1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Possible role of diva in microglial dual effects and the stem cell differentiation

185 260 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 185
Dung lượng 3,17 MB

Nội dung

POSSIBLE ROLE OF DIVA IN MICROGLIAL DUAL EFFECTS AND THE STEM CELL DIFFERENTIATION LI LV (B.Sc) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF ANATOMY YONG LOO LIN SCHOOL OF MEDICINE NATIONAL UNIVERSITY OF SINGAPORE 2007 ii ACKNOWLEDGMENTS I would like to express my deepest appreciation to my three supervisors, Assistant Professor He Beiping, Associate Professor Lu Jia and Associate Professor Samuel Sam Wah Tay, Department of Anatomy, National University of Singapore, for their innovative ideas, invaluable guidance, constant encouragement, infinite patience, and friendly critics throughout this study Without them, this dissertation would never be completed I am very grateful to Professor Ling Eng Ang, Head of Anatomy Department, National University of Singapore, for his constant support and encouragement to me, and also for his full support in using the excellent research facilities I must also acknowledge my gratitude to Mrs Yong Eng Siang, Mrs Ng Geok Lan, Mrs Cao Qiong, Ms Chan Yee Gek and the late Miss Margaret Sim for their excellent technical assistance; Mr Yick Tuck Yong, Mr Low Chun Peng and Ms Bay Song Lin for their constant assistance in computer work; Mr Lim Beng Hock for looking after the experimental animals; and Mdm Ang Lye Gek Carolyne, Mdm Diljit Kaur, Mdm Teo Li Ching Violet for their secretarial assistance I would like to express my special thanks to Associate Professor Shabbir M Moochhala, Ms Tan Mui Hong, Ms Tan Li Li and Ms Clara Lim, DEMRI, DSO National Laboratories, their continuous help, support and advice when I did my project in DSO National Laboratories iii I would like to thank all other staff members and my fellow postgraduate students at Department of Anatomy, National University of Singapore for their help and support I would like to take this opportunity to express my heartfelt thanks to my parents for their full and endless support for my study iv This thesis is dedicated to my beloved family v PUBLICATIONS International Journals: 1: Li L, Lu J, Tay SS, Moochhala SM, He BP The function of microglia, either neuroprotection or neurotoxicity, is determined by the equilibrium among factors released from activated microglia in vitro Brain Res 2007 Jul 23;1159:8-17 2: Li L, Lu J, Tay SS, Moochhala SM, He BP Diva plays a protective role in NSC-34 cells under microglia cytotoxicity and promote the proliferation of NSC-34 cells in vitro (In preparation) 3: Li L, Lu J, Tay SS, Moochhala SM, He BP The possible role of Diva during neural stem cells differentiation (In preparation) Conference papers: 1: Li L, Tay SSW, Lu J, Moochhala S, He BP The Effects of LPS-activated BV-2 Conditioned Medium on The NSC-34 Cells, Protective or Toxic? The 16th International Microscopy Congress 2006 3rd-8th September, 2006 Sapporo, Japan 2: Li L, Tay SSW, Lu J, Moochhala S, He BP LPS-activated BV- conditioned media cause the translocation of Diva from cytosol to mitochondria 6th National Symposium on Health Sciences 2006 6th-7th June, 2006, Kuala Lumpur, Malaysia 3: Li Lv, Tay SSW, Lu J, Moochhala S, He BP Protective effects of LPS-activated BV-2 conditioned medium on the formation of aggregates in NSC-34 cells ChinaSingapore Biomedical Science Conference 3rd-7th, December, 2004, Kunming, Yunnan, China 4: Li Lv, Tay SSW, Lu J, Moochhala S, He BP Aggregate-bearing motor neurons are more vulnerable to microglial toxicity 8th NUS-NUH Annual Science Meeting, 2nd-3rd October, 2004, Singapore vi TABLE OF CONTENTS ACKNOWLEDGEMENTS…………………………………………………………… ii DEDICATIONS…………………………………………………………………………iv PUBLICATIONS……………………………………………………………………… v TABLE OF CONTENTS……………………………………………………………….vi ABBREVIATIONS…………………………………………………………………….xiv SUMMARY……………………………………………………………………………xvii CHAPTER INTRODUCTION……………………………………………………… 1 Microglia in the central nervous system……………………………………………… 2 Molecular aspects of microglia…………………………………………………………2 Microglia in neurodegenerative diseases……………………………………………….4 Dual functions of microglia…………………… …………………………………… 4.1 Microglial neuroprotective function…………………………………………… 4.2 Microglial cytotoxicity………………………………………………………… 4.3 Microglial dual-function: when and why……………………………………… Apoptosis and neuron death………………………………………………….……… 10 5.1 Apoptosis……………………………………………………………….……….10 5.2 Necrosis……………………………………………………………………… 10 5.3 Involvement of apoptosis in neurological diseases…………………………… 11 5.4 Microglial cytotoxicity induced apoptosis…………………………………… 11 5.5 Caspases and two apoptosis pathways.……………………………… ………12 5.5.1 Death-receptor activated apoptosis……………………………………….12 vii 5.5.2 Mitochondria-mediated apoptosis……………………………….……… 13 5.6 Key regulators of mitochondrial apoptosis………………………….………….14 5.6.1 Bcl-2 family …………………………………………………………… 14 5.6.2 Bcl-2 family members in neuron death………………………………… 15 5.6.3 Diva, a new identified Bcl-2 family member…………………………… 16 5.6.3.1 Structure of Diva……………………………………………… 17 5.6.3.2 Distribution of Diva in vivo…………………………………….17 5.6.3.3 Function of Diva in apoptosis………………………………… 18 5.6.4 Bcl-2 family members in cell cycle……………………………………….19 Cell cycle and stem cell differentiation……………………………………………….20 6.1 Neural stem cells……………………………………………………………… 20 6.1.1 Neural stem cells in vivo and in vitro………………………………… …21 6.1.2 Bcl-2 family members and neural stem cells…………………………… 22 Hypothesis……………………………………………………………………………22 Aims and scopes…………………………………………………………………… 24 8.1 To identify the possible relationship between microglia activation and its dual function in vitro……………………………………………………………….24 8.2 To verify microglial protective or destructive function in protein aggregatecontaining neuron model in vitro…………………………………………… 24 8.3 To identify the possible involvement of Bcl-2 family members in neurons during the interaction between microglia and neurons……………………………….25 8.4 To study Diva in animal and cell models ………………………………………25 8.4.1 To investigate the distribution of Diva in the CNS……………………….25 viii 8.4.2 To evaluate the possible role of Diva in response to microglial cytotoxicity ………………………………………………………………………………….25 8.4.3 To evaluate the possible role of Diva during the cell cycle regulation in both NSC-34 and neural stem cells…………………………………….26 CHAPTER EXPERIMENTAL STUDIES,……………………………………….27 I: Determination of Microglial Dual Function by the Concentrations of Factors Released from Activated Microglia in vitro…………………………………………28 Introduction………………………………………………………………………….29 Materials and methods………………………………………………………………31 2.1 Tissue cell culture……… ……………………………….………………… 31 2.2 Activation of BV-2 cells by Lipopolysaccharide…………………………… 32 2.3 Investigation of pro-inflammatory factors by ELISA assay ………………… 32 2.4 Treatment of NSC-34 cells with LPS-BVCM and LPS……………………… 33 2.5 MTS assay…………………………………………………………………… 34 2.6 Apoptosis assays……………………………………………………………….35 2.7 Induction of aggregates in NSC-34 neurons………………………………… 36 2.8 Detection of aggregates by immunohistochemistry………………………… 36 2.9 Effects of 1μg/ml LPS-BVCM on the formation of aggregates in NSC-34 neurons …………………………………………………………………………………… 38 2.10 Neurite growth assay………………………………………………………….38 2.11 Statistical analysis…………………………………………………………….39 Results……………………………………………………………………………….39 ix 3.1 Quantification of TNF-α, IL-1β and IL-6 in LPS-BVCM by ELISA………….39 3.2 Effects of LPS stimulated BV-2 conditioned medium (LPS-BVCM) on the NSC34 cell viability…………………………………………………… ………….40 3.3 PS externalization in NSC-34 cells ……………………………………… ……43 3.4 The effects of 2,5-HD on NSC-34 neurons……………………………… ……44 3.5 Effects of LPS-BVCM on the formation of aggregates in NSC-34 cells….… 47 3.6 Effects of LPS-BVCM on the outgrowth of processes of NSC-34 neurons ……………………………………………………………………… …………48 Discussion……………………………………………………………… ………… 50 4.1 The nature of microglial function could be determined by the amount of LPS applied to microglia…………………………………………………… ……….50 4.2 The concentration of conditioned medium from 1μg/ml LPS-stimulated microglia present opposing functions: neuroprotection or neurotoxicity……… …………51 4.3 Lower concentration of LPS-activated microglia conditioned medium can prevent the formation of protein aggregation in neurons from 2,5-HD toxicity……… 52 4.4 Lower concentration of LPS-activated microglia conditioned medium can promote the outgrowth of the processes of neurons………………… …………52 4.5 Mechanism of microglial dual effects: Equilibrium in functions of various biofactors released from activated microglia is the key in microglial dual function ………………………………………………………………………………….53 II: Possible Role of Diva in the Interaction between BV-2 and NSC-34 Cells…….56 Introduction………………………………………………………………………… 57 x Materials and methods……………………………………………………………… 59 2.1 Tissue cell culture……………………………………………………………….59 2.2 Activation of BV-2 cells by Lipopolysaccharide (LPS)…………….………… 60 2.3 Treatment of NSC-34 cells by LPS-BVCM………………………… …………60 2.4 Real-Time polymerase chain reaction (Real-Time PCR)………… ……………60 2.5 Detection of real-time RT-PCR products specificities…………… ……………63 2.6 Overexpression of Diva in NSC34 cells………………………….……….…… 63 2.7 Transfection of pcDNA6-Diva into NSC-34 cells……………….…………… 69 2.8 Immunocytochemistry………………………………………… ……………….71 Results………………………………………………………………… …………… 74 3.1 Expression of Bcl-2 family members in NSC-34 cells after being treated with different concentrations of LPS-BVCM………………………………… …… 74 3.2 Immunostaining of Diva after treated with 25% LPS-BVCM in NSC-34 cells …………………………………………………………………………… …… 79 3.3 Construction of Overexpression Plasmid for Diva……………………….…… 81 3.4 Overexpression of pcDNA6-Diva in NSC-34 cells………………….………… 84 3.5 Proliferation assay of NSC-34 cells after being transfected with pcDNA6-Diva ………………………………………………………………………… ……… 86 3.6 Effects of overexpression Diva in NSC-34 cells after treated with LPS-BVCM …………………………………………………………………………… …… 88 Discussion………………………………………… …………………………………89 4.1 Microglial toxicity could result in changes in expressions of several Bcl-2 family members in NSC-34 cells…………………………… …………………………89 Chau,B.N., Cheng,E.H., Kerr,D.A., and Hardwick,J.M (2000) Aven, a novel inhibitor of caspase activation, binds Bcl-xL and Apaf-1 Mol Cell 6, 31-40 Chinnaiyan,A.M., O'Rourke,K., Tewari,M., and Dixit,V.M (1995) FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis Cell 81, 505-512 Coffey,P.J., Perry,V.H., and Rawlins,J.N (1990) An investigation into the early stages of the inflammatory response following ibotenic acid-induced neuronal degeneration Neuroscience 35, 121-132 Colton,C.A., and Gilbert,D.L (1987) Production of superoxide anions by a CNS macrophage, the microglia FEBS Lett 223, 284-288 Cosenza,M.A., Zhao,M.L., Si,Q., and Lee,S.C (2002) Human brain parenchymal microglia express CD14 and CD45 and are productively infected by HIV-1 in HIV-1 encephalitis Brain Pathol 12, 442-455 Cua,D.J., Sherlock,J., Chen,Y., Murphy,C.A., Joyce,B., Seymour,B., Lucian,L., To,W., Kwan,S., Churakova,T., Zurawski,S., Wiekowski,M., Lira,S.A., Gorman,D., Kastelein,R.A., and Sedgwick,J.D (2003) Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain Nature 421, 744-748 Dahlstrand,J., Zimmerman,L.B., McKay,R.D., and Lendahl,U (1992) Characterization of the human nestin gene reveals a close evolutionary relationship to neurofilaments J Cell Sci 103 ( Pt 2), 589-597 Davies,A.M., Horton,A., Burton,L.E., Schmelzer,C., Vandlen,R., and Rosenthal,A (1993) Neurotrophin-4/5 is a mammalian-specific survival factor for distinct populations of sensory neurons J Neurosci 13, 4961-4967 de,B.F., and Dubois-Dauphin,M (1996) Time course of axotomy-induced apoptotic cell death in facial motoneurons of neonatal wild type and bcl-2 transgenic mice Neuroscience 71, 1111-1119 De,S.R., Giampaolo,A., Giometto,B., Gallo,P., Levi,G., Peschle,C., and Aloisi,F (1995) The costimulatory molecule B7 is expressed on human microglia in culture and in multiple sclerosis acute lesions J Neuropathol Exp Neurol 54, 175-187 del Rio-Hortega (1932) Cytology and cellular pathology of the nervous system Penfeild Wed, New York.) Dheen,S.T., Jun,Y., Yan,Z., Tay,S.S., and Ling,E.A (2005) Retinoic acid inhibits expression of TNF-alpha and iNOS in activated rat microglia Glia 50, 21-31 Dickson,D.W., Lee,S.C., Mattiace,L.A., Yen,S.H., and Brosnan,C (1993) Microglia and cytokines in neurological disease, with special reference to AIDS and Alzheimer's disease Glia 7, 75-83 Du,C., Fang,M., Li,Y., Li,L., and Wang,X (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition Cell 102, 33-42 151 Ehrlich,L.C., Hu,S., Sheng,W.S., Sutton,R.L., Rockswold,G.L., Peterson,P.K., and Chao,C.C (1998) Cytokine regulation of human microglial cell IL-8 production J Immunol 160, 1944-1948 Elkabes,S., Cicco-Bloom,E.M., and Black,I.B (1996) Brain microglia/macrophages express neurotrophins that selectively regulate microglial proliferation and function J Neurosci 16, 2508-2521 Eriksson,C., Nobel,S., Winblad,B., and Schultzberg,M (2000) Expression of interleukin alpha and beta, and interleukin receptor antagonist mRNA in the rat central nervous system after peripheral administration of lipopolysaccharides Cytokine 12, 423-431 Festjens,N., Vanden,B.T., and Vandenabeele,P (2006) Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response Biochim Biophys Acta 1757, 1371-1387 Fischer,H.G., and Reichmann,G (2001) Brain dendritic cells and macrophages/microglia in central nervous system inflammation J Immunol 166, 2717-2726 Fischer,U., Janicke,R.U., and Schulze-Osthoff,K (2003) Many cuts to ruin: a comprehensive update of caspase substrates Cell Death Differ 10, 76-100 Floden,A.M., Li,S., and Combs,C.K (2005) Beta-amyloid-stimulated microglia induce neuron death via synergistic stimulation of tumor necrosis factor alpha and NMDA receptors J Neurosci 25, 2566-2575 Frei,K., Malipiero,U.V., Leist,T.P., Zinkernagel,R.M., Schwab,M.E., and Fontana,A (1989) On the cellular source and function of interleukin produced in the central nervous system in viral diseases Eur J Immunol 19, 689-694 Fujise,K., Zhang,D., Liu,J., and Yeh,E.T (2000) Regulation of apoptosis and cell cycle progression by MCL1 Differential role of proliferating cell nuclear antigen J Biol Chem 275, 39458-39465 Gage,F.H (2000) Mammalian neural stem cells Science 287, 1433-1438 Gage,F.H., Ray,J., and Fisher,L.J (1995) Isolation, characterization, and use of stem cells from the CNS Annu Rev Neurosci 18, 159-192 Gao,H.M., Hong,J.S., Zhang,W., and Liu,B (2002a) Distinct role for microglia in rotenone-induced degeneration of dopaminergic neurons J Neurosci 22, 782-790 Gao,H.M., Jiang,J., Wilson,B., Zhang,W., Hong,J.S., and Liu,B (2002b) Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson's disease J Neurochem 81, 1285-1297 Gebicke-Haerter,P.J., Van,C.D., Norenberg,W., and Illes,P (1996) Molecular mechanisms of microglial activation A Implications for regeneration and neurodegenerative diseases Neurochem Int 29, 1-12 152 Gehrmann,J., Matsumoto,Y., and Kreutzberg,G.W (1995) Microglia: intrinsic immuneffector cell of the brain Brain Res Brain Res Rev 20, 269-287 Gerritse,K., Laman,J.D., Noelle,R.J., Aruffo,A., Ledbetter,J.A., Boersma,W.J., and Claassen,E (1996) CD40-CD40 ligand interactions in experimental allergic encephalomyelitis and multiple sclerosis Proc Natl Acad Sci U S A 93, 24992504 Giulian,D., and Robertson,C (1990) Inhibition of mononuclear phagocytes reduces ischemic injury in the spinal cord Ann Neurol 27, 33-42 Gonzalez-Scarano,F., and Baltuch,G (1999) Microglia as mediators of inflammatory and degenerative diseases Annu Rev Neurosci 22, 219-240 Gottlieb,R.A (2000) Mitochondria: execution central FEBS Lett 482, 6-12 Graeber,M.B., Streit,W.J., and Kreutzberg,G.W (1988) The microglial cytoskeleton: vimentin is localized within activated cells in situ J Neurocytol 17, 573-580 Graham,D.G., Amarnath,V., Valentine,W.M., Pyle,S.J., and Anthony,D.C (1995) Pathogenetic studies of hexane and carbon disulfide neurotoxicity Crit Rev Toxicol 25, 91-112 Green,D.R., and Kroemer,G (2004) The pathophysiology of mitochondrial cell death Science 305, 626-629 Grewal,I.S., Foellmer,H.G., Grewal,K.D., Wang,H., Lee,W.P., Tumas,D., Janeway,C.A., Jr., and Flavell,R.A (2001) CD62L is required on effector cells for local interactions in the CNS to cause myelin damage in experimental allergic encephalomyelitis Immunity 14, 291-302 Groves,M.J., Christopherson,T., Giometto,B., and Scaravilli,F (1997) Axotomyinduced apoptosis in adult rat primary sensory neurons J Neurocytol 26, 615-624 Gu,Z.Z., Pan,Y.C., Cui,J.K., Klebuc,M.J., Shenaq,S., and Liu,P.K (1997) Gene expression and apoptosis in the spinal cord neurons after sciatic nerve injury Neurochem Int 30, 417-426 Hall,P.A., and Watt,F.M (1989) Stem cells: the generation and maintenance of cellular diversity Development 106, 619-633 Hamilton,S.P., and Rome,L.H (1994) Stimulation of in vitro myelin synthesis by microglia Glia 11, 326-335 Hanisch,U.K., Lyons,S.A., Prinz,M., Nolte,C., Weber,J.R., Kettenmann,H., and Kirchhoff,F (1997) Mouse brain microglia express interleukin-15 and its multimeric receptor complex functionally coupled to Janus kinase activity J Biol Chem 272, 28853-28860 Hao,A.J., Dheen,S.T., and Ling,E.A (2001) Induction of cytokine expression in the brain macrophages/amoeboid microglia of the fetal rat exposed to a teratogen Neuroreport 12, 1391-1397 153 Hao,A.J., Dheen,S.T., and Ling,E.A (2002) Expression of macrophage colonystimulating factor and its receptor in microglia activation is linked to teratogeninduced neuronal damage Neuroscience 112, 889-900 Hartley,C.L., Anderson,V.E., Anderton,B.H., and Robertson,J (1997) Acrylamide and 2,5-hexanedione induce collapse of neurofilaments in SH-SY5Y human neuroblastoma cells to form perikaryal inclusion bodies Neuropathol Appl Neurobiol 23, 364-372 Hartmann,A., Michel,P.P., Troadec,J.D., Mouatt-Prigent,A., Faucheux,B.A., Ruberg,M., Agid,Y., and Hirsch,E.C (2001) Is Bax a mitochondrial mediator in apoptotic death of dopaminergic neurons in Parkinson's disease? J Neurochem 76, 1785-1793 He,B.P., Tay,S.S., and Leong,S.K (1997) Microglia responses in the CNS following sciatic nerve transection in C57BL/Wld(s) and BALB/c mice Exp Neurol 146, 587595 He,B.P., Wen,W., and Strong,M.J (2002) Activated microglia (BV-2) facilitation of TNF-alpha-mediated motor neuron death in vitro J Neuroimmunol 128, 31-38 Hegde,R., Srinivasula,S.M., Ahmad,M., Fernandes-Alnemri,T., and Alnemri,E.S (1998) Blk, a BH3-containing mouse protein that interacts with Bcl-2 and Bcl-xL, is a potent death agonist J Biol Chem 273, 7783-7786 Hickey,W.F., and Kimura,H (1988) Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo Science 239, 290-292 Hirsch,E.C., Hunot,S., Faucheux,B., Agid,Y., Mizuno,Y., Mochizuki,H., Tatton,W.G., Tatton,N., and Olanow,W.C (1999) Dopaminergic neurons degenerate by apoptosis in Parkinson's disease Mov Disord 14, 383-385 Hockenbery,D., Nunez,G., Milliman,C., Schreiber,R.D., and Korsmeyer,S.J (1990) Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death Nature 348, 334-336 Hoek,R.M., Ruuls,S.R., Murphy,C.A., Wright,G.J., Goddard,R., Zurawski,S.M., Blom,B., Homola,M.E., Streit,W.J., Brown,M.H., Barclay,A.N., and Sedgwick,J.D (2000) Down-regulation of the macrophage lineage through interaction with OX2 (CD200) Science 290, 1768-1771 Huang,D.C., O'Reilly,L.A., Strasser,A., and Cory,S (1997) The anti-apoptosis function of Bcl-2 can be genetically separated from its inhibitory effect on cell cycle entry EMBO J 16, 4628-4638 Huitinga,I., Ruuls,S.R., Jung,S., Van,R.N., Hartung,H.P., and Dijkstra,C.D (1995) Macrophages in T cell line-mediated, demyelinating, and chronic relapsing experimental autoimmune encephalomyelitis in Lewis rats Clin Exp Immunol 100, 344-351 Hulkower,K., Brosnan,C.F., Aquino,D.A., Cammer,W., Kulshrestha,S., Guida,M.P., Rapoport,D.A., and Berman,J.W (1993) Expression of CSF-1, c-fms, and MCP-1 in 154 the central nervous system of rats with experimental allergic encephalomyelitis J Immunol 150, 2525-2533 Ii,M., Sunamoto,M., Ohnishi,K., and Ichimori,Y (1996) beta-Amyloid proteindependent nitric oxide production from microglial cells and neurotoxicity Brain Res 720, 93-100 Imai,F., Suzuki,H., Oda,J., Ninomiya,T., Ono,K., Sano,H., and Sawada,M (2007) Neuroprotective effect of exogenous microglia in global brain ischemia J Cereb Blood Flow Metab 27, 488-500 Inohara,N., Gourley,T.S., Carrio,R., Muniz,M., Merino,J., Garcia,I., Koseki,T., Hu,Y., Chen,S., and Nunez,G (1998) Diva, a Bcl-2 homologue that binds directly to Apaf-1 and induces BH3-independent cell death J Biol Chem 273, 32479-32486 Isaksson,J., Farooque,M., Holtz,A., Hillered,L., and Olsson,Y (1999) Expression of ICAM-1 and CD11b after experimental spinal cord injury in rats J Neurotrauma 16, 165-173 Ishikawa,S (1977) Differentiation of human neuroblastoma cells in vitro-morphological changes induced by dibutyrl cyclic AMP Acta Pathol Jpn 27, 697711 Israels,L.G., and Israels,E.D (1999) Apoptosis Oncologist 4, 332-339 Jacobson,M.D., Weil,M., and Raff,M.C (1997) Programmed cell death in animal development Cell 88, 347-354 Jander,S., Pohl,J., D'Urso,D., Gillen,C., and Stoll,G (1998) Time course and cellular localization of interleukin-10 mRNA and protein expression in autoimmune inflammation of the rat central nervous system Am J Pathol 152, 975-982 Jellinger,K.A (2003) General aspects of neurodegeneration J Neural Transm Suppl 101-144 Jellinger,K.A (2006) Challenges in neuronal apoptosis Curr Alzheimer Res 3, 377391 Jeohn,G.H., Kong,L.Y., Wilson,B., Hudson,P., and Hong,J.S (1998) Synergistic neurotoxic effects of combined treatments with cytokines in murine primary mixed neuron/glia cultures J Neuroimmunol 85, 1-10 Jin,Z., and El-Deiry,W.S (2005) Overview of cell death signaling pathways Cancer Biol Ther 4, 139-163 Johansson,C.B., Momma,S., Clarke,D.L., Risling,M., Lendahl,U., and Frisen,J (1999) Identification of a neural stem cell in the adult mammalian central nervous system Cell 96, 25-34 Johnson,A.B., Bake,S., Lewis,D.K., and Sohrabji,F (2006) Temporal expression of IL-1beta protein and mRNA in the brain after systemic LPS injection is affected by age and estrogen J Neuroimmunol 174, 82-91 155 Jones,R.E., Mass,M., and Bourdette,D.N (1999) Myelin basic protein-specific T lymphocytes induce chronic relapsing experimental autoimmune encephalomyelitis in lymphocyte-deficient (SCID) mice J Neuroimmunol 93, 92-101 Ke,N., Godzik,A., and Reed,J.C (2001) Bcl-B, a novel Bcl-2 family member that differentially binds and regulates Bax and Bak J Biol Chem 276, 12481-12484 Kiefer,R., Schweitzer,T., Jung,S., Toyka,K.V., and Hartung,H.P (1998) Sequential expression of transforming growth factor-beta1 by T-cells, macrophages, and microglia in rat spinal cord during autoimmune inflammation J Neuropathol Exp Neurol 57, 385-395 Kim,S.U., and de,V.J (2005) Microglia in health and disease J Neurosci Res 81, 302-313 Kitamura,Y., Takata,K., Inden,M., Tsuchiya,D., Yanagisawa,D., Nakata,J., and Taniguchi,T (2004) Intracerebroventricular injection of microglia protects against focal brain ischemia J Pharmacol Sci 94, 203-206 Kloss,C.U., Werner,A., Klein,M.A., Shen,J., Menuz,K., Probst,J.C., Kreutzberg,G.W., and Raivich,G (1999) Integrin family of cell adhesion molecules in the injured brain: regulation and cellular localization in the normal and regenerating mouse facial motor nucleus J Comp Neurol 411, 162-178 Kluck,R.M., Bossy-Wetzel,E., Green,D.R., and Newmeyer,D.D (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis Science 275, 1132-1136 Konig,H.G., Rehm,M., Gudorf,D., Krajewski,S., Gross,A., Ward,M.W., and Prehn,J.H (2007) Full length Bid is sufficient to induce apoptosis of cultured rat hippocampal neurons BMC Cell Biol 8, Kopec,K.K., and Carroll,R.T (1998) Alzheimer's beta-amyloid peptide 1-42 induces a phagocytic response in murine microglia J Neurochem 71, 2123-2131 Kornblum,H.I (2007) Introduction to neural stem cells Stroke 38, 810-816 Krenz,N.R., and Weaver,L.C (2000) Nerve growth factor in glia and inflammatory cells of the injured rat spinal cord J Neurochem 74, 730-739 Kreutzberg,G.W (1996) Microglia: a sensor for pathological events in the CNS Trends Neurosci 19, 312-318 Laman,J.D., van,M.M., Schellekens,M.M., de,B.M., Melchers,B., Massacesi,L., Lassmann,H., Claassen,E., and Hart,B.A (1998) Expression of accessory molecules and cytokines in acute EAE in marmoset monkeys (Callithrix jacchus) J Neuroimmunol 86, 30-45 Lendahl,U., Zimmerman,L.B., and McKay,R.D (1990) CNS stem cells express a new class of intermediate filament protein Cell 60, 585-595 156 Li,H., Zhu,H., Xu,C.J., and Yuan,J (1998) Cleavage of BID by caspase mediates the mitochondrial damage in the Fas pathway of apoptosis Cell 94, 491-501 Li,J., Gran,B., Zhang,G.X., Ventura,E.S., Siglienti,I., Rostami,A., and Kamoun,M (2003) Differential expression and regulation of IL-23 and IL-12 subunits and receptors in adult mouse microglia J Neurol Sci 215, 95-103 Li,P., Nijhawan,D., Budihardjo,I., Srinivasula,S.M., Ahmad,M., Alnemri,E.S., and Wang,X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade Cell 91, 479-489 Lindsten,T., Golden,J.A., Zong,W.X., Minarcik,J., Harris,M.H., and Thompson,C.B (2003) The proapoptotic activities of Bax and Bak limit the size of the neural stem cell pool J Neurosci 23, 11112-11119 Lindsten,T., Ross,A.J., King,A., Zong,W.X., Rathmell,J.C., Shiels,H.A., Ulrich,E., Waymire,K.G., Mahar,P., Frauwirth,K., Chen,Y., Wei,M., Eng,V.M., Adelman,D.M., Simon,M.C., Ma,A., Golden,J.A., Evan,G., Korsmeyer,S.J., MacGregor,G.R., and Thompson,C.B (2000) The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues Mol Cell 6, 1389-1399 Linette,G.P., Li,Y., Roth,K., and Korsmeyer,S.J (1996) Cross talk between cell death and cell cycle progression: BCL-2 regulates NFAT-mediated activation Proc Natl Acad Sci U S A 93, 9545-9552 Liu,B., Gao,H.M., and Hong,J.S (2003) Parkinson's disease and exposure to infectious agents and pesticides and the occurrence of brain injuries: role of neuroinflammation Environ Health Perspect 111, 1065-1073 Liu,B., and Hong,J.S (2003) Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention J Pharmacol Exp Ther 304, 1-7 Loeffler,M., and Kroemer,G (2000) The mitochondrion in cell death control: certainties and incognita Exp Cell Res 256, 19-26 Lois,C., and varez-Buylla,A (1993) Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia Proc Natl Acad Sci U S A 90, 2074-2077 LoPachin,R.M., He,D., and Reid,M.L (2005) 2,5-Hexanedione-induced changes in the neurofilament subunit pools of rat peripheral nerve Neurotoxicology 26, 229-240 Lukaszewicz,A., Savatier,P., Cortay,V., Kennedy,H., and Dehay,C (2002) Contrasting effects of basic fibroblast growth factor and neurotrophin on cell cycle kinetics of mouse cortical stem cells J Neurosci 22, 6610-6622 Lunemann,A., Ullrich,O., Diestel,A., Jons,T., Ninnemann,O., Kovac,A., Pohl,E.E., Hass,R., Nitsch,R., and Hendrix,S (2006) Macrophage/microglia activation factor expression is restricted to lesion-associated microglial cells after brain trauma Glia 53, 412-419 157 Mander,P., Borutaite,V., Moncada,S., and Brown,G.C (2005) Nitric oxide from inflammatory-activated glia synergizes with hypoxia to induce neuronal death J Neurosci Res 79, 208-215 Marron,T.U., Guerini,V., Rusmini,P., Sau,D., Brevini,T.A., Martini,L., and Poletti,A (2005) Androgen-induced neurite outgrowth is mediated by neuritin in motor neurones J Neurochem 92, 10-20 Mastronardi,F.G., Wood,D.D., Mei,J., Raijmakers,R., Tseveleki,V., Dosch,H.M., Probert,L., Casaccia-Bonnefil,P., and Moscarello,M.A (2006) Increased citrullination of histone H3 in multiple sclerosis brain and animal models of demyelination: a role for tumor necrosis factor-induced peptidylarginine deiminase translocation J Neurosci 26, 11387-11396 Matsumoto,Y., Ohmori,K., and Fujiwara,M (1992a) Immune regulation by brain cells in the central nervous system: microglia but not astrocytes present myelin basic protein to encephalitogenic T cells under in vivo-mimicking conditions Immunology 76, 209-216 Matsumoto,Y., Ohmori,K., and Fujiwara,M (1992b) Microglial and astroglial reactions to inflammatory lesions of experimental autoimmune encephalomyelitis in the rat central nervous system J Neuroimmunol 37, 23-33 McGeer,P.L., Itagaki,S., Boyes,B.E., and McGeer,E.G (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains Neurology 38, 1285-1291 McGeer,P.L., and McGeer,E.G (2001) Inflammation, autotoxicity and Alzheimer disease Neurobiol Aging 22, 799-809 McGeer,P.L., and McGeer,E.G (2002) Innate immunity, local inflammation, and degenerative disease Sci Aging Knowledge Environ 2002, re3 McKay,R (1997) Stem cells in the central nervous system Science 276, 66-71 Minagar,A., Shapshak,P., Fujimura,R., Ownby,R., Heyes,M., and Eisdorfer,C (2002) The role of macrophage/microglia and astrocytes in the pathogenesis of three neurologic disorders: HIV-associated dementia, Alzheimer disease, and multiple sclerosis J Neurol Sci 202, 13-23 Minghetti,L., and Levi,G (1998) Microglia as effector cells in brain damage and repair: focus on prostanoids and nitric oxide Prog Neurobiol 54, 99-125 Mochizuki,H., Goto,K., Mori,H., and Mizuno,Y (1996) Histochemical detection of apoptosis in Parkinson's disease J Neurol Sci 137, 120-123 Mohamad,N., Gutierrez,A., Nunez,M., Cocca,C., Martin,G., Cricco,G., Medina,V., Rivera,E., and Bergoc,R (2005) Mitochondrial apoptotic pathways Biocell 29, 149161 Moran,L.B., and Graeber,M.B (2004) The facial nerve axotomy model Brain Res Brain Res Rev 44, 154-178 158 Muchmore,S.W., Sattler,M., Liang,H., Meadows,R.P., Harlan,J.E., Yoon,H.S., Nettesheim,D., Chang,B.S., Thompson,C.B., Wong,S.L., Ng,S.L., and Fesik,S.W (1996) X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death Nature 381, 335-341 Murphy,E., Imahashi,K., and Steenbergen,C (2005) Bcl-2 regulation of mitochondrial energetics Trends Cardiovasc Med 15, 283-290 Nagata,K., Takei,N., Nakajima,K., Saito,H., and Kohsaka,S (1993) Microglial conditioned medium promotes survival and development of cultured mesencephalic neurons from embryonic rat brain J Neurosci Res 34, 357-363 Nakajima,K., Honda,S., Tohyama,Y., Imai,Y., Kohsaka,S., and Kurihara,T (2001a) Neurotrophin secretion from cultured microglia J Neurosci Res 65, 322-331 Nakajima,K., Honda,S., Tohyama,Y., Imai,Y., Kohsaka,S., and Kurihara,T (2001b) Neurotrophin secretion from cultured microglia J Neurosci Res 65, 322-331 Nakajima,K., and Kohsaka,S (2004) Microglia: neuroprotective and neurotrophic cells in the central nervous system Curr Drug Targets Cardiovasc Haematol Disord 4, 65-84 Nakajima,K., Nagata,K., Hamanoue,M., Takemoto,N., and Kohsaka,S (1993) Microglia-derived elastase produces a low-molecular-weight plasminogen that enhances neurite outgrowth in rat neocortical explant cultures J Neurochem 61, 2155-2163 Naumann,U., Weit,S., Wischhusen,J., and Weller,M (2001) Diva/Boo is a negative regulator of cell death in human glioma cells FEBS Lett 505, 23-26 Ness,J.M., Harvey,C.A., Strasser,A., Bouillet,P., Klocke,B.J., and Roth,K.A (2006) Selective involvement of BH3-only Bcl-2 family members Bim and Bad in neonatal hypoxia-ischemia Brain Res 1099, 150-159 Neumann,J., Gunzer,M., Gutzeit,H.O., Ullrich,O., Reymann,K.G., and Dinkel,K (2006) Microglia provide neuroprotection after ischemia FASEB J 20, 714-716 Ng,F.W., Nguyen,M., Kwan,T., Branton,P.E., Nicholson,D.W., Cromlish,J.A., and Shore,G.C (1997) p28 Bap31, a Bcl-2/Bcl-XL- and procaspase-8-associated protein in the endoplasmic reticulum J Cell Biol 139, 327-338 Nicholson,D.W (1996) ICE/CED3-like proteases as therapeutic targets for the control of inappropriate apoptosis Nat Biotechnol 14, 297-301 Nunes,M.C., Roy,N.S., Keyoung,H.M., Goodman,R.R., McKhann,G., Jiang,L., Kang,J., Nedergaard,M., and Goldman,S.A (2003) Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain Nat Med 9, 439-447 O'Reilly,L.A., Huang,D.C., and Strasser,A (1996) The cell death inhibitor Bcl-2 and its homologues influence control of cell cycle entry EMBO J 15, 6979-6990 159 Oehmichen,W., and Gencic,M (1975) Experimental studies on kinetics and functions of monuclear phagozytes of the central nervous system Acta Neuropathol Suppl (Berl) Suppl 6, 285-290 Ohnuma,S., and Harris,W.A (2003) Neurogenesis and the cell cycle Neuron 40, 199-208 Ohnuma,S., Philpott,A., and Harris,W.A (2001) Cell cycle and cell fate in the nervous system Curr Opin Neurobiol 11, 66-73 Olson,M., and Kornbluth,S (2001) Mitochondria in apoptosis and human disease Curr Mol Med 1, 91-122 Ourednik,J., Ourednik,W., and Van der,L.H (1993) Do foetal neural grafts induce repair by the injured juvenile neocortex? Neuroreport 5, 133-136 Ourednik,V., Ourednik,J., Park,K.I., and Snyder,E.Y (1999) Neural stem cells a versatile tool for cell replacement and gene therapy in the central nervous system Clin Genet 56, 267-278 Pagano,S.F., Impagnatiello,F., Girelli,M., Cova,L., Grioni,E., Onofri,M., Cavallaro,M., Etteri,S., Vitello,F., Giombini,S., Solero,C.L., and Parati,E.A (2000) Isolation and characterization of neural stem cells from the adult human olfactory bulb Stem Cells 18, 295-300 Parsadanian,A.S., Cheng,Y., Keller-Peck,C.R., Holtzman,D.M., and Snider,W.D (1998) Bcl-xL is an antiapoptotic regulator for postnatal CNS neurons J Neurosci 18, 1009-1019 Perez-Capote,K., Serratosa,J., and Sola,C (2005) Excitotoxic and apoptotic neuronal death induce different patterns of glial activation in vitro J Neurochem 94, 226-237 Perry,V.H., and Gordon,S (1987) Modulation of CD4 antigen on macrophages and microglia in rat brain J Exp Med 166, 1138-1143 Piani,D., Frei,K., Do,K.Q., Cuenod,M., and Fontana,A (1991) Murine brain macrophages induced NMDA receptor mediated neurotoxicity in vitro by secreting glutamate Neurosci Lett 133, 159-162 Plesnila,N., Zinkel,S., Le,D.A., min-Hanjani,S., Wu,Y., Qiu,J., Chiarugi,A., Thomas,S.S., Kohane,D.S., Korsmeyer,S.J., and Moskowitz,M.A (2001) BID mediates neuronal cell death after oxygen/ glucose deprivation and focal cerebral ischemia Proc Natl Acad Sci U S A 98, 15318-15323 Plesnila,N., Zinkel,S., min-Hanjani,S., Qiu,J., Korsmeyer,S.J., and Moskowitz,M.A (2002) Function of BID a molecule of the bcl-2 family in ischemic cell death in the brain Eur Surg Res 34, 37-41 Potten,C.S., and Loeffler,M (1990) Stem cells: attributes, cycles, spirals, pitfalls and uncertainties Lessons for and from the crypt Development 110, 1001-1020 160 Presta,M., Urbinati,C., Dell'era,P., Lauro,G.M., Sogos,V., Balaci,L., Ennas,M.G., and Gremo,F (1995) Expression of basic fibroblast growth factor and its receptors in human fetal microglia cells Int J Dev Neurosci 13, 29-39 Prinz,M., and Hanisch,U.K (1999) Murine microglial cells produce and respond to interleukin-18 J Neurochem 72, 2215-2218 Probert,L., Akassoglou,K., Pasparakis,M., Kontogeorgos,G., and Kollias,G (1995) Spontaneous inflammatory demyelinating disease in transgenic mice showing central nervous system-specific expression of tumor necrosis factor alpha Proc Natl Acad Sci U S A 92, 11294-11298 Puffenbarger,R.A., Boothe,A.C., and Cabral,G.A (2000) Cannabinoids inhibit LPSinducible cytokine mRNA expression in rat microglial cells Glia 29, 58-69 Qin,L., Liu,Y., Cooper,C., Liu,B., Wilson,B., and Hong,J.S (2002) Microglia enhance beta-amyloid peptide-induced toxicity in cortical and mesencephalic neurons by producing reactive oxygen species J Neurochem 83, 973-983 Quigley,H.A., Nickells,R.W., Kerrigan,L.A., Pease,M.E., Thibault,D.J., and Zack,D.J (1995) Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis Invest Ophthalmol Vis Sci 36, 774-786 Rabacchi,S.A., Bonfanti,L., Liu,X.H., and Maffei,L (1994) Apoptotic cell death induced by optic nerve lesion in the neonatal rat J Neurosci 14, 5292-5301 Raivich,G., and Banati,R (2004) Brain microglia and blood-derived macrophages: molecular profiles and functional roles in multiple sclerosis and animal models of autoimmune demyelinating disease Brain Res Brain Res Rev 46, 261-281 Rappolee,D.A., Brenner,C.A., Schultz,R., Mark,D., and Werb,Z (1988a) Developmental expression of PDGF, TGF-alpha, and TGF-beta genes in preimplantation mouse embryos Science 241, 1823-1825 Rappolee,D.A., Mark,D., Banda,M.J., and Werb,Z (1988b) Wound macrophages express TGF-alpha and other growth factors in vivo: analysis by mRNA phenotyping Science 241, 708-712 Reed,J.C (1995) Regulation of apoptosis by bcl-2 family proteins and its role in cancer and chemoresistance Curr Opin Oncol 7, 541-546 Reed,J.C (1997) Double identity for proteins of the Bcl-2 family Nature 387, 773776 Regula,K.M., Ens,K., and Kirshenbaum,L.A (2003) Mitochondria-assisted cell suicide: a license to kill J Mol Cell Cardiol 35, 559-567 Reichert,F., and Rotshenker,S (1999) Galectin-3/MAC-2 in experimental allergic encephalomyelitis Exp Neurol 160, 508-514 Renno,T., Krakowski,M., Piccirillo,C., Lin,J.Y., and Owens,T (1995) TNF-alpha expression by resident microglia and infiltrating leukocytes in the central nervous 161 system of mice with experimental allergic encephalomyelitis Regulation by Th1 cytokines J Immunol 154, 944-953 Reynolds,B.A., Tetzlaff,W., and Weiss,S (1992) A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes J Neurosci 12, 4565-4574 Reynolds,B.A., and Weiss,S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system Science 255, 1707-1710 Robertson,J., Beaulieu,J.M., Doroudchi,M.M., Durham,H.D., Julien,J.P., and Mushynski,W.E (2001) Apoptotic death of neurons exhibiting peripherin aggregates is mediated by the proinflammatory cytokine tumor necrosis factor-alpha J Cell Biol 155, 217-226 Rogers,J., Luber-Narod,J., Styren,S.D., and Civin,W.H (1988) Expression of immune system-associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer's disease Neurobiol Aging 9, 339-349 Ross,C.A., and Poirier,M.A (2004) Protein aggregation and neurodegenerative disease Nat Med 10 Suppl, S10-S17 Roy,A., Fung,Y.K., Liu,X., and Pahan,K (2006) Up-regulation of microglial CD11b expression by nitric oxide J Biol Chem 281, 14971-14980 Roy,N.S., Benraiss,A., Wang,S., Fraser,R.A., Goodman,R., Couldwell,W.T., Nedergaard,M., Kawaguchi,A., Okano,H., and Goldman,S.A (2000a) Promotertargeted selection and isolation of neural progenitor cells from the adult human ventricular zone J Neurosci Res 59, 321-331 Roy,N.S., Wang,S., Jiang,L., Kang,J., Benraiss,A., Harrison-Restelli,C., Fraser,R.A., Couldwell,W.T., Kawaguchi,A., Okano,H., Nedergaard,M., and Goldman,S.A (2000b) In vitro neurogenesis by progenitor cells isolated from the adult human hippocampus Nat Med 6, 271-277 Salvesen,G.S., and Dixit,V.M (1997) Caspases: intracellular signaling by proteolysis Cell 91, 443-446 Sasaki,A., Yamaguchi,H., Ogawa,A., Sugihara,S., and Nakazato,Y (1997) Microglial activation in early stages of amyloid beta protein deposition Acta Neuropathol (Berl) 94, 316-322 Saunders,J.W., Jr (1966) Death in embryonic systems Science 154, 604-612 Seaberg,R.M., Smukler,S.R., and van der,K.D (2005) Intrinsic differences distinguish transiently neurogenic progenitors from neural stem cells in the early postnatal brain Dev Biol 278, 71-85 Shacka,J.J., and Roth,K.A (2005) Regulation of neuronal cell death and neurodegeneration by members of the Bcl-2 family: therapeutic implications Curr Drug Targets CNS Neurol Disord 4, 25-39 162 Shimizu,S., Narita,M., and Tsujimoto,Y (1999) Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC Nature 399, 483-487 Shimojo,M., Nakajima,K., Takei,N., Hamanoue,M., and Kohsaka,S (1991) Production of basic fibroblast growth factor in cultured rat brain microglia Neurosci Lett 123, 229-231 Shrikant,P., Lee,S.J., Kalvakolanu,I., Ransohoff,R.M., and Benveniste,E.N (1996) Stimulus-specific inhibition of intracellular adhesion molecule-1 gene expression by TGF-beta J Immunol 157, 892-900 Singh,N., and Anand,S (1995) Apoptosis in health and disease Indian J Physiol Pharmacol 39, 91-94 Sommer,L., and Rao,M (2002) Neural stem cells and regulation of cell number Prog Neurobiol 66, 1-18 Song,Q., Kuang,Y., Dixit,V.M., and Vincenz,C (1999) Boo, a novel negative regulator of cell death, interacts with Apaf-1 EMBO J 18, 167-178 Sopper,S., Demuth,M., Stahl-Hennig,C., Hunsmann,G., Plesker,R., Coulibaly,C., Czub,S., Ceska,M., Koutsilieri,E., Riederer,P., Brinkmann,R., Katz,M., and ter,M., V (1996) The effect of simian immunodeficiency virus infection in vitro and in vivo on the cytokine production of isolated microglia and peripheral macrophages from rhesus monkey Virology 220, 320-329 Stoll,G., and Jander,S (1999) The role of microglia and macrophages in the pathophysiology of the CNS Prog Neurobiol 58, 233-247 Streit,W.J., Graeber,M.B., and Kreutzberg,G.W (1988) Functional plasticity of microglia: a review Glia 1, 301-307 Streit,W.J., and Kreutzberg,G.W (1987) Lectin binding by resting and reactive microglia J Neurocytol 16, 249-260 Streit,W.J., and Kreutzberg,G.W (1988) Response of endogenous glial cells to motor neuron degeneration induced by toxic ricin J Comp Neurol 268, 248-263 Streit,W.J., Walter,S.A., and Pennell,N.A (1999) Reactive microgliosis Prog Neurobiol 57, 563-581 Susin,S.A., Lorenzo,H.K., Zamzami,N., Marzo,I., Snow,B.E., Brothers,G.M., Mangion,J., Jacotot,E., Costantini,P., Loeffler,M., Larochette,N., Goodlett,D.R., Aebersold,R., Siderovski,D.P., Penninger,J.M., and Kroemer,G (1999) Molecular characterization of mitochondrial apoptosis-inducing factor Nature 397, 441-446 Suzuki,A., and Shiraki,K (2001) Tumor cell "dead or alive": caspase and survivin regulate cell death, cell cycle and cell survival Histol Histopathol 16, 583-593 Taylor,D.L., Jones,F., Kubota,E.S., and Pocock,J.M (2005) Stimulation of microglial metabotropic glutamate receptor mGlu2 triggers tumor necrosis factor alpha-induced 163 neurotoxicity in concert with microglial-derived Fas ligand J Neurosci 25, 29522964 Terrado,J., Monnier,D., Perrelet,D., Vesin,D., Jemelin,S., Buurman,W.A., Mattenberger,L., King,B., Kato,A.C., and Garcia,I (2000) Soluble TNF receptors partially protect injured motoneurons in the postnatal CNS Eur J Neurosci 12, 3443-3447 Thomas,D.M., Francescutti-Verbeem,D.M., and Kuhn,D.M (2006) Gene expression profile of activated microglia under conditions associated with dopamine neuronal damage FASEB J 20, 515-517 Thompson,C.B (1995) Apoptosis in the pathogenesis and treatment of disease Science 267, 1456-1462 Thorburn,A (2004) Death receptor-induced cell killing Cell Signal 16, 139-144 Tikka,T.M., and Koistinaho,J.E (2001) Minocycline provides neuroprotection against N-methyl-D-aspartate neurotoxicity by inhibiting microglia J Immunol 166, 7527-7533 Tofighi,R., Tillmark,N., Dare,E., Aberg,A.M., Larsson,J.E., and Ceccatelli,S (2006) Hypoxia-independent apoptosis in neural cells exposed to carbon monoxide in vitro Brain Res 1098, 1-8 Toulmond,S., and Rothwell,N.J (1995) Interleukin-1 receptor antagonist inhibits neuronal damage caused by fluid percussion injury in the rat Brain Res 671, 261-266 Tsujimoto,Y., Cossman,J., Jaffe,E., and Croce,C.M (1985) Involvement of the bcl-2 gene in human follicular lymphoma Science 228, 1440-1443 Usuki,S., Cashman,N.R., and Miyatake,T (1999) GM2 promotes ciliary neurotrophic factor-dependent rescue of immortalized motor neuron-like cell (NSC-34) Neurochem Res 24, 281-286 Vander Heiden,M.G., Chandel,N.S., Williamson,E.K., Schumacker,P.T., and Thompson,C.B (1997) Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria Cell 91, 627-637 Vass,K., and Lassmann,H (1990) Intrathecal application of interferon gamma Progressive appearance of MHC antigens within the rat nervous system Am J Pathol 137, 789-800 Vaux,D.L., Cory,S., and Adams,J.M (1988) Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells Nature 335, 440-442 Vescovi,A.L., and Snyder,E.Y (1999) Establishment and properties of neural stem cell clones: plasticity in vitro and in vivo Brain Pathol 9, 569-598 Wang,H.G., Pathan,N., Ethell,I.M., Krajewski,S., Yamaguchi,Y., Shibasaki,F., McKeon,F., Bobo,T., Franke,T.F., and Reed,J.C (1999) Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD Science 284, 339-343 164 Wei,M.C., Zong,W.X., Cheng,E.H., Lindsten,T., Panoutsakopoulou,V., Ross,A.J., Roth,K.A., MacGregor,G.R., Thompson,C.B., and Korsmeyer,S.J (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death Science 292, 727-730 Weiss,S., Reynolds,B.A., Vescovi,A.L., Morshead,C., Craig,C.G., and van der,K.D (1996) Is there a neural stem cell in the mammalian forebrain? Trends Neurosci 19, 387-393 Werner,A., Martin,S., Gutierrez-Ramos,J.C., and Raivich,G (2001) Leukocyte recruitment and neuroglial activation during facial nerve regeneration in ICAM-1deficient mice: effects of breeding strategy Cell Tissue Res 305, 25-41 White,J., and Dalton,S (2005) Cell cycle control of embryonic stem cells Stem Cell Rev 1, 131-138 Winter,J.N., Andersen,J., Reed,J.C., Krajewski,S., Variakojis,D., Bauer,K.D., Fisher,R.I., Gordon,L.I., Oken,M.M., Jiang,S., Jeffries,D., and Domer,P (1998) BCL-2 expression correlates with lower proliferative activity in the intermediate- and high-grade non-Hodgkin's lymphomas: an Eastern Cooperative Oncology Group and Southwest Oncology Group cooperative laboratory study Blood 91, 1391-1398 Yan,Q., Elliott,J., and Snider,W.D (1992) Brain-derived neurotrophic factor rescues spinal motor neurons from axotomy-induced cell death Nature 360, 753-755 Yang,E., Zha,J., Jockel,J., Boise,L.H., Thompson,C.B., and Korsmeyer,S.J (1995) Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death Cell 80, 285-291 Yang,J., Liu,X., Bhalla,K., Kim,C.N., Ibrado,A.M., Cai,J., Peng,T.I., Jones,D.P., and Wang,X (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked Science 275, 1129-1132 Ying,Q.L., Stavridis,M., Griffiths,D., Li,M., and Smith,A (2003) Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture Nat Biotechnol 21, 183-186 Zhang,H., Xu,Q., Krajewski,S., Krajewska,M., Xie,Z., Fuess,S., Kitada,S., Pawlowski,K., Godzik,A., and Reed,J.C (2000) BAR: An apoptosis regulator at the intersection of caspases and Bcl-2 family proteins Proc Natl Acad Sci U S A 97, 2597-2602 Zhao,H., Yenari,M.A., Cheng,D., Sapolsky,R.M., and Steinberg,G.K (2003) Bcl-2 overexpression protects against neuron loss within the ischemic margin following experimental stroke and inhibits cytochrome c translocation and caspase-3 activity J Neurochem 85, 1026-1036 Zhou,P., Chou,J., Olea,R.S., Yuan,J., and Wagner,G (1999) Solution structure of Apaf-1 CARD and its interaction with caspase-9 CARD: a structural basis for specific adaptor/caspase interaction Proc Natl Acad Sci U S A 96, 11265-11270 165 ... cells in the cell cycle and promote cell proliferation However, the function of Diva in the regulation of cell cycle has never been investigated In the present study, the effects of Diva on the. .. microglia dual effects, investigate the distribution of Diva in central nervous system and study the possible involvement of Diva in the regulation of cell cycle in neural stem cells in vitro By fluorescent... members, the possible involvement of Diva in the regulation of cell cycle has never been investigated Our present study intended to identify the possible role of Diva during the microglia dual effects,

Ngày đăng: 12/09/2015, 08:19

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN