Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 212 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
212
Dung lượng
2,29 MB
Nội dung
PROTEOMICS ANALYSIS OF PSEUDOMONAS PUTIDA IN BIODEGRADATION OF AROMATIC COMPOUNDS CAO BIN NATIONAL UNIVERSITY OF SINGAPORE 2007 PROTEOMICS ANALYSIS OF PSEUDOMONAS PUTIDA IN BIODEGRADATION OF AROMATIC COMPOUNDS CAO BIN (B. Eng., Beijing University of Aeronautics and Astronautics, China) A THESIS SUBMITTED FOR THE DEGREE OF DOCTER OF PHILOSOPHY DEPARTMENT OF CHEMICAL AND BIOMOLECULAR ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2007 ACKNOWLEDGEMENTS In the current scientific realm, no research endeavor is ever carried out in solitude. This thesis would not have been possible without the assistance and encouragements of many individuals to whom I owe my deepest gratitude. First and foremost, I would like to thank my thesis advisor, Associate Professor Loh Kai-Chee for giving me the opportunity to work in the very interesting and exciting interdisciplinary research field of Proteomics and Biodegradation. My deepest gratitude is expressed for his scientific guidance, continuous support and encouragement during my years at NUS. I would like to thank all my former and current labmates, including Dr. Geng Anli, Dr. Li Yi, Mr. Ne Lin, Ms. Wu Tingting, Ms. Karthiga Nagarajan, Mr. Satyen Gautam, Mr. Vivek Vasudevan, and Mr. Bulbul Ahmed for the helpful discussions and for their assistance during my PhD study. Ms. Chow Pek and Ms. Chew Su Mei Novel, our former and current lab officer, respectively; Mr. Han Guangjun and Ms. Li Xiang, the professional officer and lab officer for bio-research facilities, respectively, deserve separate acknowledgements. Their assistance and support made my life easier in the laboratories. I would like to thank my parents and my wife for their love and support. They are always beside me whenever I need encouragements. i Last but not least my special thanks go to Dr. Peng Zanguo for his support in both academic and non-academic areas and for being a helpful friend on whom I can always count. This work was supported by a research grant from the Ministry of Education Academic Research Fund (R-279-000-181-112). I also want to thank NUS for the research scholarship provided to me. I am also grateful for the generous NIH-AES travel grants from the American Electrophoresis Society, which provided invaluable opportunities for me to attend the AIChE Annual Meetings to present my work and learn from the international community. ii TABLE OF CONTENTS ACKNOWLEDGEMENTS i TABLE OF CONTENTS iii SUMMARY vi LIST OF TABLES ix LIST OF FIGURES xi LIST OF ABBREVIATIONS AND SYMBOLS INTRODUCTION 1.1 Research Background and Motivations 1.2 Research Objectives and Scope 1.3 Thesis Organization LITERATURE REVIEW 2.1 Aromatic Pollutants and Bioremediation 2.2 Bacterial Utilization of Aromatic Pollutants 2.2.1 2.2.2 2.2.3 2.2.4 2.3 2.4 Major Bacteria Biodegradation Mechanisms Current Status Molecular Biology Proteomics Technologies in Bioremediation 2.3.1 2.3.2 Proteomics Technologies Proteomics and Bioremediation Proteomics Studies of P. putida 2.4.1 2.4.2 2.4.3 2.4.4 xiv Introduction Proteomics Approaches Used to Study P. putida Elucidation of Catabolic Pathways Understanding physiological responses 11 11 13 19 35 48 48 60 63 63 65 72 78 MATERIALS AND METHODS 84 3.1 84 Bacterial Strains iii 3.2 Culture Media and Growth Conditions 84 3.3 Cell Growth and 2-Hydroxymuconic Semiadehyde Formation 86 3.4 Preparation of Cell Extracts 86 3.5 Catechol Dioxygenases Assays 87 3.6 Determination of Protein Concentration 87 3.7 2-DE 88 3.8 Gel Staining 89 3.8.1 3.8.2 3.8.3 3.9 Silver Stain Plus Kit (Bio-Rad) Bio-Safe Coomassie Stain Destaining Quantitative Analysis 89 90 90 91 3.10 In-gel Digestion and Peptides Extraction 92 3.11 Protein Identification by MS 93 METABOLIC PATHWAY AND CELLULAR RESPONSES OF P. PUTIDA DURING GROWTH ON BENZOATE 95 4.1 Introduction 95 4.2 Experimental Design 98 4.2.1 4.2.2 4.2.3 4.3 Results and Discussion 4.3.1 4.3.2 4.3.3 4.4 Sample Description Quantitative Analysis Bioinformatics Tools Benzoate Catabolic Pathways in P. putida P8 Stress Responses of P. putida P8 to Growth on Benzoate Adaptation of Other Metabolic Routes to Growth on Benzoate Concluding Remarks 98 98 98 99 99 122 125 130 GLOBAL PHYSIOLOGICAL UNDERSTANDING OF P. PUTIDA IN BIPHASIC GROWTH ON A MIXTURE OF PHENOL, 4-CHLOROPHENOL AND SODIUM GLUTAMATE 131 5.1 Introduction 131 5.2 Experimental Design 133 iv 5.2.1 5.2.2 5.3 Results and Discussion 5.3.1 5.3.2 5.3.3 5.3.4 5.4 Sample Description Quantitative Analysis Biphasic Growth of P. putida P8 Analysis of Proteome Profiles Differentially Expressed Catabolic Enzymes Other Metabolic Changes Concluding Remarks 133 133 133 133 135 142 142 148 COMETABOLISM OF CARBAZOLE IN PRESENCE OF SALICYLATE AND P-CRESOL: GLOBAL PHYSIOLOGICAL RESPONSES OF P. PUTIDA ATCC 117484 149 6.1 Introduction 149 6.2 Experimental Design 151 6.2.1 6.2.2 6.3 Results and Discussion 6.3.1 6.3.2 6.3.3 6.4 Sample Description Quantitative Analysis Cell Growth Proteome Analysis of P. putida ATCC 17484 Global Physiological Responses Concluding Remarks 151 151 151 151 153 153 160 CONCLUSIONS AND RECOMMENDATIONS 161 7.1 Conclusions 161 7.2 Recommendations for Future Work 163 REFERENCES 166 LIST OF PUBLICATIONS AND PRESENTATIONS 192 LIST OF AWARDS 194 v SUMMARY Although proteomics research has been, hitherto, confined mainly to areas of drug discovery, diagnostics and molecular medicine, it offers a new and important perspective for studies of microbial physiological responses in biodegradation systems. Proteomics has been applied to elucidate biodegradation pathways, to monitor physiological consequences after metabolic engineering, and to advance the understanding of microbial growth and adaptation to mixed pollutants. In this research, proteomics analysis was used to study three previously reported phenomena in biodegradation involving Pseudomonas putida. The three model systems selected were: i) biodegradation of benzoate by P. putida P8 at high substrate concentration; ii) cometabolic biodegradation of phenol, 4chlorophenol and sodium glutamate by P. putida P8; and iii) cometabolic biodegradation of carbazole, sodium salicylate and p-cresol by P. putida ATCC 17484. Two-dimensional gel electrophoresis (2-DE) was used to separate proteins extracted from P. putida cells harvested from the biodegradation systems. The 2-DE gel profiles were quantitatively compared using threshold criteria and statistical tools. Protein spots of interest were identified through database searching based on peptide mass fingerprints (PMFs) obtained using matrix assisted laser desorption/ionizationtime of flight mass spectrometry (MALDI-TOF MS). In the first system, eight catabolic enzymes involved in both the orthocleavage (CatB, PcaI and PcaF) and the meta-cleavage (DmpC, DmpD, DmpE, DmpF and DmpG) pathways for benzoate biodegradation were identified in P. putida grown on 800 mg/L of benzoate while no meta-cleavage pathway enzymes were observed in vi the 2-DE gel profiles of P. putida grown on 100 mg/L of benzoate. The activation of both the ortho- and the meta-cleavage pathways in P. putida P8 grown on high benzoate concentration was confirmed directly at the protein level. Furthermore, the down-regulation of the ortho-cleavage pathway in P. putida cells grown on 800 mg/L of benzoate compared to those grown on 100 mg/L of benzoate was suggested. In addition, another 28 differentially expressed proteins were also identified, including proteins involved in i) detoxification and stress response (AhpC, ATPase-like ATPbinding region, putative DNA-binding stress protein, SodB and catalase/peroxidase HPI); ii) carbohydrate, amino acid/protein and energy metabolism (isocitrate dehydrogenase, SucC, SucD, AcnB, GabD, ArcA, ArgI, Efp and periplasmic binding proteins of several ABC-transporters); and iii) cell envelope and cell division (bacterial surface antigen family protein and MinD). Based on the data obtained, physiological changes of P. putida in response to growth on benzoate at different concentrations were discussed. A total of 49 protein spots were selected and identified in the 2-DE gels from P. putida P8 grown on the ternary substrate cometabolic system containing 200 mg/L of phenol, 200 mg/L of 4-chlorophenol and 1000 mg/L sodium glutamate. Among them, 16 protein spots were found differentially expressed in the two exponential growth phases during the biphasic growth, including catabolic enzymes (DmpC, DmpD, DmpE, DmpF, DmpG and AspA) for substrate utilization. The expression levels of these enzymes during growth in the two growth phases correlated well with the substrate utilization patterns observed in previous kinetics studies. The expression of other proteins involved in detoxification and stress responses (DnaK, GroEL, HtpG and AhpC etc.), carbohydrate and energy metabolism (AtpD, AtpH, Tal, Eno), and environmental information processing (several periplasmic binding proteins of ABC vii transporters) as well as a multifunctional xenobiotic reductase (XenA) was quantitatively analyzed and discussed. In the final model system, 25 protein spots were identified in P. putida ATCC 17484 during growth in the ternary substrate cometabolic biodegradation system of carbazole (0.5 mg/L), sodium salicylate (200 mg/L) and p-cresol (10 mg/L or 70 mg/L). There were significant differences in the abundances of proteins during growth at two typical p-cresol concentrations (10 mg/L and 70 mg/L). Specifically, GalU and beta-ketothiolase were involved in the biosynthesis of cell envelope and cytoplasmic membrane; GlnA and periplasmic putrescine-binding component of putrescine ABC transporter were involved in amino acid metabolism, and aldehyde dehydrogenase (ALDH) family protein was involved in the substrate utilization. Collectively, these results enhanced our understanding of the catabolic pathways and the physiological status of P. putida during biodegradation of aromatic compounds. A comprehensive understanding of the bacterial physiology during biodegradation processes may provide useful insights into effective approaches to stimulate or prepare the microorganism for in situ bioremediation applications. viii Lovley, D. R., M. J. Baedecker, D. J. Lonergan, I. M. Cozzarelli, E. J. P. Phillips and D. I. Siegel (1989). Oxidation of aromatic contaminants coupled to microbial iron reduction. Nature 339(6222), 297-300. Lundstedt, S., P. Haglund and L. Oberg (2003). Degradation and formation of polycyclic aromatic compounds during bioslurry treatment of an acid aged gasworks soil. Environ. Toxicol. Chem. 22, 1413-1420. Lunt, D. and W. C. Evans (1970). The microbial metabolism of biphenyl. Biochem. J. 118(3), 54-55. Lupi, C. G., T. Colangelo and C. A. Mason (1995). 2-dimensional gel-electrophoresis analysis of the response of Pseudomonas putida KT2442 to 2-chlorophenol. Appl. Environ. Microbiol. 61(8), 2863-2872. Madhusudhan, K. T., R. McLaughlin, N. Komori and H. Matsumoto (2003). Identification of a major protein upon phosphate starvation of Pseudomonas aeruginosa PAO1. J. Basic Microbiol. 43(1), 36-46. Martinez, A. and R. Kolter (1997). Protection of DNA during oxidative stress by the nonspecific DNA-binding protein Dps. J. Bacteriol. 179(16), 5188-5194. Meckenstock, R. U., E. Annweiler, W. Michaelis, H. H. Richnow and S. B. (2000). Anaerobic naphthalene degradation by a sulphate reducing enrichment culture. App Environ Microbiol 66, 2743-2747. Meckenstock, R. U., M. Safinowski and C. Griebler (2004). Anaerobic degradation of polycyclic aromatic hydrocarbons. FEMS Microbiol. Ecol. 49(1), 27-36. Meyer, A., M. Held, A. Schmid, H. P. E. Kohler and B. Witholt (2003). Synthesis of 3-tert-butylcatechol by an engineered monooxygenase. Biotechnol. Bioeng. 81(5), 518-524. Millette, D., J. F. Barker, Y. Comeau, B. J. Butler, E. O. Frind, B. Clement and R. Samson (1995). Substrate interaction during aerobic biodegradation of creosote related-compounds - a factorial batch experiment. Environ. Sci. Technol. 29(8), 1944-1952. Millette, D., B. J. Butler, E. O. Frind, Y. Comeau and R. Samon (1998). Substrate interaction during aerobic biodegradation of creosote-related compounds in columns of sandy aquifer material. J. Contam. Hydrol. 29(2), 165-183. Mishra, V., R. Lal and Srinivasan (2001). Enzymes and operons mediating xenobiotic degradation in bacteria. Crit. Rev. Microbiol. 27(2), 133-166. Mohn, W. W. and K. J. Kennedy (1992). Reductive dehalogenation of chlorophenols by Desulfomonile tiedjei Dcb-1. Appl. Environ. Microbiol. 58(4), 1367-1370. Mohn, W. W. and J. M. Tiedje (1992). Microbial reductive dehalogenation. Microbiol. Rev. 56(3), 482-507. 179 Moiseeva, O. V., I. P. Solyanikova, S. R. Kaschabek, J. Groning, M. Thiel, L. A. Golovleva and M. Schlomann (2002). A new modified ortho cleavage pathway of 3-chlorocatechol degradation by Rhodococcus opacus 1CP: genetic and biochemical evidence. J. Bacteriol. 184(19), 5282-5292. Molina-Henares, A. J., T. Krell, M. E. Guazzaroni, A. Segura and J. L. Ramos (2006). Members of the IclR family of bacterial transcriptional regulators function as activators and/or repressors. FEMS Microbiol. Rev. 30(2), 157-186. Molloy, M. P., B. R. Herbert, B. J. Walsh, M. I. Tyler, M. Traini, J. C. Sanchez, D. F. Hochstrasser, K. L. Williams and A. A. Gooley (1998). Extraction of membrane proteins by differential solubilization for separation using twodimensional gel electrophoresis. Electrophoresis 19(5), 837-844. Monti, M. R., A. M. Smania, G. Fabro, M. E. Alvarez and C. E. Argarana (2005). Engineering Pseudomonas fluorescens for biodegradation of 2,4dinitrotoluene. Appl. Environ. Microbiol. 71(12), 8864-8872. Moody, J. D., D. R. Doerge, J. P. Freeman and C. E. Cerniglia (2002). Degradation of biphenyl by Mycobacterium sp strain PYR-1. Appl. Microbiol. Biotechnol. 58(3), 364-369. Moon, J., E. Kang, K. R. Min, C. K. Kim, K. H. Min, K. S. Lee and Y. Kim (1997). Characterization of the gene encoding catechol 2,3-dioxygenase from Achromobacter xylosoxidans KF701. Biochem. Biophys. Res. Commun. 238(2), 430-435. Mooney, A., N. D. O'Leary and A. D. W. Dobson (2006). Cloning and functional characterization of the styE gene, involved in styrene transport in Pseudomonas putida CA-3. Appl. Environ. Microbiol. 72(2), 1302-1309. Morales, G., J. F. Linares, A. Beloso, J. P. Albar, J. L. Martinez and F. Rojo (2004). The Pseudomonas putida Crc global regulator controls the expression of genes from several chromosomal catabolic pathways for aromatic compounds. J. Bacteriol. 186(5), 1337-1344. Moslavac, S., R. Bredemeier, O. Mirus, B. Granvogl, L. A. Eichacker and E. Schleiff (2005). Proteomic analysis of the outer membrane of Anabaena sp strain PCC 7120. J. Proteome Res. 4(4), 1330-1338. Mosqueda, G., M. I. Ramos-Gonzalez and J. L. Ramos (1999). Toluene metabolism by the solvent-tolerant Pseudomonas putida DOT-T1 strain, and its role in solvent impermeabilization. Gene 232(1), 69-76. Mueller, J. G., D. P. Middaugh, S. E. Lantz and P. J. Chapman (1991). Biodegradation of creosote and pentachlorophenol in contaminated groundwater - chemical and biological assessment. Appl. Environ. Microbiol. 57(5), 1277-1285. Muller, J. A., B. M. Rosner, G. von Abendroth, G. Meshulam-Simon, P. L. McCarty and A. M. Spormann (2004). Molecular identification of the catabolic vinyl 180 chloride reductase from Dehalococcoides sp strain VS and its environmental distribution. Appl. Environ. Microbiol. 70(8), 4880-4888. Nair, S. and S. E. Finkel (2004). Dps protects cells against multiple stresses during stationary phase. J. Bacteriol. 186(13), 4192-4198. Nair, S. C., E. J. Toran, R. A. Rimerman, S. Hjermstad, T. E. Smithgall and D. F. Smith (1996). A pathway of multi-chaperone interactions common to diverse regulatory proteins: Estrogen receptor, Fes tyrosine kinase, heat shock transcription factor Hsf1, and the aryl hydrocarbon receptor. Cell Stress Chaperones 1(4), 237-250. Nakazawa, T. and A. Nakazawa (1970). Pyrocatechase (Pseudomonas). Methods Enzymol. 17A, 518-522. Nelson, K. E., C. Weinel, I. T. Paulsen, R. J. Dodson, H. Hilbert, V. dos Santos, D. E. Fouts, S. R. Gill, M. Pop, M. Holmes, L. Brinkac, M. Beanan, R. T. DeBoy, S. Daugherty, J. Kolonay, R. Madupu, W. Nelson, O. White, J. Peterson, H. Khouri, I. Hance, P. C. Lee, E. Holtzapple, D. Scanlan, K. Tran, A. Moazzez, T. Utterback, M. Rizzo, K. Lee, D. Kosack, D. Moestl, H. Wedler, J. Lauber, D. Stjepandic, J. Hoheisel, M. Straetz, S. Heim, C. Kiewitz, J. Eisen, K. N. Timmis, A. Dusterhoft, B. Tummler and C. M. Fraser (2002). Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ. Microbiol. 4(12), 799-808. Nestler, F. H. M. (1974). Characterizaiton of wood-preserving coal-tar creosote by gas-liquid chromatography. Anal. Chem. 46, 46-53. Nichols, N. N. and C. S. Harwood (1995). Repression of 4-hydroxybenzoate transport and degradation by benzoate - a new layer of regulatory control in the Pseudomonas putida beta-ketoadipate pathway. J. Bacteriol. 177(24), 70337040. Nivens, D. E., T. E. McKnight, S. A. Moser, S. J. Osbourn, M. L. Simpson and G. S. Sayler (2004). Bioluminescent bioreporter integrated circuits: potentially small, rugged and inexpensive whole-cell biosensors for remote environmental monitoring. J. Appl. Microbiol. 96(1), 33-46. Nogales, J., R. Macchi, F. Franchi, D. Barzaghi, C. Fernandez, J. L. Garcia, G. Bertoni and E. Diaz (2007). Characterization of the last step of the aerobic phenylacetic acid degradation pathway. Microbiology-(UK) 153, 357-365. Norbeck, J. and A. Blomberg (1997). Two-dimensional electrophoretic separation of yeast proteins using a non-linear wide range (pH 3-10) immobilized pH gradient in the first dimension; reproducibility and evidence for isoelectric focusing of alkaline (pI > 7) proteins. Yeast 13(16), 1519-1534. Nozaki, M. (1970). Metapyrocatechase (Pseudomonas). Methods Enzymol. 17A, 522525. O'Farrell, P. H. (1975). High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250, 4007-4021. 181 Oda, Y., K. Huang, F. R. Cross, D. Cowburn and B. T. Chait (1999). Accurate quantitation of protein expression and site-specific phosphorylation. Proc. Natl. Acad. Sci. U. S. A. 96(12), 6591-6596. Ogawa, N. and K. Miyashita (1999). The chlorocatechol-catabolic transposon Tn5707 of Alcaligenes eutrophus NH9, carrying a gene cluster highly homologous to that in the 1,2,4-trichlorobenzene-degrading bacterium Pseudomonas sp. strain P51, confers the ability to grow on 3-chlorobenzoate. Appl. Environ. Microbiol. 65(2), 724-731. Ohtsubo, Y., M. Shimura, M. Delawary, K. Kimbara, M. Takagi, T. Kudo, A. Ohta and Y. Nagata (2003). Novel approach to the improvement of biphenyl and polychlorinated biphenyl degradation activity: promoter implantation by homologous recombination. Appl. Environ. Microbiol. 69(1), 146-153. Okuta, A., K. Ohnishi and S. Harayama (2004). Construction of chimeric catechol 2,3-dioxygenase exhibiting improved activity against the suicide inhibitor 4methylcatechol. Appl. Environ. Microbiol. 70(3), 1804-1810. Ouchiyama, N., Y. Zhang, T. Omori and T. Kodama (1993). Biodegradation of carbazole by Pseudomonas spp CA06 and CA10. Biosci. Biotechnol. Biochem. 57(3), 455-460. Packer, N. H., A. Pawlak, W. C. Kett, A. A. Gooley, J. W. Redmond and K. L. Williams (1997). Proteome analysis of glycoforms: a review of strategies for the microcharacterisation of glycoproteins separated by two-dimensional polyacrylamide gel electrophoresis. Electrophoresis 18(3-4), 452-460. Parales, R. E. (2004). Nitrobenzoates and aminobenzoates are chemoattractants for Pseudomonas strains. Appl. Environ. Microbiol. 70(1), 285-292. Parales, R. E., N. C. Bruce, A. Schmid and L. P. Wackett (2002). Biodegradation, biotransformation, and biocatalysis (B3). Appl. Environ. Microbiol. 68(10), 4699-4709. Parales, R. E. and J. D. Haddock (2004). Biocatalytic degradation of pollutants. Curr. Opin. Biotechnol. 15(4), 374-379. Park, H. S. and H. S. Kim (2001). Genetic and structural organization of the aminophenol catabolic operon and its implication for evolutionary process. J. Bacteriol. 183, 5074-5081. Parsek, M. R., R. W. Ye, P. Pun and A. M. Chakrabarty (1994). Critical nucleotides in the interaction of a LysR-type regulator with its target promoter region CatBC promoter activation by CatR. J. Biol. Chem. 269(15), 11279-11284. Parvatiyar, M. G., R. Govind and D. F. Bishop (1996). Biodegradation of toluene in a membrane biofilter. J. Membr. Sci. 119(1), 17-24. Patrauchan, M. A., C. Florizone, M. Dosanjh, W. W. Molm, J. Davies and L. D. Eltis (2005). Catabolism of benzoate and phthalate in Rhodococcus sp strain RHA1: redundancies and convergence. J. Bacteriol. 187(12), 4050-4063. 182 Perozich, J., H. Nicholas, B. C. Wang, R. Lindahl and J. Hempel (1999). Relationships within the aldehyde dehydrogenase extended family. Protein Sci. 8(1), 137-146. Pessione, E., M. G. Giuffrida, L. Prunotto, C. Barello, R. Mazzoli, D. Fortunato, A. Conti and C. Giunta (2003). Membrane proteome of Acinetobacter radioresistens S13 during aromatic exposure. Proteomics 3(6), 1070-1076. Pieper, D. H. (2005). Aerobic degradation of polychlorinated biphenyls. Appl. Microbiol. Biotechnol. 67(2), 170-191. Pinkart, H. C. and D. C. White (1997). Phospholipid biosynthesis and solvent tolerance in Pseudomonas putida strains. J. Bacteriol. 179(13), 4219-4226. Pinkart, H. C., J. W. Wolfram, R. Rogers and D. C. White (1996). Cell envelope changes in solvent-tolerant and solvent-sensitive Pseudomonas putida strains following exposure to o-xylene. Appl. Environ. Microbiol. 62(3), 1129-1132. Poh, R. P. C., A. R. W. Smith and I. J. Bruce (2002). Complete characterisation of Tn5530 from Burkholderia cepacia strain 2a (pIJB1) and studies of 2,4dichlorophenoxyacetate uptake by the organism. Plasmid 48(1), 1-12. Polen, I., A. Kramer, J. Bongaerts, M. Wubbolts and V. F. Wendisch (2005). The global gene expression response of Escherichia coli to L-phenylalanine. J. Biotechnol. 115(3), 221-237. Pollmann, K., V. Wray, H. J. Hecht and D. H. Pieper (2003). Rational engineering of the regioselectivity of TecA tetrachlorobenzene dioxygenase for the transformation of chlorinated toluenes. Microbiology 149, 903-913. Potrawfke, T., J. Armengaud and R. M. Wittich (2001). Chlorocatechols substituted at positions and are substrates of the broad-spectrum chlorocatechol 1,2dioxygenase of Pseudomonas chlororaphis RW71. J. Bacteriol. 183(3), 9971011. Prabhu, Y. and P. S. Phale (2003). Biodegradation of phenanthrene by Psuedomonas sp strain PP2: novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation. Appl. Microbiol. Biotechnol. 61(4), 342-351. Puhakka, J. A., E. S. Melin, K. T. Jarvinen, P. M. Koro, J. A. Rintala, P. Hartikainen, W. K. Shieh and J. F. Ferguson (1995). Fluidized-bed biofilms for chlorophenol mineralization. Water Sci. Technol. 31(1), 227-235. Rabus, R. and F. Widdel (1995). Anaerobic degradation of ethylbenzene and other aromatic-hydrocarbons by new denitrifying bacteria. Arch. Microbiol. 163(2), 96-103. Ram, R. J., N. C. VerBerkmoes, M. P. Thelen, G. W. Tyson, B. J. Baker, R. C. Blake, M. Shah, R. L. Hettich and J. F. Banfield (2005). Community proteomics of a natural microbial biofilm. Science 308(5730), 1915-1920. 183 Ramos, J. L., E. Duque, M. T. Gallegos, P. Godoy, M. I. Ramos-Gonzalez, A. Rojas, W. Teran and A. Segura (2002). Mechanisms of solvent tolerance in gramnegative bacteria. Annu. Rev. Microbiol. 56, 743-768. Ramos, J. L., E. Duque, J. J. RodriguezHerva, P. Godoy, A. Haidour, F. Reyes and A. FernandezBarrero (1997). Mechanisms for solvent tolerance ill bacteria. J. Biol. Chem. 272(7), 3887-3890. Ramos, J. L., S. Marques and K. N. Timmis (1997). Transcriptional control of the Pseudomonas Tol plasmid catabolic operons is achieved through an interplay of host factors and plasmid-encoded regulators. Annu. Rev. Microbiol. 51, 341-373. Raskin, D. M. and P. A. J. deBoer (1997). The MinE ring: An FtsZ-independent cell structure required for selection of the correct division site in E. coli. Cell 91(5), 685-694. Reardon, K. F. and K. H. Kim (2002). Two-dimensional electrophoresis analysis of protein production during growth of Pseudomonas putida F1 on toluene, phenol, and their mixture. Electrophoresis 23(14), 2233-2241. Reardon, K. F., D. C. Mosteller and J. D. B. Rogers (2000). Biodegradation kinetics of benzene, toluene, and phenol as single and mixed substrates for Pseudomonas putida F1. Biotechnol. Bioeng. 69(4), 385-400. Reineke, W. (1998). Development of hybrid strains for the mineralization of chloroaromatics by patchwork assembly. Annu. Rev. Microbiol. 52, 287-331. Resch, A., S. Leicht, M. Saric, L. Pasztor, A. Jakob, F. Gotz and A. Nordheim (2006). Comparative proteome analysis of Staphylococcus aureus biofilm and planktonic cells and correlation with transcriptome profiling. Proteomics 6(6), 1867-1877. Reva, O. N., C. Weinel, M. Weinel, K. Bohm, D. Stjepandic, J. D. Hoheisel and B. Tummler (2006). Functional genomics of stress response in Pseudomonas putida KT2440. J. Bacteriol. 188(11), 4079-4092. Rhee, S. K., X. D. Liu, L. Y. Wu, S. C. Chong, X. F. Wan and J. Z. Zhou (2004). Detection of genes involved in biodegradation and biotransformation in microbial communities by using 50-mer oligonucleotide microarrays. Appl. Environ. Microbiol. 70(7), 4303-4317. Riddle, R. R., P. R. Gibbs, R. C. Willson and M. J. Benedik (2003). Recombinant carbazole-degrading strains for enhanced petroleum processing. J. Ind. Microbiol. Biotechnol. 30(1), 6-12. Rockne, K. J., J. C. Chee-Sanford, R. A. Sanford, B. P. Hedlund, J. T. Staley and S. E. Strand (2000). Anaerobic naphthalene degradation by microbial pure cultures under nitrate-reducing conditions. Appl. Environ. Microbiol. 66(4), 1595-1601. 184 Rogers, J. B. and K. F. Reardon (2000). Modeling substrate interactions during the biodegradation of mixtures of toluene and phenol by Burkholderia species JS150. Biotechnol. Bioeng. 70(4), 428-435. Romero-Steiner, S., R. E. Parales, C. S. Harwood and J. E. Houghton (1994). Characterization of the pcaR regulatory gene from Pseudomonas putida, which is required for the complete degradation of p-hydroxybenzoate. J. Bacteriol. 176, 5771-5779. Rooney-Varga, J. N., R. T. Anderson, J. L. Fraga, D. Ringelberg and D. R. Lovley (1999). Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer. Appl. Environ. Microbiol. 65(7), 30563063. Ross, P. L., Y. L. N. Huang, J. N. Marchese, B. Williamson, K. Parker, S. Hattan, N. Khainovski, S. Pillai, S. Dey, S. Daniels, S. Purkayastha, P. Juhasz, S. Martin, M. Bartlet-Jones, F. He, A. Jacobson and D. J. Pappin (2004). Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics 3(12), 1154-1169. Rothmel, R. K., T. L. Aldrich, J. E. Houghton, W. M. Coco, L. N. Ornston and A. M. Chakrabarty (1990). Nucleotide sequencing and characterization of Pseudomonas putida CatR - a positive regulator of the catBC operon is a member of the LysR family. J. Bacteriol. 172(2), 922-931. Rui, L. Y., Y. M. Kwon, A. Fishman, K. F. Reardon and T. K. Wood (2004). Saturation mutagenesis of toluene ortho-monooxygenase of Burkholderia cepacia G4 for enhanced 1-naphthol synthesis and chloroform degradation. Appl. Environ. Microbiol. 70(6), 3246-3252. Ruppe, S., A. Neumann, E. Braekevelt, G. T. Tomy, G. A. Stern, K. A. Maruya and W. Vetter (2004). Anaerobic transformation of compounds of technical toxaphene. 2. Fate of compounds lacking geminal chlorine atoms. Environ. Toxicol. Chem. 23(3), 591-598. Ruppe, S., A. Neumann and W. Vetter (2003). Anaerobic transformation of compounds of technical toxaphene. I. Regiospecific reaction of chlorobornanes with geminal chlorine atoms. Environ. Toxicol. Chem. 22(11), 2614-2621. Saagua, M. C., G. Vieira, H. Paveia and A. Anselmo (1998). Isolation and preliminary characterization of Bacillus sp. MCS, a gram-positive 4-chlorobiphenyl degrading bacterium. Int. Biodeterior. Biodegrad. 42(1), 39-43. Sanford, R. A., J. R. Cole, F. E. Loffler and J. N. Tiedje (1996). Characterization of Desulfitobacterium chlororespirans sp nov, which grows by coupling the oxidation of lactate to the reductive dechlorination of 3-chloro-4hydroxybenzoate. Appl. Environ. Microbiol. 62(10), 3800-3808. Sanford, R. A., J. R. Cole and J. M. Tiedje (2002). Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp nov., an aryl-halorespiring 185 facultative anaerobic myxobacterium. Appl. Environ. Microbiol. 68(2), 893900. Santos, P. M., D. Benndorf and I. Sa-Correia (2004). Insights into Pseudomonas putida KT2440 response to phenol-induced stress by quantitative proteomics. Proteomics 4, 2640-2652. Sardessai, Y. and S. Bhosle (2002). Tolerance of bacteria to organic solvents. Res. Microbiol. 153(5), 263-268. Sauer, K. and A. K. Camper (2001). Characterization of phenotypic changes in Pseudomonas putida in response to surface-associated growth. J. Bacteriol. 183(22), 6579-6589. Sauer, K., A. K. Camper, G. D. Ehrlich, J. W. Costerton and D. G. Davies (2002). Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J. Bacteriol. 184(4), 1140-1154. Schuster, M., C. P. Lostroh, T. Ogi and E. P. Greenberg (2003). Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J. Bacteriol. 185(7), 2066-2079. Segura, A., P. Godoy, P. van Dillewijn, A. Hurtado, N. Arroyo, S. Santacruz and J.-L. Ramos (2005). Proteomic analysis reveals the participation of energy- and stress-related proteins in the response of Pseudomonas putida DOT-T1E to toluene. J. Bacteriol. 187(17), 5937-5945. Shelton, D. R. and J. M. Tiedje (1984). Isolation and partial characterization of bacteria in an anaerobic consortium that mineralizes 3-chlorobenzoic acid. Appl. Environ. Microbiol. 48(4), 840-848. Shen, Y. F., R. Zhao, M. E. Belov, T. P. Conrads, G. A. Anderson, K. Q. Tang, L. Pasa-Tolic, T. D. Veenstra, M. S. Lipton, H. R. Udseth and R. D. Smith (2001). Packed capillary reversed-phase liquid chromatography with highperformance electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry for proteomics. Anal. Chem. 73(8), 1766-1775. Shevchenko, A., M. Wilm, O. Vorm and M. Mann (1996). Mass spectrometric sequencing of proteins from silver stained polyacrylamide gels. Anal. Chem. 68(5), 850-858. Shimura, M., G. Mukerjee-Dhar, K. Kimbara, H. Nagato, H. Kiyohara and T. Hatta (1999). Isolation and characterization of a thermophilic Bacillus sp JF8 capable of degrading polychlorinated biphenyls and naphthalene. FEMS Microbiol. Lett. 178(1), 87-93. Shingler, V., M. Bartilson and T. Moore (1993). Cloning and nucleotide-sequence of the gene encoding the positive regulator (DmpR) of the phenol catabolic pathway encoded by Pvi150 and identification of DmpR as a member of the NtrC family of transcriptional activators. J. Bacteriol. 175(6), 1596-1604. 186 Shingler, V. and T. Moore (1994). Sensing of aromatic-compounds by the DmpR transcriptional activator of phenol-catabolizing Pseudomonas sp strain Cf600. J. Bacteriol. 176(6), 1555-1560. ShotboltBrown, J., D. W. F. Hunter and J. Aislabie (1996). Isolation and description of carbazole-degrading bacteria. Can. J. Microbiol. 42(1), 79-82. Singh, R., D. Paul and R. K. Jain (2006). Biofilms: implications in bioremediation. Trends Microbiol. 14(9), 389-397. Sonawane, A., U. Kloppner, S. Hovel, U. Volker and K.-H. Rohm (2003). Identification of Pseudomonas proteins coordinately induced by acidic amino acids and their amides: a two-dimensional electrophoresis study. Microbiology 149(Part 10), 2909-2918. Sonawane, A. M., B. Singh and K. H. Rohm (2006). The AauR-AauS two-component system regulates uptake and metabolism of acidic amino acids in Pseudomonas putida. Appl. Environ. Microbiol. 72(10), 6569-6577. Sondossi, M., M. Sylvestre and D. Ahmad (1992). Effects of chlorobenzoate transformation on the Pseudomonas testosteroni biphenyl and chlorobiphenyl degradation pathway. Appl. Environ. Microbiol. 58(2), 485-495. Sticher, P., M. C. M. Jaspers, K. Stemmler, H. Harms, A. J. B. Zehnder and J. R. vanderMeer (1997). Development and characterization of a whole-cell bioluminescent sensor for bioavailable middle-chain alkanes in contaminated groundwater samples. Appl. Environ. Microbiol. 63(10), 4053-4060. Stover, C. K., X. Q. Pham, A. L. Erwin, S. D. Mizoguchi, P. Warrener, M. J. Hickey, F. S. L. Brinkman, W. O. Hufnagle, D. J. Kowalik, M. Lagrou, R. L. Garber, L. Goltry, E. Tolentino, S. Westbrock-Wadman, Y. Yuan, L. L. Brody, S. N. Coulter, K. R. Folger, A. Kas, K. Larbig, R. Lim, K. Smith, D. Spencer, G. K. S. Wong, Z. Wu, I. T. Paulsen, J. Reizer, M. H. Saier, R. E. W. Hancock, S. Lory and M. V. Olson (2000). Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406(6799), 959-964. Tallur, P. N., V. B. Megadi, C. M. Kamanavalli and H. Z. Ninnekar (2006). Biodegradation of p-cresol by Bacillus sp strain PHN 1. Curr. Microbiol. 53(6), 529-533. Tartakovsky, B., M. J. Levesque, R. Dumortier, R. Beaudet and S. R. Guiot (1999). Biodegradation of pentachlorophenol in a continuous anaerobic reactor augmented with Desulfitobacterium frappieri PCP-1. Appl. Environ. Microbiol. 65(10), 4357-4362. Tomas-Gallardo, L., I. Ganosa, E. Santero, E. Camafeita, E. Calvo, J. A. Lopez and B. Floriano (2006). Proteomic and transcriptional characterization of aromatic degradation pathways in Rhodoccocus sp. strain TFB. Proteomics 6(S1), S119-S132. 187 Tonella, L., C. Hoogland, P. A. Binz, R. D. Appel, D. F. Hochstrasser and J. C. Sanchez (2001). New perspectives in the Escherichia coli proteome investigation. Proteomics 1(3), 409-423. Trefault, N., R. De la Iglesia, A. M. Molina, M. Manzano, T. Ledger, D. PerezPantoja, M. A. Sanchez, M. Stuardo and B. Gonzalez (2004). Genetic organization of the catabolic plasmid pJP4 from Ralstonia eutropha JMP134 (pJP4) reveals mechanisms of adaptation to chloroaromatic pollutants and evolution of specialized chloroaromatic degradation pathways. Environ. Microbiol. 6(7), 655-668. Tremoulet, F., O. Duche, A. Namane, B. Martinie and J. C. Labadie (2002). A proteomic study of Escherichia coli O157 : H7 NCTC 12900 cultivated in biofilm or in planktonic growth mode. FEMS Microbiol. Lett. 215(1), 7-14. Trogl, J., S. Ripp, G. Kuncova, G. S. Sayler, A. Churava, P. Parik, K. Demnerova, J. Halova and L. Kubicova (2005). Selectivity of whole cell optical biosensor with immobilized bioreporter Pseudomonas fluorescens HK44. Sens. Actuator B-Chem. 107(1), 98-103. Tropel, D. and J. R. van der Meer (2004). Bacterial transcriptional regulators for degradation pathways of aromatic compounds. Microbiol. Mol. Biol. Rev. 68(3), 474-500. Tsirogianni, E., M. Aivaliotis, D. G. Papasotiriou, M. Karas and G. Tsiotis (2006). Identification of inducible protein complexes in the phenol degrader Pseudomonas sp strain phDV1 by blue native gel electrophoresis and mass spectrometry. Amino Acids 30(1), 63-72. Tsirogianni, I., M. Aivaliotis, M. Karas and G. Tsiotis (2004). Mass spectrometric mapping of the enzymes involved in the phenol degradation of an indigenous soil pseudomonad. Biochim. Biophys. Acta.- Proteins and Proteomics 1700(1), 117-123. Unwin, R. D., A. Pierce, R. B. Watson, D. W. Sternberg and A. D. Whetton (2005). Quantitative proteomic analysis using isobaric protein tags enables rapid comparison of changes in transcript and protein levels in transformed cells. Mol. Cell. Proteomics 4(7), 924-935. van Herwijnen, R., D. Springael, P. Slot, H. A. J. Govers and J. R. Parsons (2003). Degradation of anthracene by Mycobacterium sp strain LB501T proceeds via a novel pathway, through o-phthalic acid. Appl. Environ. Microbiol. 69(1), 186190. van Herwijnen, R., P. Wattiau, L. Bastiaens, L. Daal, L. Jonker, D. Springael, H. A. J. Govers and J. R. Parsons (2003). Elucidation of the metabolic pathway of fluorene and cometabolic pathways of phenanthrene, fluoranthene, anthracene and dibenzothiophene by Sphingomonas sp LB126. Res. Microbiol. 154(3), 199-206. 188 Vandermeer, J. R., A. R. W. Vanneerven, E. J. Devries, W. M. Devos and A. J. B. Zehnder (1991). Cloning and characterization of plasmid-encoded genes for the degradation of 1,2-dichlorobenzene, 1,4-dichlorobenzene, and 1,2,4trichlorobenzene of Pseudomonas sp strain P51. J. Bacteriol. 173(1), 6-15. Vasudevan, N. and A. Mahadevan (1992). Utilization of complex phenoliccompounds by Acinetobacter sp. Appl. Microbiol. Biotechnol. 37(3), 404-407. Vayenas, D. V., E. Michalopoulou, G. N. Constantinides, S. Pavlou and A. C. Payatakes (2002). Visualization experiments of biodegradation in porous media and calculation of the biodegradation rate. Adv. Water Resour. 25(2), 203-219. Vilain, S., P. Cosette, M. Hubert, C. Lange, G. A. Junter and T. Jouenne (2004). Comparative proteomic analysis of planktonic and immobilized Pseudomonas aeruginosa cells: a multivariate statistical approach. Anal. Biochem. 329(1), 120-130. Volkers, R. J. M., A. L. de Jong, A. G. Hulst, B. L. M. van Baar, J. A. M. de Bont and J. Wery (2006). Chemostat-based proteomic analysis of toluene-affected Pseudomonas putida S12. Environ. Microbiol. 8(9), 1674-1679. Waite, R. D., A. Papakonstantinopoulou, E. Littler and M. A. Curtis (2005). Transcriptome analysis of Pseudomonas aeruginosa growth: comparison of gene expression in planktonic cultures and developing and mature biofilms. J. Bacteriol. 187(18), 6571-6576. Walker, A. W. and J. D. Keasling (2002). Metabolic engineering of Pseudomonas putida for the utilization of parathion as a carbon and energy source. Biotechnol. Bioeng. 78(7), 715-721. Walter, S. and J. Buchner (2002). Molecular chaperones - cellular machines for protein folding. Angew. Chem.-Int. Edit. 41(7), 1098-1113. Wang, A. A., W. Chen and A. Mulchandani (2005). Detoxification of organophosphate nerve agents by immobilized dual functional biocatalysts in a cellulose hollow fiber bioreactor. Biotechnol. Bioeng. 91(3), 379-386. Wang, A. J. A., A. Mulchandani and W. Chen (2002). Specific adhesion to cellulose and hydrolysis of organophosphate nerve agents by a genetically engineered Escherichia coli strain with a surface-expressed cellulose-binding domain and organophosphorus hydrolase. Appl. Environ. Microbiol. 68(4), 1684-1689. Wang, S. J. and K. C. Loh (2000). New cell growth pattern on mixed substrates and substrate utilization in cometabolic transformation of 4-chlorophenol. Water Res. 34(15), 3786-3794. Wang, S. J., K. C. Loh and S. S. Chua (2003). Prediction of critical cell growth behavior of Pseudomonas putida to maximize the cometabolism of 4chlorophenol with phenol and sodium glutamate as carbon sources. Enzyme Microb. Technol. 32(3-4), 422-430. 189 Ward, P. G. and K. E. O'Connor (2005). Induction and quantification of phenylacylCoA ligase enzyme activities in Pseudomonas putida CA-3 grown on aromatic carboxylic acids. FEMS Microbiol. Lett. 251(2), 227-232. Washburn, M. P., D. Wolters and J. R. Yates (2001). Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19(3), 242-247. Watanabe, M. E. (2001). Can bioremediation bounce back? Nat. Biotechnol. 19(12), 1111-1115. Weber, F. J., L. P. Ooijkaas, R. M. W. Schemen, S. Hartmans and J. A. M. Debont (1993). Adaptation of Pseudomonas putida S12 to high concentrations of styrene and other organic solvents. Appl. Environ. Microbiol. 59(10), 35023504. Wei, J., J. Sun, W. Yu, A. Jones, P. Oeller, M. Keller, G. Woodnutt and J. M. Short (2005). Global proteome discovery using an online three-dimensional LCMS/MS. J. Proteome Res. 4(3), 801-808. White, I. R., R. Pickford, J. Wood, J. M. Skehel, B. Gangadharan and P. Cutler (2004). A statistical comparison of silver and SYPRO Ruby staining for proteomic analysis. Electrophoresis 25(17), 3048-3054. Whiteley, C. G. and D. J. Lee (2006). Enzyme technology and biological remediation. Enzyme Microb. Technol. 38(3-4), 291-316. Whiteley, M., M. G. Bangera, R. E. Bumgarner, M. R. Parsek, G. M. Teitzel, S. Lory and E. P. Greenberg (2001). Gene expression in Pseudomonas aeruginosa biofilms. Nature 413(6858), 860-864. Wiegel, J., X. M. Zhang and Q. Z. Wu (1999). Anaerobic dehalogenation of hydroxylated polychlorinated biphenyls by Desulfitobacterium dehalogenans. Appl. Environ. Microbiol. 65(5), 2217-2221. Wieser, M., J. Eberspacher, B. Vogler and F. Lingens (1994). Metabolism of 4chlorophenol by Azotobacter sp GP1 - structure of the meta cleavage product of 4-chlorocatechol. FEMS Microbiol. Lett. 116(1), 73-78. Wilmes, P. and P. L. Bond (2004). The application of two-dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms. Environ. Microbiol. 6(9), 911-920. Wolters, D. A., M. P. Washburn and J. R. Yates (2001). An automated multidimensional protein identification technology for shotgun proteomics. Anal. Chem. 73(23), 5683-5690. Wu, J. F., C. Y. Jiang, B. J. Wang, Y. F. Ma, Z. P. Liu and S. J. Liu (2006). Novel partial reductive pathway for 4-chloronitrobenzene and nitrobenzene degradation in Comamonas sp strain CNB-1. Appl. Environ. Microbiol. 72(3), 1759-1765. 190 Yang, Y. J., R. F. Chen and M. P. Shiaris (1994). Metabolism of naphthalene, fluorene, and phenanthrene - preliminary characterization of a cloned genecluster from Pseudomonas putida NCIB-9816. J. Bacteriol. 176(8), 2158-2164. Yao, X. D., A. Freas, J. Ramirez, P. A. Demirev and C. Fenselau (2001). Proteolytic O-18 labeling for comparative proteomics: Model studies with two serotypes of adenovirus. Anal. Chem. 73(13), 2836-2842. Yildirim, S., T. T. Franko, R. Wohlgemuth, H. P. E. Kohler, B. Witholt and A. Schmid (2005). Recombinant chlorobenzene dioxygenase from Pseudomonas sp P51: A biocatalyst for regioselective oxidation of aromatic nitriles. Adv. Synth. Catal. 347(7-8), 1060-1072. Yoshida, M., E. Muneyuki and T. Hisabori (2001). ATP synthase - A marvellous rotary engine of the cell. Nat. Rev. Mol. Cell Biol. 2(9), 669-677. Yoshiyuki, O., K. Toshiaki, T. Masataka and N. Yuji (2004). Strategies for bioremediation of polychlorinated biphenyls. Appl. Microbiol. Biotechnol. 65(3), 250-258. Yu, Y. G. and K. C. Loh (2002). Inhibition of p-cresol on aerobic biodegradation of carbazole, and sodium salicylate by Pseudomonas putida. Water Res. 36(7), 1794-1802. Yun, S.-H., Y. H. Kim, E. J. Joo, J.-S. Choi, J.-H. Sohn and S. I. Kim (2006). Proteome Analysis of Cellular Response of Pseudomonas putida KT2440 to Tetracycline Stress. Curr. Microbiol. 53(2), 95-101. Zaar, A., J. Gescher, W. Eisenreich, A. Bacher and G. Fuchs (2004). New enzymes involved in aerobic benzoate metabolism in Azoarcus evansii. Mol. Microbiol. 54(1), 223-238. Zhang, C. L. and G. N. Bennett (2005). Biodegradation of xenobiotics by anaerobic bacteria. Appl. Microbiol. Biotechnol. 67(5), 600-618. Zhang, X. M., E. R. Sullivan and L. Y. Young (2000). Evidence for aromatic ring reduction in the biodegradation pathway of carboxylated naphthalene by a sulfate reducing consortium. Biodegradation 11(2-3), 117-124. 191 LIST OF PUBLICATIONS AND PRESENTATIONS 1. Bin Cao and Kai-Chee Loh (2007) Direct evidence of induction of ortho- and meta- cleavage pathways in Pseudomonas putida during biodegradation of benzoate at high concentration using proteomics approach, Enzyme and Microbial Technology (in revision). 2. Bin Cao and Kai-Chee Loh (2007) Catabolic pathway and cellular responses of Pseudomonas putida P8 during growth on benzoate with proteomic approach, Biotechnology and Bioengineering (in revision). 3. Bin Cao and Kai-Chee Loh (2007) Paradigm in biodegradation using Pseudomonas putida – A review of proteomics studies, Enzyme and Microbial Technology (accepted), doi: 10.1016/j.enzmictec.2008.03.004. 4. Bin Cao and Kai-Chee Loh (2007) Physiological changes of Pseudomonas putida in biphasic growth during co-metabolism of 4-chlorophenol in the presence of phenol and glutamate: a proteomics approach, submitted to Biodegradation. 5. Bin Cao and Kai-Chee Loh (2007) Physiological impact of p-cresol on Pseudomonas putida during co-metabolic transformation of carbazole in the presence of salicylate, submitted to World Journal of Microbiology and Biotechnology. 6. Bin Cao and Kai-Chee Loh (2007) Physiological Understanding of P. putida P8 In Biphasic Growth On Mixture of Phenol, 4-Chlorophenol and Glutamate, presented at the Annual AIChE Meeting, Nov 4-9, Salt Lake City, Utah, USA. 7. Bin Cao and Kai-Chee Loh (2006) Proteomic Analysis of P. putida During Biodegradation of High Concentrations of Benzoate: Activation of meta-Pathway and Physiological Responses, presented at the 23rd Annual American Electrophoresis Society Meeting, held in conjunction with the Annual AIChE Meeting, Nov 12-17, San Francisco, California, USA. 8. Bin Cao and Kai-Chee Loh (2005) Proteomic Analysis for Biphasic Growth Pattern in a Cometabolic Mixture of Phenol, Sodium Glutamate and 4-Chlorophenol, 192 presented at the 22nd Annual American Electrophoresis Society Meeting, held in conjunction with the Annual AIChE Meeting, Oct 30- Nov 4, Cincinnati, Ohio, USA. 9. Bin Cao and Kai-Chee Loh (2004) Proteomic Analysis of Sodium Benzoate Degradation pathway in P. putida ATCC49451, presented at the 21st Annual American Electrophoresis Society Meeting, held in conjunction with the Annual AIChE Meeting, Nov 7-12, Austin, Texas, USA. 193 LIST OF AWARDS 1. Bin Cao, NIH-AES Expense Grant Award. AIChE 2006, 23rd Annual AES Meeting: Twenty awardees (18 from USA, was from UK, and Bin Cao was the only one from Asia) selected from over 150 applicants. (http://www.aesociety.org/meetings/2006/ExpenseGrantAwardeesInfo.pdf) 2. Bin Cao, 2nd Prize in AES Best Poster Presentation Award. AIChE 2006, 23rd Annual AES Meeting: A total of 18 posters were judged, and were awarded 1st, 2nd, and 3rd prizes. (http://www.aesociety.org/meetings/2006/memories.php) 3. Bin Cao, NIH-AES Expense Grant Award. AIChE 2005, 22nd Annual AES Meeting: Twenty Awardees (17 from USA, from Canada, from UK, and Bin Cao was the only one from Asia) selected from 72 oral presentations. (http://www.aesociety.org/meetings/2005/AES2005Review.pdf) 194 [...]... species P putida, in particular, are paradigms due to their extraordinary capabilities in degrading aromatic compounds It is exciting to note that the genome of Pseudomonas putida KT2440 was completely sequenced and recently published in 2002 (Nelson et al 2002), which makes physiological understanding of P putida based on proteome analysis feasible Using proteomics tools, some interesting biodegradation. .. presence of phenol and sodium glutamate; 3) Obtain molecular insights into the inhibition of p-cresol to the cometabolic transformation of carbazole in the presence of salicylate by P putida ATCC 17484 The research conducted here was an initial demonstration of the power of proteomics in environmental science applications, which investigated biodegradation systems at the protein level only Although information... tools to biodegradation in order to elucidate the physiological responses of P putida during its biodegradation of aromatic compounds Specifically, the research programme comprised the following: 1) Elucidate the degradation pathways and obtain the cellular responses of P putida P8 during growth on benzoate; 2) Understand the physiological changes of P putida P8 during the biphasic growth on 4-cp in the... Characterization of phenotypic changes within the bacteria is also an important aspect This has so far been ignored, due mainly to the lack of appropriate analytical 2 instrumentation Proteomics is a good complementary tool to kinetics analysis of biodegradation systems By applying proteomics methods to biodegradation, a more comprehensive understanding of the biodegradation systems can be obtained Proteomics. .. hydration in the anaerobic processes is thermodynamically highly unfavorable As a result, aerobic catabolism of aromatic pollutants is more prevalent in the biosphere In aerobic degradation of aromatic compounds, well-defined channels within biodegradation pathways have evolved for most commonly encountered aromatic compounds The evolution is not at all surprising in view of the vast turnover of 14 aromatic. .. roles in degrading a variety of xenobiotics Some enzymes that are associated with biodegradation of aromatic compounds are shown in Table 2-7 In the anaerobic biodegradation of aromatic compounds, the peripheral pathways converge to benzoyl-CoA (occasionally to resorcinol or phloroglucinol) (Figure 2-2a) Specific multi-component reductase catalyzes the dearomatizing reaction, where energy in the form of. .. obtained Proteomics can provide critical insights into the biodegradation kinetics of a pollutant mixture and the physiological responses of the bacteria during the biodegradation process For example, through proteomics analysis of the microorganisms, information on the mechanisms of defense, detoxification and adaptation to chemicals can be obtained Proteome profiling of the microorganisms will generate... of the state -of- the-art techniques in proteomics and the applications of proteomics in biodegradation are extensively reviewed in Chapter 2 Chapter 3 details the materials and methods used in this research Chapter 4 presents the results obtained from a proteomics study focused on the biodegradation of benzoate to elucidate the degradation pathways and the cellular responses of P putida during the pathway... of aromatic compounds from benzene to benzo(pyrene) During the past two decades, anaerobic biodegradation of aromatic pollutants has also been a subject of extensive research Major groups of anaerobic bacteria in the degradation of aromatic pollutants are listed in Table 2-5 which is modified from Table 1 of Zhang and Bennett (2005) Table 2-5 Major groups of anaerobic bacteria in aromatic biodegradation. .. Some of the major bacterial respirations during biodegradation of aromatic compounds and their electron acceptors are shown in Table 2-6 Using benzoate as a model aromatic compound, the redox potential and the energetics (free-energy changes) of the biodegradation are also indicated in the table (Diaz 2004) For the biodegradation of aromatic pollutants, the use of electron acceptors other than oxygen depends . PROTEOMICS ANALYSIS OF PSEUDOMONAS PUTIDA IN BIODEGRADATION OF AROMATIC COMPOUNDS CAO BIN NATIONAL UNIVERSITY OF SINGAPORE 2007 PROTEOMICS ANALYSIS OF PSEUDOMONAS PUTIDA. understanding of the catabolic pathways and the physiological status of P. putida during biodegradation of aromatic compounds. A comprehensive understanding of the bacterial physiology during biodegradation. expressed proteins were also identified, including proteins involved in i) detoxification and stress response (AhpC, ATPase-like ATP- binding region, putative DNA-binding stress protein, SodB and