1. Trang chủ
  2. » Giáo Dục - Đào Tạo

The function of TOM1 l1 in bridging EGFR signaling and endocytosis

166 295 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 166
Dung lượng 2,64 MB

Nội dung

THE FUNCTION OF TOM1-L1 IN BRIDGING EGFR SIGNALING AND ENDOCYTOSIS LIU NINGSHENG INSTITUTE OF MOLECULAR AND CELL BIOLOGY NATIONAL UNIVERSITY OF SINGAPORE 2007 THE FUNCTION OF TOM1-L1 IN BRIDGING EGFR SIGNALING AND ENDOCYTOSIS LIU NINGSHENG (M.Med. Southeast Univ.) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY INSTITUTE OF MOLECULAR AND CELL BIOLOGY NATIONAL UNIVERSITY OF SINGAPORE 2007 Acknowledgements I would like to express my gratitude to all those who gave me the possibility to complete this thesis. My foremost thank goes to my supervisor: Prof. Hong Wanjin, for his patience and encouragement that carried me on through difficult times, and for his insights and suggestions that helped to shape my research skills. His valuable feedback contributed greatly to this dissertation. My committee members: Assoc. Prof. Cai Minjie and Assoc. Prof. Hunziker Walter, for their stimulating discussion and critique during my annual committee meeting. Their valuable feedback helped me to improve the dissertation in many ways. My past and present lab members: Dr. Seet Li Fong who introduced and helped me to start my graduate student life in Molecular and Cell Biology Science by teaching me molecular, cell biological and biochemical techniques without reservations. Her visionary thoughts and energetic working style have influenced me greatly as a biology scientist. Dr. Seet Li Fong, Dr. Loh Eva, Dr. Lim Kah Pang, Dr. Tham Jill, Dr. Lu Lei and Miss Ong Yan Shan for critical and careful reading of this thesis. Miss Ong Yan Shan for collaboration in High-Performance Liquid Chromatography (HPLC) in Figure 3.1. Dr. Tham Jill, Dr. Chan Siew Wee, Dr. Loh Eva, Miss Ong i Yan Shan, Miss Tran Thi Ton Hoai, Dr. Wang Tuanlao and Mr. Li Hongyu for sharing critical reagents for this study. I thank all the students and staffs in IMCB who gave me the possibility to complete this thesis. My appreciation also goes to the DNA sequencing and protein mass-spectrum unit of IMCB for their excellent services. Last but not least, I thank my grandparents, and my parents for always being there when I needed them most, and for supporting me through all these years. Liu Ningsheng 2007 ii Table of Contents Summary List of Tables List of Figures Abbreviations Chapter Introduction 1.1. Epidermal Growth Factor Receptor (EGFR) 1.1.1 EGFR Structure 1.1.2 Dimerization and Activation 1.1.3 Shc, Grb2 and the Ras/MAPK Pathway 1.1.3.1 Grb2 (Growth Factor Receptor-bound Protein 2) 1.1.3.2 The Src Family Kinase (SFK) 1.2. Endocytosis 1.2.1 The Classical Clathrin-dependent Endocytic Pathway 1.2.2 The Non-classical Clathrin-independent Endocytosis Pathway 1.2.3 EGFR and Lipid Raft 1.2.4 EGFR Sorting and Clathrin-dependent Endocytosis 1.2.5 EGFR Signaling during Trafficking 1.2.6 Ubiquitination and MVB Generation 1.3. TOM1 (Target of the Oncogene v-Myb 1) Family 1.4. Rational of this work Chapter Materials and Methods iii 2.1 cDNA Cloning and Sequencing 2.2 Plasmid Constructs 2.2.1 HA-TOM1-L1, HA-TOM1-L1 Y460F and GFP-TOM1-L1 2.2.2 HA-TOM1-L1 SH3, HA-TOM1-L1 Y392F and HA-TOM1-L1 Y460F & SH3 2.2.3 HA-TOM1-L1-PX and HA-TOM1-L1-PX FDPL450AAAA 2.2.4 GST-TOM1-L1 286-476 and other GST Deletion Constructs (316-476, 360-476, 384-476, 420-476,286-446,286-449,286-440) 2.2.5 GST-TOM1-L1 286-476 LPPL424AAAA, GST-TOM1-L1 286-476 HPAM431 AAAA, GST-TOM1-L1 286-476 DLQP438AAAA and GST-TOM1-L1 286-476 FDPL450AAAA 2.2.6 TOM1, m-TOM1-L1, m-TOM1-L1 Y392F, m-TOM1-L1 Y457F, m-TOM1-L1 DLQP437AAAA and m-TOM1-L1 FDLP449AAAA 2.3 Purification of GST-fusion Proteins 2.4 Immunization of Rabbits and Affinity Purification of Antibodies 2.5 Antibodies 2.6 Cell Culture 2.7 Transient and Stable Expression 2.8 Retroviral Infection 2.9 siRNA knockdown 2.10 EGF, PDGF-bb, or FGF2 Stimulation 2.11 EGF internalisation 2.12 Immunoprecipitation and Western Blot 2.13 Indirect Immunoflurescence Microscopy 2.14 Cytosol Extract iv 2.15 Gel Fractionating 2.16 Clathrin-Binding Assay 2.17 Cell Surface Biotinylation and Stripping 2.18 Biochemical Subcellular Fractionation 2.19 Ras Activation Assay 2.20 Soft Agar Assay for Colony Formation Chapter Characterization of Endogenous TOM1-L1 Complex and TOM1-L1 Antibodies 3.1 Endogenous TOM1-L1 is in a ~300 kDa Complex at A431 Cells. 3.2 Specific of anti-TOM1-L1 and anti-p-TOM1-L1. Chapter TOM1-L1 is Tyrosine Phosphorylated by EGF, PDGF, and FGF via a Src/Fyn-dependent Pathway 4.1 Tyrosine Phosphorylation of TOM1-L1 by Fyn Mediates its Association with Grb2 and PI3K-p85 4.2 Tyrosine Phosphorylation of TOM1-L1 by Src at the Putative SH2 Binding Site. 4.3 TOM1-L1 is Tyrosine Phosphorylated by EGF via a Src-Dependent Pathway and Important for Interaction with Grb2. 4.4 TOM1-L1 is also Tyrosine Phosphorylated by PDGF and FGF via a Src-Dependent Pathway. Chapter TOM1-L1 Mediates the Endocytosis of EGFR 5.1 EGF-Stimulated Tyr-Phosphorylation of TOM1-L1 is Transient and Correlates with its Transient Interaction with EGFR. 5.2 Endogenous Localisation of TOM1-L1. 5.3 Temporal Correlation between the Association of TOM1-L1 with Cellular Membranes and EGF Stimulation of A431 Cells. 5.4 TOM1-L1 is Recruited to EGF Receptor-containing Early Endosomes in response to v EGF. 5.5 Mutant Forms of TOM1-L1 Defective in Tyr-Phosphorylation or Interaction with Grb2 Inhibit Endocytosis of EGFR. 5.6 siRNA-Mediated Knockdown of TOM1-L1 Inhibits Endocytosis of EGFR. Chapter The C-Terminal Tail of Tom1L1 Harbors a Novel Clathrin- Interacting Motif Important for Mediating EGFR Endocytosis 6.1 The C-terminal Tail of TOM1-L1 Harbors a Novel Clathrin-interacting Motif. 6.2 TOM1-L1’s Clathrin Binding Motif is Important for its Role in Mediating EGFR Endocytosis. 6.3 Effect of Depletion of AP2, Clathrin, Cbl, Grb2 or TOM1-L1 on EGFR and TfnR Endocytosis. Chapter TOM1-L1 Interacts with Ubiquitin, Hrs and STAM, and Mediates Degradation of EGFR 7.1 TOM1 Family Proteins Interact with ubiquitin. 7.2 TOM1-L1 Interacts with Hrs, STAM. 7.3 Hrs Recruits TOM1-L1 to Endosomes. 7.4 Knockdown of both TOM1-L1 and Hrs further Delays EGFR degradation. Chapter TOM1-L1 is a Negative Regulator in Src Kinase Signaling 8.1 TOM1-L1 Inhibits the Activation of Ras upon EGF Stimulation. 8.2 TOM1-L1 Inhibits the Colony Formation in A431 Cells. Chapter Discussion Chapter 10 Conclusion and future perspectives References vi SUMMARY The molecular mechanism governing ligand-stimulated endocytosis of receptor tyrosine kinases remains elusive. I show here that EGF stimulates transient tyrosine-phosphorylation of TOM1-L1(TOM-Like 1) by the Src family kinases, resulting in its transient interaction with the activated EGF (Epidermal Gowth Factor) receptor (EGFR) bridged by the receptor-bound Grb2 (Growth Factor Receptor-Bound protein 2). Cytosolic TOM1-L1 is recruited onto the plasma membrane and subsequently redistributes with EGFR into the early endosome. Mutant forms of TOM1-L1 defective in tyrosine-phosphorylation or interaction with Grb2 is incapable of interaction with EGFR and inhibits endocytosis of EGFR. In addition, siRNA (small interference RNA)-mediated knockdown of TOM1-L1 inhibits endocytosis of EGFR. The C-terminal tail of TOM1-L1 contains a novel clathrin-interacting motif, which is important for exogenous TOM1-L1 to rescue endocytosis of EGFR in TOM1-L1 knocked-down cells. These results suggest that EGF triggers a transient association of EGFR with TOM1-L1 to engage the endocytic machinery for endocytosis of the ligand-receptor complex. Moreover, TOM1-L1 interacts with ubiquitin and ESCRT (Endosomal Sorting Complex Required for Transport) family proteins, such as: Hrs (Hepatocyte growth factor Receptor tyrosine kinase Substrate), TSG101 (Tumor Susceptibility Gene 101), STAM1/2 (Signal Transuding Adaptor Molecule 1/2), and it is recruited to endosome upon over-expression HA-Hrs. These results suggest that TOM1-L1 could participate in the machinery for EGFR sorting and degradation. In addition, TOM1-L1 negatively vii regulates Ras activation upon EGF stimulation and A431 colony formation, which indicate that it may play a negative role in Src kinase signaling. viii Kranenburg O, Verlaan I, Moolenaar WH. 1999. Dynamin is required for the activation of mitogen-activated protein (MAP) kinase by MAP kinase kinase. J Biol Chem. 274:35301-4. Kranz A, Kinner A, Kölling R. 2001. A family of small coiled-coil-forming proteins functioning at the late endosome in yeast. Mol Biol Cell. 12:711-23. Kurzchalia TV, Parton RG. 1999. Membrane microdomains and caveolae. Curr Opin Cell Biol. 11:424-31. Kypta RM, Goldberg Y, Ulug ET, Courtneidge SA. 1990. Association between the PDGF receptor and members of the src family of tyrosine kinases. Cell. 62:481-92. Kyuuma M, Kikuchi K, Kojima K, Sugawara Y, Sato M, Mano N, Goto J, Takeshita T, Yamamoto A, Sugamura K, Tanaka N. 2007. AMSH, an ESCRT-III associated enzyme, deubiquitinates cargo on MVB/late endosomes. Cell Struct Funct. 31:159-72. Jiang X, Huang F, Marusyk A, Sorkin A. 2003. Grb2 regulates internalization of EGF receptors through clathrin-coated pits. Mol Biol Cell. 14:858-70. Lakadamyali M, Rust MJ, Zhuang X. 2006. Ligands for clathrin-mediated endocytosis are differentially sorted into distinct populations of early endosomes. Cell. 124:997-1009. Lamaze C, Dujeancourt A, Baba T, Lo CG, Benmerah A, Dautry-Varsat A. 2001. Interleukin receptors and detergent-resistant membrane domains define a clathrin-independent endocytic pathway. Mol Cell. 7:661-71. Langelier C, von Schwedler UK, Fisher RD, De Domenico I, White PL, Hill CP, Kaplan J, Ward D, Sundquist WI. 2006. Human ESCRT-II complex and its role in human immunodeficiency virus type release. J Virol. 80:9465-80. Legendre-Guillemin V, Wasiak S, Hussain NK, Angers A, McPherson PS. 2004. ENTH/ANTH proteins and clathrin-mediated membrane budding. J Cell Sci. 117:9-18. Le PU, Nabi IR. 2003. Distinct caveolae-mediated endocytic pathways target the Golgi apparatus and the endoplasmic reticulum. J Cell Sci. 116:1059-71. Le Roy C, Wrana JL. 2005. Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling. Nat Rev Mol Cell Biol. 6:112-26. Li W, Marshall C, Mei L, Dzubow L, Schmults C, Dans M, Seykora J. 2005. Srcasm modulates EGF and Src-kinase signaling in keratinocytes. J Biol Chem. 280:6036-46. 133 Li W, Marshall C, Mei L, Gelfand J, Seykora JT. 2007. Srcasm corrects Fyn-induced epidermal hyperplasia by kinase down-regulation. J Biol Chem. 282:1161-9. Linggi B, Carpenter G. 2006. ErbB receptors: new insights on mechanisms and biology. Trends Cell Biol. 16:649-56. Lo HW, Ali-Seyed M, Wu Y, Bartholomeusz G, Hsu SC, Hung MC. 2006a. Nuclear-cytoplasmic transport of EGFR involves receptor endocytosis, importin beta1 and CRM1. J Cell Biochem. 98:1570-83. Lo HW, Hung MC. 2006. Nuclear EGFR signalling network in cancers: linking EGFR pathway to cell cycle progression, nitric oxide pathway and patient survival. Br J Cancer. 94:184-8. Lohi O, Poussu A, Meriläinen J, Kellokumpu S, Wasenius VM, Lehto VP.1998. EAST, an epidermal growth factor receptor- and Eps15-associated protein with Src homology and tyrosine-based activation motif domains. J Biol Chem. 273:21408-15. Lohi O, Poussu A, Mao Y, Quiocho F, Lehto VP. 2002. VHS domain -- a longshoreman of vesicle lines. FEBS Lett. 513:19-23. Losko S, Kopp F, Kranz A, Kölling R. 2001. Uptake of the ATP-binding cassette (ABC) transporter Ste6 into the yeast vacuole is blocked in the doa4 Mutant. Mol Biol Cell. 12:1047-59. Lowenstein EJ, Daly RJ, Batzer AG, Li W, Margolis B, Lammers R, Ullrich A, Skolnik EY, Bar-Sagi D, Schlessinger J. 1992. The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling. Cell. 70:431-42. Luttrell DK, Luttrell LM, Parsons SJ. 1988. Augmented mitogenic responsiveness to epidermal growth factor in murine fibroblasts that overexpress pp60c-src. Mol Cell Biol.8:497-501. Luttrell LM, Lefkowitz RJ. 2002. The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. J Cell Sci. 115:455-65. Ma YC, Huang XY.1998. Identification of the binding site for Gqalpha on its effector Bruton's tyrosine kinase. Proc Natl Acad Sci U S A. 95:12197-201. Maa MC, Leu TH, McCarley DJ, Schatzman RC, Parsons SJ.1995. Potentiation of epidermal growth factor receptor-mediated oncogenesis by c-Src: implications for the etiology of multiple human cancers. Proc Natl Acad Sci U S A. 92:6981-5. 134 Malden LT, Novak U, Kaye AH, Burgess AW.1998. Selective amplification of the cytoplasmic domain of the epidermal growth factor receptor gene in glioblastoma multiforme. Cancer Res. 48:2711-4. Maldonado-Báez L, Wendland B. 2006. Endocytic adaptors: recruiters, coordinators and regulators. Trends Cell Biol. 16:505-13. Mao W, Irby R, Coppola D, Fu L, Wloch M, Turner J, Yu H, Garcia R, Jove R, Yeatman TJ.1997. Activation of c-Src by receptor tyrosine kinases in human colon cancer cells with high metastatic potential. Oncogene. 15:3083-90. Marchese A, Benovic JL.2001. Agonist-promoted ubiquitination of the G protein-coupled receptor CXCR4 mediates lysosomal sorting. J Biol Chem. 276:45509-12. Marmor MD, Yarden Y. 2004. Role of protein ubiquitylation in regulating endocytosis of receptor tyrosine kinases. Oncogene. 23:2057-70. Martin GS. 2001. The hunting of the Src. Nat Rev Mol Cell Biol. 2:467-75. Martin-Serrano J, Yarovoy A, Perez-Caballero D, Bieniasz PD. 2003. Divergent retroviral late-budding domains recruit vacuolar protein sorting factors by using alternative adaptor proteins. Proc Natl Acad Sci U S A. 100:12414-9. McCullough J, Clague MJ, Urbé S. 2004. AMSH is an endosome-associated ubiquitin isopeptidase. J Cell Biol. 166:487-92. McCullough J, Row PE, Lorenzo O, Doherty M, Beynon R, Clague MJ, Urbé S. 2006. Activation of the endosome-associated ubiquitin isopeptidase AMSH by STAM, a component of the multivesicular body-sorting machinery. Curr Biol. 16:160-5. Meisner H, Czech MP. 1995. Coupling of the proto-oncogene product c-Cbl to the epidermal growth factor receptor. J Biol Chem. 270:25332-5. Meyerholz A, Hinrichsen L, Groos S, Esk PC, Brandes G, Ungewickell EJ. 2005. Effect of clathrin assembly lymphoid myeloid leukemia protein depletion on clathrin coat formation. Traffic. 6:1225-34. Miaczynska M, Pelkmans L, Zerial M. 2004b. Not just a sink: endosomes in control of signal transduction. Curr Opin Cell Biol. 16:400-6. Michael J. Clague and Sylvie Urbé (2006). Endocytosis: the DUB version. Trends Cell Biol. 16, 551-519. 135 Miele AE, Watson PJ, Evans PR, Traub LM, Owen DJ. 2004. Two distinct interaction motifs in amphiphysin bind two independent sites on the clathrin terminal domain beta-propeller. Nat Struct Mol Biol. 11:242-8. Migliaccio A, Di Domenico M, Castoria G, de Falco A, Bontempo P, Nola E, Auricchio F. 1996. Tyrosine kinase/p21ras/MAP-kinase pathway activation by estradiol-receptor complex in MCF-7 cells. EMBO J. 15:1292-300. Mineo C, Gill GN, Anderson RG. 1999. Regulated migration of epidermal growth factor receptor from caveolae. J Biol Chem. 274:30636-43. Mizuno E, Kawahata K, Kato M, Kitamura N, Komada M. 2003. STAM proteins bind ubiquitinated proteins on the early endosome via the VHS domain and ubiquitin-interacting motif. Mol Biol Cell. 14:3675-89. Mizuno E, Kobayashi K, Yamamoto A, Kitamura N, Komada M. 2006. A deubiquitinating enzyme UBPY regulates the level of protein ubiquitination on endosomes. Traffic. 7:1017-31. Mohney RP, Das M, Bivona TG, Hanes R, Adams AG, Philips MR, O'Bryan JP. 2003. Intersectin activates Ras but stimulates transcription through an independent pathway involving JNK. J Biol Chem. 278:47038-45. Moriki T, Maruyama H, Maruyama IN.2001. Activation of preformed EGF receptor dimers by ligand-induced rotation of the transmembrane domain. J Mol Biol. 311:1011-26. Moro L, Dolce L, Cabodi S, Bergatto E, Boeri Erba E, Smeriglio M, Turco E, Retta SF, Giuffrida MG, Venturino M, Godovac-Zimmermann J, Conti A, Schaefer E, Beguinot L, Tacchetti C, Gaggini P, Silengo L, Tarone G, Defilippi P. 2002. Integrin-induced epidermal growth factor (EGF) receptor activation requires c-Src and p130Cas and leads to phosphorylation of specific EGF receptor tyrosines. J Biol Chem. 277:9405-14. Mosesson Y, Shtiegman K, Katz M, Zwang Y, Vereb G, Szollosi J, Yarden Y.2003. Endocytosis of receptor tyrosine kinases is driven by monoubiquitylation, not polyubiquitylation. J Biol Chem. 278:21323-6. Motley A, Bright NA, Seaman MN, Robinson MS. 2003. Clathrin-mediated endocytosis in AP-2-depleted cells. J Cell Biol. 162:909-18. Mundy DI, Machleidt T, Ying YS, Anderson RG, Bloom GS. 2002. Dual control of caveolar membrane traffic by microtubules and the actin cytoskeleton. J Cell Sci. 115:4327-39. 136 Murk JL, Humbel BM, Ziese U, Griffith JM, Posthuma G, Slot JW, Koster AJ, Verkleij AJ, Geuze HJ, Kleijmeer MJ. 2003. Endosomal compartmentalization in three dimensions: implications for membrane fusion. Proc Natl Acad Sci U S A. 100:13332-7. Murphy RF. 1991. Maturation models for endosome and lysosome biogenesis. Trends Cell Biol. 1:77-82. Muthuswamy SK, Siegel PM, Dankort DL, Webster MA, Muller WJ.1994. Mammary tumors expressing the neu proto-oncogene possess elevated c-Src tyrosine kinase activity. Mol Cell Biol. 14:735-43. Muthuswamy SK, Muller WJ.1995. Direct and specific interaction of c-Src with Neu is involved in signaling by the epidermal growth factor receptor. Oncogene. 11:271-9. Nakayama K, Wakatsuki S.2003. The structure and function of GGAs, the traffic controllers at the TGN sorting crossroads. Cell Struct Funct. 28:431-42. Nesterov A, Carter RE, Sorkina T, Gill GN, Sorkin A. 1999. Inhibition of the receptor-binding function of clathrin adaptor protein AP-2 by dominant-negative mutant mu2 subunit and its effects on endocytosis. EMBO J. 18(9):2489-99. Nichols BJ, Kenworthy AK, Polishchuk RS, Lodge R, Roberts TH, Hirschberg K, Phair RD, Lippincott-Schwartz J. 2001. Rapid cycling of lipid raft markers between the cell surface and Golgi complex. J Cell Biol. 153:529-41. Nichols BJ. 2002. A distinct class of endosome mediates clathrin-independent endocytosis to the Golgi complex. Nat Cell Biol. 4:374-8. Nichols BJ. 2003a. Caveosomes and endocytosis of lipid rafts. J Cell Sci. 116:4707-14. Nichols BJ. 2003b. GM1-containing lipid rafts are depleted within clathrin-coated pits. Curr Biol. 13:686-90. Nickerson DP, West M, Odorizzi G. 2006. Did2 coordinates Vps4-mediated dissociation of ESCRT-III from endosomes. J Cell Biol. 175:715-20. Nielsen MS, Madsen P, Christensen EI, Nykjaer A, Gliemann J, Kasper D, Pohlmann R, Petersen CM.2001. The sortilin cytoplasmic tail conveys Golgi-endosome transport and binds the VHS domain of the GGA2 sorting protein. EMBO J. 20:2180-90. 137 Nijman SM, Luna-Vargas MP, Velds A, Brummelkamp TR, Dirac AM, Sixma TK, Bernards R. 2005. A genomic and functional inventory of deubiquitinating enzymes. Cell. 123:773-86. Nojima Y, Mimura T, Morino N, Hamasaki K, Furuya H, Sakai R, Nakamoto T, Yazaki Y, Hirai H.1996. Tyrosine phosphorylation of p130Cas in cell adhesion and transformation. Hum Cell. 9:169-74. Oestreich AJ, Davies BA, Payne JA, Katzmann DJ. 2007. Mvb12 is a novel member of ESCRT-I involved in cargo selection by the multivesicular body pathway. Mol Biol Cell. 18:646-57. Olayioye MA, Beuvink I, Horsch K, Daly JM, Hynes NE. 1999. ErbB receptor-induced activation of stat transcription factors is mediated by Src tyrosine kinases. J Biol Chem. 274:17209-18. Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M. 2006. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell. 127:635-48. Okamura H, Resh MD. 1994. Differential binding of pp60c-src and pp60v-src to cytoskeleton is mediated by SH2 and catalytic domains. Oncogene. 9:2293-303. Osherov N, Levitzki A.1994. Epidermal-growth-factor-dependent activation of the src-family kinases. Eur J Biochem. 225:1047-53. Owen DJ. 2004. Linking endocytic cargo to clathrin: structural and functional insights into coated vesicle formation. Biochem Soc Trans. 32:1-14. Owen DJ, Collins BM, Evans PR. 2004. Adaptors for clathrin coats: structure and function. Annu Rev Cell Dev Biol. 20:153-91. Owens DW, McLean GW, Wyke AW, Paraskeva C, Parkinson EK, Frame MC, Brunton VG. 2000. The catalytic activity of the Src family kinases is required to disrupt cadherin-dependent cell-cell contacts. Mol Biol Cell. 11:51-64. Parton RG, Hancock JF. 2004. Lipid rafts and plasma membrane microorganization: insights from Ras. Trends Cell Biol. 14:141-7. Parsons JT, Weber MJ. 1989. Genetics of src: structure and functional organization of a protein tyrosine kinase. Curr Top Microbiol Immunol. 147:79-127. Pawson T, Gish GD. 1992. SH2 and SH3 domains: from structure to function. Cell. 71:359-62. 138 Pearse BM, Crowther RA. 1987. Structure and assembly of coated vesicles. Annu Rev Biophys Biophys Chem. 16:49-68. Pelicci G, Lanfrancone L, Salcini AE, Romano A, Mele S, Grazia Borrello M, Segatto O, Di Fiore PP, Pelicci PG. 1995. Constitutive phosphorylation of Shc proteins in human tumors. Oncogene. 11:899-907. Perrais D, Merrifield CJ. 2005. Dynamics of endocytic vesicle creation. Dev Cell. 9:581-92. Pelkmans L, Kartenbeck J, Helenius A.2001. Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat Cell Biol. 3:473-83. Pelkmans L, Püntener D, Helenius A.2002. Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae. Science. 296:535-9. Pelkmans L, Bürli T, Zerial M, Helenius A. 2004. Caveolin-stabilized membrane domains as multifunctional transport and sorting devices in endocytic membrane traffic. Cell. 118:767-80. Peschard P, Park M.2003. Escape from Cbl-mediated downregulation: a recurrent theme for oncogenic deregulation of receptor tyrosine kinases. Cancer Cell. 3:519-23. Peter BJ, Kent HM, Mills IG, Vallis Y, Butler PJ, Evans PR, McMahon HT.2004. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science. 303:495-9. Pickart CM, Eddins MJ. 2004. Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta. 1695:55-72. Pineda-Molina E, Belrhali H, Piefer AJ, Akula I, Bates P, Weissenhorn W. 2006. The crystal structure of the C-terminal domain of Vps28 reveals a conserved surface required for Vps20 recruitment. Traffic. 7:1007-16. Piper RC, Cooper AA, Yang H, Stevens TH. 1995. VPS27 controls vacuolar and endocytic traffic through a prevacuolar compartment in Saccharomyces cerevisiae. J Cell Biol. 131:603-17. Polo S, Sigismund S, Faretta M, Guidi M, Capua MR, Bossi G, Chen H, De Camilli P, Di Fiore PP. 2002. A single motif responsible for ubiquitin recognition and monoubiquitination in endocytic proteins. Nature. 416:451-5. 139 Polo S, Confalonieri S, Salcini AE, Di Fiore PP. 2003. EH and UIM: endocytosis and more. Sci STKE. 213:re17. Prenzel N, Zwick E, Leserer M, Ullrich A.2000. Tyrosine kinase signalling in breast cancer. Epidermal growth factor receptor: convergence point for signal integration and diversification. Breast Cancer Res. 2:184-90. Provenzano C, Gallo R, Carbone R, Di Fiore PP, Falcone G, Castellani L, Alemà S.1988. Eps8, a tyrosine kinase substrate, is recruited to the cell cortex and dynamic F-actin upon cytoskeleton remodeling.Exp Cell Res. 242:186-200. Puertollano R. 2005. Interactions of TOM1L1 with the multivesicular body sorting machinery. J Biol Chem. 280:9258-64. Puertollano R, Aguilar RC, Gorshkova I, Crouch RJ, Bonifacino JS.2001. Sorting of mannose 6-phosphate receptors mediated by the GGAs. Science. 292:1712-6. Pulitzer M, Li W, Hanson M, Singh F, Elenitsas R, Gelfand JM, VanVoorhees A, Seykora JT. 2007. Srcasm overexpression in psoriasis-insights into pathogenesis. J Cutan Pathol. 34:160-5. Raiborg C, Bache KG, Mehlum A, Stang E, Stenmark H. 2001. Hrs recruits clathrin to early endosomes. EMBO J. 20:5008-21. Raiborg C, Bache KG, Gillooly DJ, Madshus IH, Stang E, Stenmark H. 2002. Hrs sorts ubiquitinated proteins into clathrin-coated microdomains of early endosomes. Nat Cell Biol. 4:394-8. Raiborg C, Wesche J, Malerød L, Stenmark H. 2006. Flat clathrin coats on endosomes mediate degradative protein sorting by scaffolding Hrs in dynamic microdomains. J Cell Sci. 119:2414-24. Raymond CK, Howald-Stevenson I, Vater CA, Stevens TH. 1992. Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E vps mutants. Mol Biol Cell. 3:1389-402. Razani B, Woodman SE, Lisanti MP. 2002. Caveolae: from cell biology to animal physiology. Pharmacol Rev. 54:431-67. Razi M, Futter CE. 2006. Distinct roles for Tsg101 and Hrs in multivesicular body formation and inward vesiculation. Mol Biol Cell. 17:3469-83. Reggiori F, Pelham HR. 2001. Sorting of proteins into multivesicular bodies: ubiquitin-dependent and -independent targeting. EMBO J.20:5176-86. 140 Ren J, Kee Y, Huibregtse JM, Piper RC. 2007. Hse1, a component of the yeast Hrs-STAM ubiquitin-sorting complex, associates with ubiquitin peptidases and a ligase to control sorting efficiency into multivesicular bodies. Mol Biol Cell. 18:324-35. Rieder SE, Banta LM, Köhrer K, McCaffery JM, Emr SD. 1996. Multilamellar endosome-like compartment accumulates in the yeast vps28 vacuolar protein sorting mutant. Mol Biol Cell. 7:985-99. Robinson MS. 2004. Adaptable adaptors for coated vesicles. Trends Cell Biol. 14:167-74. Roepstorff K, Thomsen P, Sandvig K, van Deurs B. 2002. Sequestration of epidermal growth factor receptors in non-caveolar lipid rafts inhibits ligand binding. J Biol Chem. 277:18954-60. Rothberg KG, Heuser JE, Donzell WC, Ying YS, Glenney JR, Anderson RG. 1992. Caveolin, a protein component of caveolae membrane coats. Cell. 68:673-82. Row PE, Prior IA, McCullough J, Clague MJ, Urbé S. 2006. The ubiquitin isopeptidase UBPY regulates endosomal ubiquitin dynamics and is essential for receptor down-regulation. J Biol Chem. 281:12618-24. Roy S, Wyse B, Hancock JF. 2002. H-Ras signaling and K-Ras signaling are differentially dependent on endocytosis. Mol Cell Biol. 22:5128-40. Rubin C, Gur G, Yarden Y. 2005. Negative regulation of receptor tyrosine kinases: unexpected links to c-Cbl and receptor ubiquitylation. Cell Res. 15:66-71. Sabharanjak S, Sharma P, Parton RG, Mayor S. 2002. GPI-anchored proteins are delivered to recycling endosomes via a distinct cdc42-regulated, clathrin-independent pinocytic pathway. Dev Cell. 2:411-23. Sachse M, Urbé S, Oorschot V, Strous GJ, Klumperman J. 2002. Bilayered clathrin coats on endosomal vacuoles are involved in protein sorting toward lysosomes. Mol Biol Cell. 13:1313-28. Sakaguchi K, Okabayashi Y, Kido Y, Kimura S, Matsumura Y, Inushima K, Kasuga M. 1998. Shc phosphotyrosine-binding domain dominantly interacts with epidermal growth factor receptors and mediates Ras activation in intact cells. Mol Endocrinol.12:536-43. 141 Sasaoka T, Langlois WJ, Leitner JW, Draznin B, Olefsky JM. 1994. The signaling pathway coupling epidermal growth factor receptors to activation of p21ras. J Biol Chem. 269:32621-5. Sato K, Yamamoto H, Otsuki T, Aoto M, Tokmakov AA, Hayashi F, Fukami Y.1997. Phosphatidylinositol 4,5-bisphosphate stimulates phosphorylation of the adaptor protein Shc by c-Src. FEBS Lett. 410:136-40. Sato K, Nagao T, Kakumoto M, Kimoto M, Otsuki T, Iwasaki T, Tokmakov AA, Owada K, Fukami Y.2002. Adaptor protein Shc is an isoform-specific direct activator of the tyrosine kinase c-Src. J Biol Chem. 277:29568-76. Sato SB, Ishii K, Makino A, Iwabuchi K, Yamaji-Hasegawa A, Senoh Y, Nagaoka I, Sakuraba H, Kobayashi T. 2004. Distribution and transport of cholesterol-rich membrane domains monitored by a membrane-impermeant fluorescent polyethylene glycol-derivatized cholesterol. J Biol Chem. 279:23790-6. Schlaepfer DD, Hauck CR, Sieg DJ. 1999. Signaling through focal adhesion kinase. Prog Biophys Mol Biol. 71:435-78. Schlessinger J. 2002. Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell. 110:669-72. Schindler T, Sicheri F, Pico A, Gazit A, Levitzki A, Kuriyan J. 1999. Crystal structure of Hck in complex with a Src family-selective tyrosine kinase inhibitor. Mol Cell. 3:639-48 Scott A, Gaspar J, Stuchell-Brereton MD, Alam SL, Skalicky JJ, Sundquist WI. 2005. Structure and ESCRT-III protein interactions of the MIT domain of human VPS4A. Proc Natl Acad Sci USA. 102:13813-8. Seet, L. F. and Hong, W. 2001. Endofin, an endosomal FYVE domain protein. J. Biol Chem. 276, 42445-42454. Seet LF, Liu N, Hanson BJ, Hong W. 2004. Endofin recruits TOM1 to endosomes. J Biol Chem. 279:4670-9. Seet LF, Hong W. 2005. Endofin recruits clathrin to early endosomes via TOM1. J Cell Sci. 118:575-87. Seykora JT, Mei L, Dotto GP, Stein PL. 2002. Srcasm: a novel Src activating and signaling molecule. J Biol Chem. 277:2812-22. Sharma DK, Brown JC, Choudhury A, Peterson TE, Holicky E, Marks DL, Simari R, Parton RG, Pagano RE. 2004. Selective stimulation of caveolar endocytosis by glycosphingolipids and cholesterol. Mol Biol Cell. 15:3114-22. 142 Shenoy SK, McDonald PH, Kohout TA, Lefkowitz RJ. 2001. Regulation of receptor fate by ubiquitination of activated beta 2-adrenergic receptor and beta-arrestin. Science. 294:1307-13. Shiflett SL, Ward DM, Huynh D, Vaughn MB, Simmons JC, Kaplan J. 2004. Characterization of Vta1p, a class E Vps protein in Saccharomyces cerevisiae. J Biol Chem. 279:10982-90. Shtiegman K, Kochupurakkal BS, Zwang Y, Pines G, Starr A, Vexler A, Citri A, Katz M, Lavi S, Ben-Basat Y, Benjamin S, Corso S, Gan J, Yosef RB, Giordano S, Yarden Y. 2007. Defective ubiquitinylation of EGFR mutants of lung cancer confers prolonged signaling. Oncogene. 26:6968-78. Shoelson SE, Sivaraja M, Williams KP, Hu P, Schlessinger J, Weiss MA.1993. Specific phosphopeptide binding regulates a conformational change in the PI 3-kinase SH2 domain associated with enzyme activation. EMBO J. 12:795-802. Sicheri F, Moarefi I, Kuriyan J. 1997. Crystal structure of the Src family tyrosine kinase Hck. Nature. 385:602-9. Silva CM. 2004.Role of STATs as downstream signal transducers in Src family kinase-mediated tumorigenesis. Oncogene.23:8017-23. Skibinski G, Parkinson NJ, Brown JM, Chakrabarti L, Lloyd SL, Hummerich H, Nielsen JE, Hodges JR, Spillantini MG, Thusgaard T, Brandner S, Brun A, Rossor MN, Gade A, Johannsen P, Sørensen SA, Gydesen S, Fisher EM, Collinge J. 2005. Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nat Genet. 37:806-8. Slagsvold T, Aasland R, Hirano S, Bache KG, Raiborg C, Trambaiolo D, Wakatsuki S, Stenmark H. 2005. Eap45 in mammalian ESCRT-II binds ubiquitin via a phosphoinositide-interacting GLUE domain. J Biol Chem. 280:19600-6. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M, Baselga J, Norton L. 2001. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 344:783-92. Slieker LJ, Martensen TM, Lane MD. 1986. Synthesis of epidermal growth factor receptor in human A431 cells. Glycosylation-dependent acquisition of ligand binding activity occurs post-translationally in the endoplasmic reticulum. J Biol Chem. 261:15233-41. 143 Smart JE, Lewis JB, Mathews MB, Harter ML, Anderson CW. 1981. Adenovirus type early proteins: assignment of the early region 1A proteins synthesized in vivo and in vitro to specific mRNAs. Virology. 112:703-13. Songyang Z, Shoelson SE, Chaudhuri M, Gish G, Pawson T, Haser WG, King F, Roberts T, Ratnofsky S, Lechleider RJ, et al. 1993. SH2 domains recognize specific phosphopeptide sequences. Cell. 72:767-78. Songyang Z, Shoelson SE, McGlade J, Olivier P, Pawson T, Bustelo XR, Barbacid M, Sabe H, Hanafusa H, Yi T, et al. 1994. Specific motifs recognized by the SH2 domains of Csk, 3BP2, fps/fes, GRB-2, HCP, SHC, Syk, and Vav. Mol Cell Biol. 14:2777-85. Sorkin A, Von Zastrow M. 2002. Signal transduction and endocytosis: close encounters of many kinds. Nat Rev Mol Cell Biol. 3:600-14. Soubeyran P, Kowanetz K, Szymkiewicz I, Langdon WY, Dikic I. 2002. Cbl-CIN85-endophilin complex mediates ligand-induced downregulation of EGF receptors. Nature. 416:183-7. Stern KA, Visser Smit GD, Place TL, Winistorfer S, Piper RC, Lill NL.2007. Epidermal growth factor receptor fate is controlled by Hrs tyrosine phosphorylation sites that regulate Hrs degradation. Mol Cell Biol. 27:888-98. Stein PL, Vogel H, Soriano P. 1994. Combined deficiencies of Src, Fyn, and Yes tyrosine kinases in mutant mice. Genes Dev. 8:1999-2007. Stover DR, Becker M, Liebetanz J, Lydon NB. 1995. Src phosphorylation of the epidermal growth factor receptor at novel sites mediates receptor interaction with Src and P85 alpha. J Biol Chem. 270:15591-7. Stuchell MD, Garrus JE, Müller B, Stray KM, Ghaffarian S, McKinnon R, Kräusslich HG, Morham SG, Sundquist WI.2004. The human endosomal sorting complex required for transport (ESCRT-I) and its role in HIV-1 budding. J Biol Chem. 279:36059-71. Su X, Kong C, Stahl PD.2007. GAPex-5 mediates ubiquitination, trafficking, and degradation of epidermal growth factor receptor. J Biol Chem. 282:21278-84. Szymkiewicz I, Shupliakov O, Dikic I. 2004. Cargo- and compartment-selective endocytic scaffold proteins. Biochem J. 383:1-11. Takatsu H, Katoh Y, Shiba Y, Nakayama K.2001. Golgi-localizing, gamma-adaptin ear homology domain, ADP-ribosylation factor-binding (GGA) proteins interact with 144 acidic dileucine sequences within the cytoplasmic domains of sorting receptors through their Vps27p/Hrs/STAM (VHS) domains. J Biol Chem. 276:28541-5. Teo H, Perisic O, González B, Williams RL. 2004. ESCRT-II, an endosome-associated complex required for protein sorting: crystal structure and interactions with ESCRT-III and membranes. Dev Cell. 7:559-69. Teo H, Gill DJ, Sun J, Perisic O, Veprintsev DB, Vallis Y, Emr SD, Williams RL.2006. ESCRT-I core and ESCRT-II GLUE domain structures reveal role for GLUE in linking to ESCRT-I and membranes. Cell. 125:99-111. Tice DA, Biscardi JS, Nickles AL, Parsons SJ. 1999. Mechanism of biological synergy between cellular Src and epidermal growth factor receptor. Proc Natl Acad Sci U S A. 96:1415-20. Thien CB, Langdon WY. 2001. Cbl: many adaptations to regulate protein tyrosine kinases. Nat Rev Mol Cell Biol. 2:294-307. Thomas SM, Brugge JS. 1997. Cellular functions regulated by Src family kinases. Annu Rev Cell Dev Biol. 13:513-609. Traub LM. 2003. Sorting it out: AP-2 and alternate clathrin adaptors in endocytic cargo selection. J Cell Biol. 163:203-8. Urbé S, Sachse M, Row PE, Preisinger C, Barr FA, Strous G, Klumperman J, Clague MJ.2003. The UIM domain of Hrs couples receptor sorting to vesicle formation. J Cell Sci. 116:4169-79. Vaudry D, Stork PJ, Lazarovici P, Eiden LE.2002. Signaling pathways for PC12 cell differentiation: making the right connections. Science. 296:1648-9. Verma R, Aravind L, Oania R, McDonald WH, Yates JR 3rd, Koonin EV, Deshaies RJ. 2002. Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science. 298:611-5. Viera LI, Senisterra GA, Disalvo EA.1996. Changes in the optical properties of liposome dispersions in relation to the interlamellar distance and solute interaction. Chem Phys Lipids. 81:45-54. von Schwedler UK, Stuchell M, Müller B, Ward DM, Chung HY, Morita E, Wang HE, Davis T, He GP, Cimbora DM, Scott A, Kräusslich HG, Kaplan J, Morham SG, Sundquist WI.2003. The protein network of HIV budding. Cell. 114:701-13. 145 Walker F, Kato A, Gonez LJ, Hibbs ML, Pouliot N, Levitzki A, Burgess AW. 1998. Activation of the Ras/mitogen-activated protein kinase pathway by kinase-defective epidermal growth factor receptors results in cell survival but not proliferation. Mol Cell Biol.18:7192-204. Wang Y, Pennock S, Chen X, Wang Z.2002. Endosomal signaling of epidermal growth factor receptor stimulates signal transduction pathways leading to cell survival. Mol Cell Biol. 22:7279-90. Ward DM, Vaughn MB, Shiflett SL, White PL, Pollock AL, Hill J, Schnegelberger R, Sundquist WI, Kaplan J.2005. The role of LIP5 and CHMP5 in multivesicular body formation and HIV-1 budding in mammalian cells. J Biol Chem. 280:10548-55. Waterman, H., Katz, M., Rubin, C., Shtiegman, K., Lavi, S., Elson, A., Jovin, T., and Yarden, Y. (2002). A mutant EGF-receptor defective in ubiquitylation and endocytosis unveils a role for Grb2 in negative signaling. EMBO J. 21:, 303-313. Wendland B. 2002. Epsins: adaptors in endocytosis? Nat Rev Mol Cell Biol. 3:971-7. Wilde A, Beattie EC, Lem L, Riethof DA, Liu SH, Mobley WC, Soriano P, Brodsky FM.1999. EGF receptor signaling stimulates SRC kinase phosphorylation of clathrin, influencing clathrin redistribution and EGF uptake. Cell. 96:677-87. Williams RL, Urbé S. 2007. The emerging shape of the ESCRT machinery. Nat Rev Mol Cell Biol. 8:355-68. Wong L, Deb TB, Thompson SA, Wells A, Johnson GR. 1999. A differential requirement for the COOH-terminal region of the epidermal growth factor (EGF) receptor in amphiregulin and EGF mitogenic signaling. J Biol Chem.274:8900-9. Wu W, Graves LM, Gill GN, Parsons SJ, Samet JM.2002. Src-dependent phosphorylation of the epidermal growth factor receptor on tyrosine 845 is required for zinc-induced Ras activation. J Biol Chem. 277:24252-7. Xia L, Wang L, Chung AS, Ivanov SS, Ling MY, Dragoi AM, Platt A, Gilmer TM, Fu XY, Chin YE. 2002. Identification of both positive and negative domains within the epidermal growth factor receptor COOH-terminal region for signal transducer and activator of transcription (STAT) activation. J Biol Chem.277:30716-23. Xu W, Harrison SC, Eck MJ.1997. Three-dimensional structure of the tyrosine kinase c-Src. Nature. 385:595-602. 146 Xu W, Doshi A, Lei M, Eck MJ, Harrison SC. 1999. Crystal structures of c-Src reveal features of its autoinhibitory mechanism. Mol Cell. 3:629-38. Xu XX, Yi T, Tang B, Lambeth JD. 1998. Disabled-2 (Dab2) is an SH3 domain-binding partner of Grb2. Oncogene. 16:1561-9. Xu Y, Hortsman H, Seet L, Wong SH, Hong W. 2001. SNX3 regulates endosomal function through its PX-domain-mediated interaction with PtdIns(3)P. Nat Cell Biol.3:658-66. Yao T, Cohen RE.2002. A cryptic protease couples deubiquitination and degradation by the proteasome. Nature. 419:403-7. Yamauchi T, Ueki K, Tobe K, Tamemoto H, Sekine N, Wada M, Honjo M, Takahashi M, Takahashi T, Hirai H, Tushima T, Akanuma Y, Fujita T, Komuro I, Yazaki Y, Kadowaki T.1997. Tyrosine phosphorylation of the EGF receptor by the kinase Jak2 is induced by growth hormone. Nature. 390:91-6. Yamakami M, Yoshimori T, Yokosawa H.2003. Tom1, a VHS domain-containing protein, interacts with tollip, ubiquitin, and clathrin. J Biol Chem. 278:52865-72. Yamazaki H, Fukui Y, Ueyama Y, Tamaoki N, Kawamoto T, Taniguchi S, Shibuya M.1998. Amplification of the structurally and functionally altered epidermal growth factor receptor gene (c-erbB) in human brain tumors. Mol Cell Biol. 8:1816-20. Yeo SC, Xu L, Ren J, Boulton VJ, Wagle MD, Liu C, Ren G, Wong P, Zahn R, Sasajala P, Yang H, Piper RC, Munn AL.2003. Vps20p and Vta1p interact with Vps4p and function in multivesicular body sorting and endosomal transport in Saccharomyces cerevisiae. J Cell Sci. 116:3957-70. Yoon CH, Lee J, Jongeward GD, Sternberg PW. 1995. Similarity of sli-1, a regulator of vulval development in C. elegans, to the mammalian proto-oncogene c-cbl. Science. 269:1102-5. Yorikawa C, Shibata H, Waguri S, Hatta K, Horii M, Katoh K, Kobayashi T, Uchiyama Y, Maki M.2005. Human CHMP6, a myristoylated ESCRT-III protein, interacts directly with an ESCRT-II component EAP20 and regulates endosomal cargo sorting. Biochem J. 387:17-26. Young MA, Gonfloni S, Superti-Furga G, Roux B, Kuriyan J.2001. Dynamic coupling between the SH2 and SH3 domains of c-Src and Hck underlies their inactivation by C-terminal tyrosine phosphorylation. Cell. 105:115-26. 147 Zhan X, Plourde C, Hu X, Friesel R, Maciag T. 1994. Association of fibroblast growth factor receptor-1 with c-Src correlates with association between c-Src and cortactin. J Biol Chem. 269:20221-4. Zhang Y, Wolf-Yadlin A, Ross PL, Pappin DJ, Rush J, Lauffenburger DA, White FM.2005. Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules.Mol Cell Proteomics.4:1240-50. Zhu Y, Doray B, Poussu A, Lehto VP, Kornfeld S.2001. Binding of GGA2 to the lysosomal enzyme sorting motif of the mannose 6-phosphate receptor. Science.292:1716-8. 148 [...]... lysine residues and one histidine and the head group of the lipid ARH, Dab2 PTB domain Direct contact between basic residues in the PTB domain and Numb lipid-binding pocket and PtdIns(4,5)P2 β-arrestin Arginine/lysin High-affinity basic PtdIns(4,5)P2 binding site at the e residues C-terminal domain of β-arrestin Epsin ENTH The ENTH domain binds both the head group and domain glycerol backbone of PtdIns(4,5)P2... TOM1- L1 Delayed EGF-Induced Degradation and Endocytosis of EGFR Figure 6.1 TOM1- L1 Contains a Novel Clathrin-Binding Motif Figure 6.2 TOM1- L1 s Clathrin Binding Motif is Important for its Role in Mediating EGFR Endocytosis Figure 6.3 Effects of Protein Depletion on EGFR and TfnR Endocytosis Figure 7.1 TOM1 Family Interacts with Ubiquitin Figure 7.2 TOM1- L1 Interacts with Hrs, STAM Figure 7.3 Effect of. .. basic sidechains (mainly two clusters of lysine residues at each end of the binding domain) on the N terminus of the α subunit and a cluster of conserved lysine residues at the surface of μ2 C-terminal domain AP180/ ANTH Two α helices (α helices 1 and 2) out of the nine that CALM domain comprise the ANTH contact the membrane The interaction takes place between the solvent exposed sidechains of three consecutive... as the Golgi by the clathrin-dependent pathway (Gruenberg and Stenmark, 2004, Schlessinger et al., 2002, Bishop, 2003) Table 2 Phosphatidylinositol (4, 5)-bisphosphate (PtdIns (4,5)P2) Binding Domains found in Clathrin Adaptor Proteins Clathrin adaptor AP2 PtdIns(4,5)P2 binding domain α core μ2 C-terminal domain Binding Properties Binding takes place between the phosphate groups of PtdIns(4,5)P2 and. .. PtdIns(4,5)P2 in a basic pocket formed by the first four of the eight α helices in this domain Upon binding of the ENTH domain to the membrane, a new α helix forms called helix 0 (residues 3-15), which inserts its outer hydrophobic surface into the hydrophobic phase of the membrane and its inner basic surface augments the PtdIns(4,5)P2 head group binding pocket, anchoring the epsin protein to the membrane... (Hunter and Cooper, 1985, Parsons and Weber, 1989, Smart et al., 1981) A conserved tyrosine residue (Y527 in Src) that lies at the end of the C-terminal is essential for auto-regulation in SFKs (Brown and Cooper, 1996) For Src, the SH3 and SH2 domains are at the back of the kinase domain The SH2 domain binds to pY527 while the SH3 domain interacts with a short polyproline type II helix between the SH2 and. .. or Cbl-induced ubiquitinations of receptors (via direct association of Cbl with RTKs) (Yoon et al., 1995, De Sepulveda et al., 1999) Grb2 activates Ras/MAPK signaling pathway via Sos On the other hand it also promotes the ubiquitination and endocytosis of receptors through recruiting the Cbl-CIN85 (Cbl-interacting protein of 85 kDa)-endophilin (End) complex, and binding to Sprouty, SHIPs, SOCS and Ack,... Overexpression of HA-tagged Hrs on Endosomes and TOM1- L1 Licalization Analyized by Immunoflurescence microscpy Figure 7.4 Simultaneous Knockdown of Both TOM1- L1 and Hrs Causes a Delay in EGFR Greater than Knockdown of either TOM1- L1 or Hrs Alone Figure 8.1 TOM1- L1 Inhibits the Activation of Ras upon EGF Stimulation Figure 8.2 TOM1- L1 inhibits the Colony Formation in A431 Cells Figure 9.1 A Proposed Model for TOM1- L1. .. membrane location and ligand-binding They have a single transmembrane domain and a large cytoplasmic region that contains a tyrosine kinase and multiple phosphorylation sites (Slieker et al., 1986) The structure of the mature EGFR (ErbB1) receptor is represented as below Figure 1.1 Domain Organization of EGF Receptor Abbreviations: I and III: ligand binding domains; II and IV: cysteine-rich domains; TM: transmembrane... involved in endocytosis and subsequent sorting of internalized receptor to MVB (Citri and Yarden, 2006; Rubin et al., 2005) Src collaborates with the ubiquitination and proteosomal degradation of Cbl, thereby attenuating the level of Cbl and postponing EGFR downregulation, hence forth promoting the recycling of receptors back to the plasma membrane and extends EGFR signaling (Bao et al., 2000, Muthuswamy et . THE FUNCTION OF TOM1- L1 IN BRIDGING EGFR SIGNALING AND ENDOCYTOSIS LIU NINGSHENG (M.Med. Southeast Univ.) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY INSTITUTE. with EGFR and inhibits endocytosis of EGFR. In addition, siRNA (small interference RNA)-mediated knockdown of TOM1- L1 inhibits endocytosis of EGFR. The C-terminal tail of TOM1- L1 contains a novel. THE FUNCTION OF TOM1- L1 IN BRIDGING EGFR SIGNALING AND ENDOCYTOSIS LIU NINGSHENG INSTITUTE OF MOLECULAR AND CELL BIOLOGY NATIONAL UNIVERSITY OF SINGAPORE

Ngày đăng: 14/09/2015, 08:41

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN