Hegner RE, Dufty JAM, Ball GF (1990) The "Challenge Hypothesis": theoretical implications for patterns of testosterone secretion, mating systems, and breeding strategies. Am Nat 136: 829. 238. Cardwell JR, Liley NR (1991) Androgen control of social status in males of a wild population of stoplight parrotfish, Sparisoma viride (Scaridae). Horm Behav 25: 1-18. 239. Pankhurst NW, Barnett CW (1993) Relationship of population density, territorial interaction and plasma levels of gonadal steroids in spawning male Demoiselles Chromis dispilus (Pisces: Pomacentridae). Gen Comp Endocr 90: 168-176. 240. Ellis L (1995) Dominance and reproductive success among nonhuman animals: a cross-species comparison. Ethol Sociobiol 16: 257-333. 241. Olsen KH, Grahn M, Lohm J (2002) Influence of mhc on sibling discrimination in Arctic char, Salvelinus alpinus (L.). J Chem Ecol 28: 783-795. 242. Buston P (2003) Social hierarchies: size and growth modification in clownfish. Nature 424: 145-146. 243. Bateman AJ (1948) Intrasexual selection in drosophila. Heredity 2: 349-368. 244. Trivers RL (1972) Parental investment and sexual selection. In: B. C, editor. Sexual selection and the descent of man. Chicago, IL: Aldine Publishing Company. pp. 136-179. 245. Brown JL (1998) The new heterozygosity theory of mate choice and the MHC. Genetica 104: 215-221. 246. Zeh JA, Zeh DW (1996) The evolution of polyandry I: intragenomic conflict and genetic incompatibility. P Roy Soc B-Biol Sci 263: 1711-1717. 247. Zeh JA, Zeh DW (1997) The evolution of polyandry II: post-copulatory defenses against genetic incompatibility. P Roy Soc B-Biol Sci 264: 69-75. 248. Zeh JA, Zeh DW (2001) Reproductive mode and the genetic benefits of polyandry. Anim Behav 61: 1051-1063. 249. Zeh JA, Zeh DW (2003) Toward a new sexual selection paradigm: polyandry, conflict and incompatibility (Invited Article). Ethology 109: 929-950. 171 | P a g e 250. Simmons LM (1991) Female choice and the relatedness of mates in the field cricket, Gryllus bimaculatus. Anim Behav 41: 493-501. 251. Rudolfsen G, Figenschou L, Folstad I, Nordeide JT, Søreng E (2005) Potential fitness benefits from mate selection in the Atlantic cod Gadus morhua. J Evolution Biol 18: 172-179. 252. Brooks R (2002) Variation in female mate choice within guppy populations: population divergence, multiple ornaments and the maintenance of polymorphism. Genetica 116: 343-358. 253. Brooks R, Endler JA (2001) Female guppies agree to differ: phenotypic and genetic variation in mate-choice behavior and the consequences for sexual selection. Evolution 55: 1644-1655. 254. Brooks R, Endler JA (2001) Direct and indirect sexual selection and quantitative genetics of male traits in guppies Poecilia reticulata. Evolution 55: 1002-1015. 255. Brooks R, Hunt J, Blows MW, Smith MJ, Bussiere LF, et al. (2005) Experimental evidence for multivariate stabilizing sexual selection. Evolution 59: 871-880. 256. Brooks R, Jennions MD (1999) The dark side of sexual selection. Trends Ecol Evol 14: 336-337. 257. de Eyto E, McGinnity P, Consuegra S, Coughlan J, Tufto J, et al. (2007) Natural selection acts on Atlantic salmon major histocompatibility (MH) variability in the wild. Proc Biol Sci 274: 861-869. 258. Forsberg LA, J.E. D, Petersson MG (2007) Influence of genetic dissimilarity in the reproductive success and mate choice of brown trout ; females fishing for optimal MHC dissimilarity. J Evolution Biol 20: 1859-1869. 259. Kurtz J (2003) Sex, parasites and resistance - an evolutionary approach. Zoology 106: 327-339. 260. Landry C, Garant D, Duchesne P, Bernatchez L (2001) 'Good genes as heterozygosity': the major histocompatibility complex and mate choice in Atlantic salmon (Salmo salar). P Roy Soc B-Biol Sci 268: 1279-1285. 261. Milinski M, Griffiths S, Wegner KM, Reusch TBH, Haas-Assenbaum A, et al. (2005) Mate choice decisions of stickleback females predictably modified by MHC peptide ligands. P Natl Acad Sci USA 102: 4414-4418. 262. Nath S, Kales S, Fujiki K, Dixon B (2006) Major histocompatibility class II genes in rainbow trout (Oncorhynchus mykiss) exhibit temperature dependent downregulation. Immunogenetics 58: 443-453. 263. Penn DJ, Damjanovich K, Potts WK (2002) MHC heterozygosity confers a selective advantage against multiple-strain infections. P Natl Acad Sci USA 99: 1126011264. 264. Reusch TBH, Haberli MA, Aeschlimann PB, Milinski M (2001) Female sticklebacks count alleles in a strategy of sexual selection explaining MHC polymorphism. Nature 414: 300-302. 265. Van Oosterhout C, Joyce DA, Cummings SM (2006) Evolution of MHC class IIB in the genome of wild and ornamental guppies, Poecilia reticulata. Heredity 97: 111118. 172 | P a g e 266. Cuesta A, Ángeles EM, Meseguer J (2006) Cloning, distribution and up-regulation of the teleost fish MHC class II alpha suggests a role for granulocytes as antigenpresenting cells. Mol Immunol 43: 1275-1285. 267. Havard H, Morten L, Hege B, Uni G (2008) Multiple expressed MHC class II loci in salmonids; details of one non-classical region in Atlantic salmon (Salmo salar). BMC Genomics 9: 193. 268. Megumi YM, Shuichi A, Nobuyoshi S, Hiroshi K, Masaru N (2002) Nucleotide sequence of the MHC class I genomic region of a teleost, the medaka (Oryzias latipes). Immunogenetics 53: 930-940. 269. Richardson DS, Komdeur J, Burke T, von Schantz T (2005) MHC-based patterns of social and extra-pair mate choice in the Seychelles warbler. P Roy Soc B-Biol Sci 272: 759-767. 270. Tsukamoto K, Hayashi S, Matsuo M, Nonaka M, Kondo M, et al. (2005) Unprecedented intraspecific diversity of the MHC class I region of a teleost medaka, Oryzias latipes. Immunogenetics 57: 420-431. 271. Nonaka M, Matsuo M, Naruse K, Shima A (2001) Comparative genomics of Medaka: the major histocompatibility complex (MHC). Mar Biotech 3: S141S144. 272. Gerlach G, Lysiak N (2006) Kin recognition and inbreeding avoidance in zebrafish, Danio rerio, is based on phenotype matching. Anim Behav 71: 1371-1377. 273. Sturmbauer C, Hahn C, Koblmüller S, Postl L, Sinyinza D, et al. (2008) Variation of territory size and defense behavior in breeding pairs of the endemic Lake Tanganyika cichlid fish Variabilichromis moorii. Hydrobiologia 615: 49-56. 274. Thünken T, Bakker TCM, Baldauf SA, Kullmann H (2007) Active inbreeding in a Cichlid fish and its adaptive significance. Curr Biol 17: 225-229. 275. Neff BD, Pitcher TE (2005) Genetic quality and sexual selection: an integrated framework for good genes and compatible genes. Mol Ecol 14: 19-38. 276. Richardson DS, Burke JKT (2004) Inbreeding in the seychelles warbler: enivronment-dependent maternal effects. Evolution 58: 2037-2048. 277. Dugatkin LA, Godin J-GJ (1993) Female mate copying in the guppy Poecilia reticulata: age-dependent effects. Behav Ecol 4: 289-292. 278. Dugatkin LA, Lucas JS, Godin JGJ (2002) Serial effects of mate-choice copying in the guppy (Poecilia reticulata). Ethol Ecol Evol 14: 45-52. 279. Richard M, Lecomte J, De Fraipont M, Clobert J (2005) Age-specific mating strategies and reproductive senescence. Mol Ecol 14: 3147-3155. 280. Plath M, Brümmer A, Parzefall J, Schlupp I (2006) Size-dependent male mating behaviour and sexual harassment in a population of Atlantic mollies (Poecilia mexicana) from a sulphur creek. Acta ethologica 9: 15-21. 281. Vukomanovic J, Rodd FH (2007) Size-dependent female mate copying in the Guppy Poecilia reticulata: large females are role models but small ones are not. Ethology 113: 579-586. 282. Frommen JG, Luz C, Bakker TCM (2007) Kin discrimination in sticklebacks is mediated by social learning rather than innate recognition. Ethology 113: 276-282. 173 | P a g e 283. Jones AG, Ostlund-Nilsson S, Avise JC (1998) A microsatellite assessment of sneaked fertilizations and egg thievery in the fifteenspine Stickleback. Evolution 52: 848-858. 284. Largiader CR, Fries V, Bakker TCM (2001) Genetic analysis of sneaking and eggthievery in a natural population of the three-spined stickleback (Gasterosteus aculeatus L.). Heredity 86: 459-468. 285. Neat F, Locatello L (2002) No reason to sneak: why males of all sizes can breed in the hole-nesting blenny, Aidablennius sphinx. Behav Ecol Sociobiol 52: 66-73. 286. Ulrika C, Heinz-Rudolf V (1998) Predator-induced nest site preference: safe nests allow courtship in sticklebacks. Anim Behav 56: 1205-1211. 287. Connor RC (1996) Partner preferences in by-product mutualisms and the case of predator inspection in fish. Anim Behav 51: 451-454. 288. Pitcher TE, Neff BD, Rodd FH, Rowe L (2003) Multiple mating and sequential mate choice in guppies: females trade up. P Roy Soc B-Biol Sci 270: 1623-1629. 289. Bergmüller R, Heg D, Taborsky M (2005) Helpers in a cooperatively breeding cichlid stay and pay or disperse and breed, depending on ecological constraints. P Roy Soc B-Biol Sci 272: 325-331. 290. Brouwer L, Heg D, Taborsky M (2005) Experimental evidence for helper effects in a cooperatively breeding cichlid. Behav Ecol 16: 667-673. 291. Taborsky M (1985) Breeder-helper conflict in a Cichlid fish With broodcare helpers: an experimental analysis. Behaviour 95: 45-75. 292. Pampoulie C, Lindstrom K, St. Mary CM (2004) Have your cake and eat it too: male sand gobies show more parental care in the presence of female partners. Behav Ecol 15: 199-204. 293. Williams GC (1975) Sex and evolution. Princeton, NJ: Princeton University Press. 195 p. 294. Sargent RC, Taylor PD, Gross MR (1987) Parental care and the evolution of egg size in fishes. Am Nat 129: 32. 295. Balshine-Earn S, Neat FC, Reid H, Taborsky M (1998) Paying to stay or paying to breed? Field evidence for direct benefits of helping behavior in a cooperatively breeding fish. Behav Ecol 9: 432-438. 296. Martinez M, Guderley H, Dutil JD, Winger PD, He P, et al. (2003) Condition, prolonged swimming performance and muscle metabolic capacities of cod Gadus morhua. J Exp Biol 206: 503-511. 297. Bonisławska M, Formicki K, Korzelecka-Orkisz A, Winnicki A (2001) Fish egg size variability: biological significance. Electron J Polish Agri Uni 4. 298. Ahnesjö I (1992) Fewer newborn result in superior juveniles in the paternally brooding pipefish (Syngnathus typhle L). J Fish Biol 41: 53-63. 299. Einum S, Fleming IA (1999) Maternal effects of egg size in brown trout (Salmo trutta): norms of reaction to environmental quality. P Roy Soc B-Biol Sci 266: 2095-2100. 300. Einum S, Fleming IA (2002) Does within-population variation in fish egg size reflect maternal influences on optimal values? Am Nat 160: 756-765. 174 | P a g e 301. Kolm N, Ahnesjö I (2005) Do egg size and parental care coevolve in fishes? J Fish Biol 66: 1499-1515. 302. Hale RE, St. Mary CM, Lindström K (2003) Parental responses to changes in costs and benefits along an environmental gradient. Environ Biol Fish 67: 107-116. 303. Lissaker M, Kvarnemo C, Svensson O (2003) Effects of a low oxygen environment on parental effort and filial cannibalism in the male sand goby, Pomatoschistus minutus. Behav Ecol 14: 374-381. 304. Shine R (1978) Propagule size and parental care: the "safe harbor" hypothesis. J Theoret Biol 75: 417-424. 305. DeWoody JA, Fletcher DE, Wilkins SD, Nelson WS, Avise JC (2000) Genetic monogamy and biparental care in an externally fertilizing fish, the largemouth bass (Micropterus salmoides). P Roy Soc B-Biol Sci 267: 2431-2437. 306. Aeschlimann PB, Haberli MA, Reusch TBH, Boehm T, Milinski M (2003) Female sticklebacks Gasterosteus aculeatus use self-reference to optimize MHC allele number during mate selection. Behav Ecol Sociobiol 54: 119-126. 307. Albert AY (2005) Mate choice, sexual imprinting, and speciation: a test of a oneallele isolating mechanism in sympatric sticklebacks. Evolution 59: 927-931. 308. Aspbury AS, Gabor CR (2004) Differential sperm priming by male sailfin mollies (Poecilia latipinna): Effects of female and male size. Ethology 110: 193-202. 309. Head ML, Hunt J, Jennions MD, Brooks R (2005) The indirect benefits of mating with attractive males outweigh the direct costs. Plos Biol 3: 289-294. 310. Howard RS, Lively CM (2004) Good vs complementary genes for parasite resistance and the evolution of mate choice. BMC Evolution Biol 4. 311. Jordan WC, Bruford MW (1998) New perspectives on mate choice and the MHC. Heredity 81: 239-245. 312. Schutz D, Taborsky M (2000) Giant males or dwarf females: what determines the extreme sexual size dimorphism in Lamprologus callipterus? J Fish Biol 57: 1254-1265. 313. Rajakaruna RS, Brown JA, Kaukinen KH, Miller KM (2006) Major histocompatibility complex and kin discrimination in Atlantic salmon and brook trout. Mol Ecol 15: 4569-4575. 314. Sommer S (2005) Major histocompatibility complex and mate choice in a monogamous rodent. Behav Ecol Sociobiol 58: 181-189. 315. Sato A, Satta Y, Figueroa F, Mayer WE, Zaleska-Rutczynska Z, et al. (2002) Persistence of MHC heterozygosity in homozygous clonal Killifish, Rivulus marmoratus: implications for the origin of hermaphroditism. Genetics 162: 17911803. 316. Lim MM, Wang Z, Olazabal DE, Ren X, Terwilliger EF, et al. (2004) Enhanced partner preference in a promiscuous species by manipulating the expression of a single gene. Nature 429: 754-757. 317. Smeltzer MD, Thomas Curtis J, Aragona BJ, Wang ZX (2006) Dopamine, oxytocin, and vasopressin receptor binding in the medial prefrontal cortex of monogamous and promiscuous voles Neurosci Letters 394: 146-151. 175 | P a g e 318. Cherkas LF, Oelsner EC, Mak YT, Valdes A, Spector TD (2004) Genetic Influences on Female Infidelity and Number of Sexual Partners in Humans: A Linkage and Association Study of the Role of the Vasopressin Receptor Gene (AVPR1A). Twin Res Hum Genet 7: 649-658. 319. Manica A (2002) Filial cannibalism in teleost fish. Biol Rev 77: 261-277. 320. Mank JE, Promislow DEL, Avise JC (2005) Phylogenetic perspectives in the evolution of parental care in ray-finned fishes. Evolution 59: 1570-1578. 321. Reynolds JD, Goodwin NB, Freckleton RP (2002) Evolutionary transitions in parental care and live bearing in vertebrates. Philos T Roy Soc B 357: 269-281. 322. Volff JN (2004) Genome evolution and biodiversity in teleost fish. Heredity 94: 280-294. 323. Yue GH, Li Y, Chen F, Cho S, Lim LC, et al. (2002) Comparison of three DNA marker systems for assessing genetic diversity in Asian arowana (Scleropages formosus). Electrophoresis 23: 1025-1032. 324. Chistiakov DA, Tsigenopoulos CS, Lagnel J, Guo YM, Hellemans B, et al. (2008) A combined AFLP and microsatellite linkage map and pilot comparative genomic analysis of European sea bass Dicentrarchus labrax L. Anim Genet 39: 623-634. 325. Sakamoto T, Danzmann RG, Gharbi K, Howard P, Ozaki A, et al. (2000) A microsatellite linkage map of rainbow trout (Oncorhynchus mykiss) characterized by large sex-specific differences in recombination rates. Genetics 155: 1331-1345. 326. Lin QF (2009) Molecular analysis of osteoglossid teleosts. Singapore: National University of Singapore. 327. Taylor JS, Van de Peer Y, Meyer A (2001) Genome duplication, divergent resolution and speciation. Trends Genet 17: 299-301. 328. Powell W, Morgante M, Andre C, Hanafey M, Vogel J, et al. (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2: 225-238. 176 | P a g e SUPPLEMENTARY TABLES Supplementary table 1: Master list of QH ponds and its involvement in the different experimentation. WH001 WH002 WH003 WH004 WH005 WH006 10 11 12 13 14 15 16 17 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Legend : 10 11 12 13 14 15 16 17 Observation of mating Offspring survival between colour strains Breeding frequency following rainfall Embryonic and larval development External morphometric study showing differences between two sexes Internal morphometry of buccal cavity transformation in mouthbrooding males Hormonal measurements from mucus Identification of the sex of the mouthbrooding parent in the MG Genotyping study on relationships in the ponds Change in breeding pattern after loss of a male Inbreeding or incompatibility avoidance study Egg thievery Differentiation of the colour strains using microsatellite-based genotypes Differentiatation of two commercially important colour strains using FluoMEP Microsatellite-based phylogenetic tree of the colour variants Differentiation of colour trains using Bayesian clustering analysis Pairwise comparison of the FST value study 177 | P a g e Supplementary table 2: PAPA results from WH002 family. RESULTS Collected parents file:D:\New Folder\PAPA results\WH002\WH002 adult D0438429210811531104105106109115119.txt Offspring file:D:\New Folder\PAPA results\WH002\ospring p1 D0438429210811531104105106109115119.txt Global level of transmission error:0 Distribution of transmission error:0 Names of loci file: D:\New Folder\PAPA results\WH002\name of loci D0438429210811531104105106109115119.txt Choice of loci: D04 D42 D92 D108 D115 D31 D104 D105 D106 D109 D116 D119 Offspring DZ1 165199 000000 147165 148162 223231 204212 229233 234234 242242 209233 204214 113113 155181 Parents D2 165199 000000 147165 164148 223239 204212 229233 234240 242242 209209 206214 107113 189181 D3 199203 000000 147165 162164 223231 204212 233229 232234 242242 199233 204214 107113 155189 ************************************* Offspring DZ2 199203 000000 165165 164164 223231 204212 229233 234234 242242 209233 214214 107107 189189 Parents D2 165199 000000 147165 164148 223239 204212 229233 234240 242242 209209 206214 107113 189181 D3 199203 000000 147165 162164 223231 204212 233229 232234 242242 199233 204214 107113 155189 ************************************* Offspring DZ3 199199 000000 147165 164164 223223 204212 229233 000000 242242 199209 214214 113113 000000 Parents D1 199203 000000 147165 162164 223231 212212 229233 232240 242242 209199 204214 107113 155189 D2 165199 000000 147165 164148 223239 204212 229233 234240 242242 209209 206214 107113 189181 Parents D2 165199 000000 147165 164148 223239 204212 229233 234240 242242 209209 206214 107113 189181 D3 199203 000000 147165 162164 223231 204212 233229 232234 242242 199233 204214 107113 155189 178 | P a g e ************************************* Offspring DZ10 199203 000000 147147 162164 223239 212212 229229 234234 242242 209199 206214 107113 155189 Parents C8 199203 000000 147147 148164 239245 212204 229233 234240 242242 209199 206212 113115 181189 D3 199203 000000 147165 162164 223231 204212 233229 232234 242242 199233 204214 107113 155189 Parents D2 165199 000000 147165 164148 223239 204212 229233 234240 242242 209209 206214 107113 189181 D3 199203 000000 147165 162164 223231 204212 233229 232234 242242 199233 204214 107113 155189 ************************************* Offspring EA1 199199 000000 147165 148164 223223 204212 233233 232240 242242 209199 000000 107113 000000 Parents C7 199203 000000 147165 148164 223239 212204 233229 232234 242242 209199 204212 107113 189181 D2 165199 000000 147165 164148 223239 204212 229233 234240 242242 209209 206214 107113 189181 ************************************* Offspring EA2 165203 000000 147147 148164 223239 212212 233233 000000 242242 199209 214214 113113 155155 Parents D1 199203 000000 147165 162164 223231 212212 229233 232240 242242 209199 204214 107113 155189 E4 199165 000000 147165 148148 239245 212212 233229 240234 242242 209199 204214 113115 155189 ************************************* Offspring EA3 165199 000000 147147 148164 223239 212212 229229 234234 242242 209233 214214 107113 189189 Parents D2 165199 000000 147165 164148 223239 204212 229233 234240 242242 209209 206214 107113 189181 D3 199203 000000 147165 162164 223231 204212 233229 232234 242242 199233 204214 107113 155189 Parents D3 199203 000000 147165 162164 223231 204212 233229 232234 242242 199233 204214 107113 155189 179 | P a g e E4 199165 000000 147165 148148 239245 212212 233229 240234 242242 209199 204214 113115 155189 ************************************* Offspring EA4 199199 000000 147165 164164 231239 212212 229229 232240 242242 209199 214214 107113 155181 Parents D1 199203 000000 147165 162164 223231 212212 229233 232240 242242 209199 204214 107113 155189 D2 165199 000000 147165 164148 223239 204212 229233 234240 242242 209209 206214 107113 189181 ************************************* Offspring CB1 199199 000000 147165 164164 223245 212212 229233 234240 242242 209233 212212 113115 189189 Parents D5 199165 000000 147165 162164 223239 204212 229233 232240 242242 209233 204212 113115 155189 D6 199203 000000 147165 162164 231245 212212 229233 234234 242242 233199 204212 107113 181189 ************************************* Offspring CB2 165199 000000 147147 162164 231239 212212 229233 232234 242242 209233 204212 113113 189181 Parents D5 199165 000000 147165 162164 223239 204212 229233 232240 242242 209233 204212 113115 155189 D6 199203 000000 147165 162164 231245 212212 229233 234234 242242 233199 204212 107113 181189 ************************************* Offspring CB3 165203 000000 147165 162162 231239 212212 233233 234240 242242 233233 204212 113113 189189 Parents D5 199165 000000 147165 162164 223239 204212 229233 232240 242242 209233 204212 113115 155189 D6 199203 000000 147165 162164 231245 212212 229233 234234 242242 233199 204212 107113 181189 ************************************* 180 | P a g e Supplementary table 3: The batch of offsprings were collected from brooder A7 but the genotyped results of 12 microsatellite marker showed that A7 was not one of the genetic parent. The table below showed the results of additional microsatellite markers used, which still showed that the genetic parents were A1 and A2. RESULTS Collected parents file:D:\New Folder\PAPA results\WH001\WH001_parents.txt Offspring file:D:\New Folder\PAPA results\WH001\WH001_offspring_p1.txt Global level of transmission error:0 Distribution of transmission error:0 Names of loci file: D:\New Folder\PAPA results\WH001\name of loci.txt Choice of loci: D04 D38 D42 D106 D108 D109 Offspring DE1 203209 189199 163175 195213 000000 214238 Parents A1 209215 197199 165175 203213 245253 214238 A2 193203 189197 163171 195207 225241 208214 ************************************* Offspring DE2 193209 189199 000000 195213 000000 214214 Parents A1 209215 197199 165175 203213 245253 214238 B8 193203 189197 171177 195207 225241 214214 ************************************* Offspring DE3 203209 197199 163175 195213 000000 208214 Parents 181 | P a g e A1 209215 197199 165175 203213 245253 214238 A2 193203 189197 163171 195207 225241 208214 ************************************* Offspring DE4 203215 189197 163165 195203 000000 214238 Parents A1 209215 197199 165175 203213 245253 214238 A2 193203 189197 163171 195207 225241 208214 ************************************* Offspring DE5 203215 197197 163165 000000 000000 208238 Parents A1 209215 197199 165175 203213 245253 214238 A2 193203 189197 163171 195207 225241 208214 ************************************ Offspring DE6 193209 000000 163165 195203 241245 208238 Parents A1 209215 197199 165175 203213 245253 214238 A2 193203 189197 163171 195207 225241 208214 ************************************* Offspring DE7 000000 000000 163163 207213 000000 000000 Parents none ************************************* Offspring DE8 203215 189199 163165 195213 241253 214214 Parents 182 | P a g e A1 209215 197199 165175 203213 245253 214238 A2 193203 189197 163171 195207 225241 208214 ************************************* Offspring DE9 193215 189199 000000 195213 225255 214238 Parents none ************************************* Offspring DE10 193215 197197 163175 203207 225253 208238 Parents A1 209215 197199 165175 203213 245253 214238 A2 193203 189197 163171 195207 225241 208214 ************************************* Offspring DF1 203209 189197 171175 195203 000000 208214 Parents A1 209215 197199 165175 203213 245253 214238 A2 193203 189197 163171 195207 225241 208214 ************************************* Offspring DF2 000000 000000 171175 000000 000000 208238 Parents A1 203215 183201 171171 195207 219241 208210 A1 209215 197199 165175 203213 245253 214238 ************************************* Offspring DF3 203209 000000 000000 203207 000000 208214 Parents 183 | P a g e A1 209215 197199 165175 203213 245253 214238 C3 193203 195197 177187 203207 215217 208208 ************************************* Offspring DF4 203209 189197 171175 195203 225245 208238 Parents A1 209215 197199 165175 203213 245253 214238 A2 193203 189197 163171 195207 225241 208214 ************************************* 184 | P a g e [...]... versus the ave k value amongst the brooders, we assume that if the k value of the thief/genetic parents is higher than the ave k, then there is a possibility of kinselection occurring in the pond where kins are helping each other in parental care The grey bar indicates the k value of the thief with the genetic father where the white 18 | P a g e bar refers to the k value of the thief with the genetic mother... work will enhance the understanding of the evolution of the breeding biology of teleost, and provide a genetic glimpse into the biology of ancient teleosts using molecular tools 32 | P a g e Figure 3: The architecture of the Asian arowana s buccal cavity and the tongue bite apparatus (TBA) TBA is thought to be a derived feature of the Osteoglossomorpha used for anchoring the prey to the buccal cavity... pairs of brooders available in the pond and calculates the ratio of the primary hypothesis that they are related (full-sibs or half-sibs) to the null hypothesis that they are unrelated k refers to the kinship coefficient where higher k value indicates higher chances of the pair being kin of each other (relatedness), where k of 1 indicates full siblings while 0 shows no relation We compared the k of the. .. http://www.youtube.com/watch?v=5ltmk6oHXg8 83 Figure 12: The breeding cycle of the Asian arowana in the farm The graph shows the total production in terms of number of batches(dotted line)and number of offspring (solid line) for the three experimental ponds in relation to the rainfall (bar) data from January 2003 to November 2006 87 Figure 13: The development of Asian arowana embryos, larvae and juveniles Panels:... direct observations of the temporal and spatial scope of the arowana breeding activities is almost impossible in the dense pond water There is no documentation of artificial fertilization of this species, probably due to the large eggs and low fecundity and lack of available specimens Such lack of basic biological information of the Asian arowana creates a bottleneck for the study of its phylogeny, behaviour,... represent breeding connections that were determined by microsatellite genotyping Each circle (○) on the line represents one breeding event that occurred between the two brooders, whereas the number beside the circle represents the number of offspring that was collected from the mouthbrooding 16 | P a g e individual The column on the left indicates the date of the collection of the offspring from the buccal... Teeth on the medial edge of entopterygoid; B) Basihyal/basibranchial toothplate 1.3 The Asian arowana has at least six main colour strains One interesting and distinct difference between the Asian arowana and its related species in the family Osteoglossidae is the presence of naturally occurring colour strains in the former Unlike the rest of the family that only have one colour form, the Asian arowana. .. similar to the MG, the only distinct difference is the distribution of the iridiophores on the scales of the fish (compare Fig 7G and 7H), the IG only has “golden” scales up to the fourth rows of scales (from bottom up), whereas the MG has the golden scales “crossing” 34 | P a g e over the dorsal side of the fish, thus, it is also known as the crossback golden (compare Fig 5D and 5C) Figure 4: The colour... presence of large tooth plates on the tongue (basihyal) and basibranchials that bite against the roof of the mouth cavity or the parasphenoid [14] (Fig 3) Asian arowana is the top predator in its natural habitat and thus, probably plays an important role in its ecosystem Asian arowanas possess a fascinating collection of interesting characters that are important for the study of breeding biology, mating... 230 Asian arowana brooders 103 Table 9: Average FST values of the different colour varieties of Asian arowana and two Australian arowana species 122 Table 10: The fecundity of some females from WH001 130 11 | P a g e List of Figures Figure 1: The phylogenetic analysis of the Osteoglossids and other teleosts by using concatenated mitochondrial protein-coding genes The data . Molecular Analysis of the Breeding Biology of the Asian Arowana (Scleropages formosus) by Chang Kuok Weai Alex Thesis submitted in partial fulfillment of the requirements for the. Figure 12: The breeding cycle of the Asian arowana in the farm. The graph shows the total production in terms of number of batches(dotted line)and number of offspring (solid line) for the three. 4.3 The advantages of being able to sex the adult Asian arowanas 132 4.4 The change in the breeding relationships in a pond after the death of a highly productive male indicates the presence of

Ngày đăng: 14/09/2015, 08:49

TỪ KHÓA LIÊN QUAN