Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 201 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
201
Dung lượng
1,67 MB
Nội dung
FUNCTIONALISED NANOSTRUCTURED DENDRITIC RHODIUM CATALYSTS FOR STYRENE HYDROFORMYLATION REACTIONS LI PENG (B. Eng., Tianjin University) A THESIS SUBMITTED FOR THE DEGREE OF PH. D. OF ENGINEERING DEPARTMENT OF CHEMICAL & BIOMOLECULAR ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2008 Acknowledgement Acknowledgements First of all, I would like to express my heartfelt thanks to my supervisor, Prof. Sibudjing Kawi, for his tremendous help and constructive suggestions throughout all my Ph. D. candidate period. I appreciate his constant encouragement and precious guidance. His meticulous style influences me profoundly on the way of pursing research. I also want to take this opportunity to thank all our group members who share the laboratories and their knowledge with me, Dr. Shen Shoucang, Zhang Sheng, Yong Siekting, Tang Yunpeng, Zeng Houxu, Luan Deyan, Song Shiwei, Yang Jun, Sun Gebiao, Malik, Warintorn Thitsartarn and Wu Xusheng. They are my good teachers and helpful friends. From them, I experience the pleasure and importance of cooperation. Special thanks should go to Mdm Jamie, Mr. Chia, Mdm Samantha, Mr. Toh and Dr. Yuan for all the help they have offered throughout my research. Their professional skills help me solve technical problems quickly and effectively. In addition, I also wish to thank National University of Singapore for offering me financial support for my Ph. D. studies. This thesis is dedicated to my parents who hide mom’s sickness from me for not disturbing my thesis completion. And it is also a special gift to my wife, Haixia. i Table of Contents Table of Contents Acknowledgements i Table of Contents ii Summary vii Abbreviation .ix List of Figures .xi List of Tables and Scheme . xiii Chapter 1. Introduction .1 1.1 Background of Hydroformylation 1.1.1 Promising Supports .3 1.2 Project Objectives .5 1.3 Thesis Organization .7 Chapter 2. Literature Review .8 2.1 Homogeneous Hydroformylation 2.1.1 The Progress of Homogeneous Hydroformylation Catalysts 2.1.2 Mechanism of Rhodium-Catalyzed Hydroformylation .10 2.1.2.1 Unmodified Rhodium-Catalyzed System 11 2.1.2.2 Modified Rhodium-Catalyzed System .13 2.1.2.3 Rate Determing Step .18 2.1.3 Kinetics of Rhodium-Catalyzed Hydroformylation 19 2.1.4 Parameters and Their Effects .21 2.1.4.1 Effect of CO .21 2.1.4.2 Effect of H2 .22 2.1.4.3 Ligand Effects 23 2.1.4.4 Temperature Effects 26 ii Table of Contents 2.1.4.5 Substrate Structure Effects 27 2.1.4.6 Solvent Effects 28 2.2 Heterogeneous Hydroformylation .29 2.2.1 MCM-41 .31 2.2.2 SBA-15 .36 2.2.3 Dendrimer .39 2.2.4 Nanoscale Catalysis .44 Chapter 3. Experimental .48 3.1 Preparation of Catalysts .48 3.1.1 Chemicals 48 3.1.2 Synthesis of MCM-41 48 3.1.3 Pre-treatment of MCM-41 49 3.1.4 Passivation of MCM-41 and Functionalization inside Pores 50 3.1.5 Functionalization of MCM-41 without Passivation .50 3.1.6 Preparation of MCM-41 Supported PAMAM Dendrimer .51 3.1.7 Passivation of MCM-41 Tethered Rhodium Catalysts .52 3.1.8 Synthesis of SBA-15 54 3.1.9 Synthesis of SBA-15 Supported Dendritic Catalysts .54 3.1.10 Synthesis of Nanoparticles of Al2O3 .56 3.1.11 Synthesis of Nano-Al2O3 Supported Dendritic Catalysts .56 3.1.12 Synthesis α-Al2O3 and γ-Al2O3 Supported Dendritic Catalysts 57 3.2 Hydroformylation Reactions 57 3.2.1 Equipment 57 3.2.2 Reaction Procedure 58 3.3 Characterizations .59 iii Table of Contents 3.3.1 X-ray Diffraction (XRD) 59 3.3.2 BET Analysis .60 3.3.3 FTIR Analysis 61 3.3.4 Inductively Coupled Plasma Atomic Emission (ICP) 62 3.3.5 Gas Chromatograph 62 3.3.6 XPS Analysis .63 3.3.7 Thermal Analysis .64 3.3.8 C, H, N, Elemental Analysis .64 3.3.9 FE-SEM Analysis .64 3.3.10 TEM Analysis 65 Chapter 4. Dendritic SBA-15 Supported Wilkinson's Catalysts for Hydroformylation of Styrene .66 4.1 Preface 66 4.2 Characterizations 68 4.2.1 FTIR Analysis .68 4.2.2 TGA Analysis .70 4.2.3 XRD Analysis .73 4.2.4 TEM Analysis .74 4.2.5 ICP Analysis .76 4.3 Catalytic Run .78 4.3.1 Activity .78 4.3.2 Regio-selectivity .81 4.4 Conclusions 85 Chapter 5. Dendritic SBA-15 Supported HRh(CO)(PPh3)3 for Hydroformylation of Styrene .87 iv Table of Contents 5.1 Preface 87 5.2 Characterizations 89 5.2.1 BET Analysis 89 5.2.2 XPS Analysis 94 5.2.3 FTIR Analysis .96 5.2.4 TEM Analysis .97 5.2.5 Elemental Analysis 100 5.3 Catalytic Run .101 5.3.1 Activity .101 5.3.2 Regio-selectivity .105 5.4 Characterization of Used Catalysts………………………………………… 108 5.5 Conclusions .113 Chapter 6. Dendritic MCM-41 Supported RhCl(PPh3)3 for Hydroformylation of Styrene .114 6.1 Preface 114 6.2 Characterizations 116 6.2.1 XRD Analysis .116 6.2.2 Thermal Analysis 118 6.2.3 FTIR Analysis .121 6.2.4 C, H, N, Elemental Analysis 123 6.2.5 XPS Spectra of Rhodium Complexes on Functionalized MCM-41 124 6.2.6 Hydroformylation of Styrene .126 6.2.6.1 Activity 126 6.2.6.2 Regio-selectivity .130 6.2.7 TEM Image .134 v Table of Contents 6.2.8 ICP Analysis .135 6.3 Conclusions 136 Chapter 7. Dendritic Nano-Alumina Supported RhCl(PPh3)3 for Hydroformylation of Styrene .137 7.1 Preface 137 7.2 Results and Discussions 139 7.2.1 FE-SEM Analysis .139 7.2.2 Comparison of the Nano-Alumina Support and α-Alumina Support…….141 7.2.2.1 Activity………………………………………………………… 142 7.2.2.2 Regio-selectivity……………… .……………………… .………143 7.2.3 Comparison of the Nano-Alumina Support and γ-Alumina Support…….145 7.2.3.1 Activity………………………………………………………… 145 7.2.3.2 Regio-selectivity.… .…………………………………………… 147 7.2.4 Comparison of the Nano-Alumina Support and SBA-15 Support .…… 149 7.2.4.1 Activity……………………………………………………… 149 7.2.4.2 Regio-selectivity…… …… …………………………………… 151 7.2.5 Exploration of Higher PAMAM Dendrimers on Nano-Alumina….…… 153 7.2.5.1 Activity………………………………………………………… 153 7.2.5.2 Regio-selectivity…… .…………………………………… .……155 7.3 Conclusions………………………………………………………………… 158 Chapter 8. Conclusions and Future Work 159 8.1 Conclusions 159 8.2 Future Work 163 References .164 Appendix………………………………………………………………………… …187 vi Nomenclature Summary This thesis reports the study of hydroformylation of styrene catalyzed by heterogenized rhodium complexes. Three types of solid supports have been employed: SBA-15, MCM-41 and nano-Al2O3. The supports’ surfaces are modified with amine (NH2) ligands as starting points for growing PAMAM dendrimers up to third generation. These dendritic supports are used to tether RhCl(PPh3)3 or HRh(PPh3)3, for producing the heterogenized rhodium catalysts. The combination of the highly ordered mesoporous material SBA-15 or MCM41 with the highly branched dendrimer creates a distinct architecture which is both helpful for the dispersion of rhodium due to the high surface areas of supports, the multiple binding sites of dendrimer and the promotional regioselectivity due to the dendrimer and pore effects. The nano-alumina supported PAMAM dendrimer tethered rhodium catalysts exhibit superior catalytic performances due to the special properties of the support. Generally, passivated SBA-15 or MCM-41 based dendritic catalysts exhibited better stability than the nonpassivated counterparts. This is attributed to the pore confinement of the mesopores of the passivated SBA-15 and MCM-41. Morover, catalytic performances with the passivated SBA-15 or MCM-41 based dendritic catalysts reach highest with certain PAMAM generation. This is attributed to the positive dendrimer effects, because the rhodium complexes are better dispersed on the more perfectly grown dendrimers. vii Nomenclature For the non-passivated SBA-15 supported Wilkinson’s Catalysts, the catalytic performances decrease as the PAMAM dendrimer generation goes up. This is due to the dendrimers growing outside the SBA-15 channels where is similar to the situation of a normal silica. The longer and longer dendrimer arms due to increased generation block the active catalytic centers in this case. In contrast, for the passivated SBA-15 supported Wilkinson’s catalysts, the passivation not only improves the stability of the catalysts but also let the dendrimers develop in a more spacious environment which allows the dendrimers grow with fewer defects. And the catalytic performances not decrease along with the dendrimer generation but reach highest point at an optimal generation which is second. The MCM-41 supported catalysts show much similar behavior to the SBA-15 supported ones yet differ in that the optimal generation of highest catalytic performance is first generation. This is attributed to the smaller pore size distribution of MCM-41 compared to SBA-15. GC, BET, TGA, TEM, FE-SEM, FTIR, XPS, XRD and ICP etc. have been employed for characterization of the as-synthesized hyeterogenized catalysts. The PAMAM dendrimers are shown to be successfully anchored on the supports with spectroscopic evidence and thermal analysis results. XRD and TEM show the mesoprous structures of SBA-15 and MCM-41 are stable during the hydroformylation reactions. The synthesized nano-Al2O3 catalysts are highly active, selective and stable. Keywords: Hydroformylation, styrene, rhodium, Wilkinson’s Catalyst, SBA-15, MCM-41, nano-alumina, PAMAM, dendrimer, heterogeneous catalysis, passivation viii Nomenclature Abbreviation °C Degree Centigrade Å angstrom BET Brunauer Emmett Teller method DTA Differential Thermal Analysis FE-SEM Field Emission Scanning Electron Microscopy FTIR Fourier Transform Infrared Spectroscopy GC Gas Chromatography Gn (n=0,1,2,3) PAMAM Dendrimer of Generation n HSn (n=0,1,2,3) HRh(CO)(PPh3)3 Supported on SBA-15 Functionalized with PAMAM Dendrimer Generation n HPSn (n=0,1,2,3) HRh(CO)(PPh3)3 Supported on Passivated-SBA-15 Functionalized with PAMAM Dendrimer Generation n ICP Inductively Coupled Plasma SEM Scanning Electron Microscopy TEM Transmission Electron Microscopy PAMAM Poly(amidoamine) Dendrimer Passivated MCM-41 Supported PAMAM Dendrimer of PMn (n=0,1,2) Generation n Passivated SBA-15 Supported PAMAM Dendrimer of PSn (n=0,1,2,3) Generation n Sn (n=0,1,2,3) SBA-15 Supported PAMAM Dendrimer of Generation n XPS X-ray Photoelectron Spectroscopy XRD X-Ray Diffraction ix References [98] Coronado, J. M., F. Coloma, and J. A. Anderson. Styrene Hydroformylation over Modified Rh/SiO2.Al2O3 Catalysts, Journal of Molecular Catalysis A: Chemical, 154, pp. 143-154. 2000. [99] Zhu, H. J., Y. J. Ding, L. Yan, J. M. Xiong, Y. Lu, L. W. Lin. The PPh3 Ligand Modified Rh/SiO2 Catalyst for Hydroformylation of Olefins, Catalysis Today, 93-95, pp.389-393. 2004. [100] Huang, L. and S. Kawi. Effect of Supported Donor Ligands on the Activity and Selectivity of Tethered Rhodium Complex Catalysts for Hydroformylation, Journal of Molecular Catalysis A: Chemical, 211, pp.2333. 2004. [101] Kresge, C. T., M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck. Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-Crystal Template Mechanism. Nature, 359, pp. 710-712. 1992. [102] Beck, J. S., J. C. Vartuli, W. J. Roth, M. E. leonowicz, C. T. Kresge, K. D. Schmitt, C. T-w. Chu, D. H. Olson, E. W. Sheppard, S. B. Mccullen, J. B. Higgins and J. L. Schlenker. A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates, Journal of the American Chemical Society, 114, pp. 10834-10843. 1992. [103] Kresge, C. T., J. C. Vartuli, W. J. Roth, M. E. Leonowicz, J. S. Beck, K. D. Schmitt, C. T.-W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins and J. L. Schlenker. M41s: A New Family of Mesoporous Molecular Sieves prepared with Liquid Crystal Templates, Studies in Surface Science and Catalysis, 92, pp. 11-19. 1994. [104] Douglas, M. R. Diffusion in Zeolites in Zeolites: A Refined Tool for Desiganing Catalytic Sites Vol 97 pp.223-234. 1995., Edited by Bonneviot L. and S. Kaliauine, [105] Stiles, A. B. Catalyst Supports and Supported Catalysts. pp.87, Boston: Butterworths. 1987. [106] Chen, X. Y., L. M. Huang and Q. Z. Li Hydrothermal Transformation and Characterization of Porous Silica Templated by Surfactants, Journal of Physical Chemistry B, 101, pp.8460-8467. 1997. [107] Chen, L. Y., S. Jaenicke and G. K. Chuah. Thermal and Hydrothermal Stability of Framework-Substituted MCM-41 Mesoporous Materials, Microporous Materials, 12, pp. 323-330. 1997. [108] Shen, S. C. and S. Kawi. MCM-41 with Improved Hydrothermal Stability: Formation and Prevention of Al Content Dependent Structural Defects, Langmuir, 18, pp.4720-4728 2002. [109] Anderson, J. R. and M. Boudart. Catalysis: Science and Technology, Vol 4. pp. 140-180, New York: Springer-Verlag berlin Heidelberg. 1983. 172 References [110] Knozinger, H. Hydrogen Bonds in Systems of Adsorbed Molecules. In: The Hydogen Bond. Vol. III. pp. 1263-1364, Amsterdam: North-Holland Publ. Comp. 1976. [111] Unger, K. K. Porous Silica, pp 5-20. Amsterdam: Elsevier Scientific Publ. Comp. 1979. [112] Iwasawa, Y. in Tailored Metal Catalysis, D. Reidel Publishing Company, Dordrecht, Holland, 1986. [113] Allum, K. G., R. D. Hancock, I. V. Howell, R. C. Pitkethly and P. J. Robinson, Supported Transition Metal Complexes II. Silica As the Support, Journal of Organometallic Chemistry, 87, pp.203-216. 1975. [114] Dõ´az, J. F. and K. J. Balkus Jr. Synthesis and Characterization of CobaltComplex Functionalized MCM-41, Chemistry of Materials, 9, pp.61-67. 1997. [115] Shyu, S. G., S. W. Cheng and D. L. Tzou. Immobilization of Rh(PPh3)3Cl on Phosphinated MCM-41 for Catalytic Hydroformylation of Olefins, Chemical Communcations, pp. 2337-2338. 1999. [116] Huang, L., J.C. Wu, S. Kawi. Rh4(CO)12-Derived Functionalized MCM-41Tethered Rhodium Complexes: Preparation, Characterization and Catalysis for Cyclohexene Hydroformylation, Journal of Molecular Catalysis A: Chemical, 206, pp.371-387. 2003. [117] Huang, L., Y. He and S. Kawi. Catalytic Studies of Aminated MCM-41Tethered Rhodium Complexes for Hydroformylation of 1-Octene and Styrene, Journal of Molecular Catalysis A: Chemical, 213, pp.241-249. 2004. [118] Huang, L., Y. He and S. Kawi. Catalytic Studies of Aminated MCM-41Tethered Rhodium Complexes for 1-hexene Hydroformylation, Journal of Molecular Catalysis A: Chemical, 265, pp.247-257. 2004. [119] Thomas, M., R. D. Oldroyd, G. Sankar, J. M. Thomas, I. J. Shannon, J. A. Klepetko, A. F. Masters, J. K. Beattie and C. R. A. Catlow. Designing a Solid Catalyst for the Selective Low-Temperature Oxidation of Cyclohexane to Cyclohexanone, Angewandte Chemie-International Edition, 36, pp.1639-1642. 1997. [120] Shephard, D. S., W. Z. Zhou, T. Maschmeyer, J. M. Matters, C. L. Roper, S. Parsons, B. F. G. Johnson and M. J. Duer. Site-Directed Surface Derivatization of MCM-41: Use of High-Resolution Transmission Electron Microscopy and Molecular Recognition for Determining the Position of Functionality within Mesoporous Materials, Angewandte ChemieInternational Edition, 37, pp.2719-2723. 1998. 173 References [121] Mukhopadhyay, K., B. R. Sarkar, and R. V. Chaudhari. Anchored Pd Complex in MCM-41 and MCM-48: Novel Heterogeneous Catalysts for Hydrocarboxylation of Aryl Olefins and Alcohols, Journal of the American Chemical Society, 124, pp.9692-9693. 2002. [122] Corma, A., M. T. Navarro and J. P. Pariente, Synthesis of an Ultralarge Pore Titanium Silicate Isomorphous to MCM-41 and Its Application as a Catalyst for Selective Oxidation of Hydrocarbons, Journal of the Chemical Society Chemical Communication, pp.147-148. 1994. [123] Reddy, K. M., I. Moudrakovski and A. Sayari, Synthesis of Mesoporous Vanadium Silicate Molecular Sieves, Journal of the Chemical Society Chemical Communication, pp.1059-1060. 1994. [124] Long, R.; Yang, R. Pt/MCM-41 Catalyst for Selective Catalytic Reduction of Nitric Oxide with Hydrocarbons in the Presence of Excess Oxygen, Catalysis Letters, 52, pp.91-96. 1998. [125] Zhao, D. Y., J. L. Feng, Q. S. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores, Science, 279, pp.548-552. 1998. [126] Zhao, D. Y., Q. Huo, J. L. Feng, B. F. Chmelka, and G. D. Stucky. Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures, Journal of the American Chemical Society, 120, pp.6024-6036. 1998. [127] Song, S. W., K. Hidajat and S. Kawi. Functionalized SBA-15 Materials as Carriers for Controlled Drug Delivery: Influence of Surface Properties on Matrix-Drug Interactions, Langmuir, 21, pp.9568-9575 2005. [128] Wang, Y, M. Noguchi, Y. Takahashi and Y. Ohtsuka. Synthesis of SBA-15 with Different Pore Sizes and the Utilization as Supports of High Loading of Cobalt Catalysts, Catalysis Today, 68, pp.3-9, 2001. [129] Kim, D. J., B. C. Dunn, F. Huggins, G. P. Huffman, M. Kang, J. E. Yie and E. M. Eyring. SBA-15-Supported Iron Catalysts for Fischer-Tropsch Production of Diesel Fuel. Energy and Feuls, 20, pp.2608-2611. 2006. [130] Huang, J., T. Jiang, B. Han, T. Mu, Y. Wang, X. Li and H. Chen. Insoluble Wilkinson catalyst RhCl(TPPTS)3 supported on SBA-15 for Heterogeneous Hydrogenation with and without Supercritical CO2, Catalysis Letters, 98, pp.225-228. 2004. [131] Jiang, Y. J. and Q. M. Gao. Heterogeneous Hydrogenation Catalyses over Recyclable Pd(0) Nanoparticle Catalysts Stabilized by PAMAM-SBA-15 Organic-Inorganic Hybrid Composites, Journal of the American Chemical Society, 128, pp. 716-717. 2006. 174 References [132] Frechet, J. M. J., C. J. Hawker, I. Gitsov and J. W. Leon. Pure and Applied Chemistry, 10, pp.1399-1425. 1996. [133] Huck, W. T. S., L. J. Prins, R. H. Fokkens, N. M. M. Nibbering, F. C. J. M. van Veggel, D. N. Reinhoudt. Convergent and Divergent Noncovalent Synthesis of Metallodendrimers, Journal of the American Chemical Society, 120, pp. 6240-6246. 1998. [134] Knapen, J. W. J., A. W van der Made, J. C. de Wilde, P. W. W. N. M. van Leeuwen, P. Wijkens, D. M. Grove, G. van Koten, Homogeneous Catalysts Based on Silane Dendrimers Functionalized with Arylnickel(II) Complexes. Nature, 372, 659-663. 1994. [135] Duncan, R. and J. Kopecek. Soluble Synthetic Polymers as Potential Drug Carriers, Advanced Polymer Science, 57, pp.51-101. 1984. [136] Tanaka, N., T. Fukutome, K. Hosoya, K. Kimata and T. Araki, PolymerSupported Pseudo-Stationary Phase for Electrokinetic Chromatography Electrokinetic Chromatography in a Full Range of Methanol-Water Mixtures With Alkylated Starburst Dendrimers, Journal of Chromatography A, 716, pp.57-67. 1995. [137] Wu, C., M. W. Brechbiel, R. W. Kozak, O. A. Gansow. Metal-ChelateDendrimer-Antibody Constructs for Use in Radioimmunotherapy and Imaging, Bioorganic and Medicinal Chemistry Letters, 4, pp.449-54. 1994. [138] Tomalia, D. A., A. M. Naylor, W. A. Goddard, Starburst Dendrimers: Molecular-Level Control of Size, Shape, Surface Chemistry, Topology, and Flexibility from Atoms to Macroscopic Matter, Angewandte ChemieInternational Edition, 29, pp.138-175. 1990. [139] Meltzer, A. D., D. A. Tirrell, A. A. Jones, P. T. Inglefield, D. M. Hedstrand and D. A. Tomalia. Chain Dynamics in Poly(Amido Amine) Dendrimers-A Study of C-13 NMR Relaxation Parameters, Macromolecules, 25, pp.45414548. 1992. [140] Kleij, A. W., R. A. Gossage, J. T. B. H. Jastrzebski, M. Lutz, A. L. Speck and G. van Koten. The "Dendritic Effect" in Homogeneous Catalysis with Carbosilane Supported Arylnickel(II) Catalyst: Obsrvation of Active-Site Proximity Effects in Atom-Transfer Radical Addition, Angewandte ChemieInternational Edition, 39, pp.176-178. 2000. [141] Kleij, A. W., G. R. J. M. Klein, R. van de Coevering, A.-M. Noordman, A. L. Spek and G. van Koten. Polycationic (mixed) Core - Shell Dendrimers for Binding and Delivery of Inorganic/Organic Substrates Chemistry-A European Journal, 7, pp.181-192. 2001. 175 References [142] Piotti, M. E., F. Jr. Rivera, R. Bond, C. J. Hawker and J. M. J. Frechet, Synthesis and Catalytic Activity of Unimolecular Dendritic Reverse Micelles with "Internal" Functional Groups, Journal of the American Chemical Society, 121, pp. 9471-9472. 1999. [143] Kleij, A. W., R. A. Gossage, R. J. M. K. Gebbink, N. Brinkmann, E. J. Reijerse, U. Kragl, M. Lutz, A. L. Spek and G. van Koten, A "Dendritic Effect" in Homogeneous Catalysis with Carbosilane-Supported Arylnickel(II) Catalysts: Observation of Active-Site Proximity Effects in Atom-Transfer Radical Addition, Journal of the American Chemical Society, 122, pp. 1211212114. 2000. [144] Breinbauer, R. and E. N. Jacobsen. Cooperative Asymmetric Catalysis with Dendrimeric [Co(salen)] Complexes, Angewandte Chemie-International Edition, 39, pp.3604-3607. 2000. [145] Maraval, V., R. Laurent, A.-M. Caminade, J.-P. Majoral, Organometallics, 19, pp.4025- 2000. [146] Knapen, J. W. J., A. W. van der Made, J. C. de Wilde, P. W. N. M. van Leeuwen, P. Wijkens, D. M. Grove and G. van Koten, Nature, 372, pp.659 1994. [147] Robert, K., A. W. Kleij, R. J. M. K. Gebbink and G. van Koten. Dendritic Catalysts, Topics in Current Chemistry, 217, pp.164-199. 2001 [148] Crooks, R. M., B. I. Lemon III, L. Sun, L. K.Yeung and M. Zhao. DendrimerEncapsulated Metals and Semiconductors: Synthesis, Characterization, and Applications, Topics in Current Chemistry, 212, pp.82-135. 2001. [149] Bourque, S. C., F. Maltais, W. J. Xiao, O. Tardif, H. Alper, P. Arya and L. E. Manzer. Hydroformylation Reactions with Rhodium-Complexed Dendrimers on Silica, Journal of the American Chemical Society, 121, pp.3035-3038. 1999. [150] Bourque, S. C., and H. Alper. Hydroformylation Reactions Using Recyclable Rhodium-Complexed Dendrimers on Silica, Journal of the American Chemical Society, 122, pp.956-957. 2000. [151] Arya, P., N. V. Rao, J. Singkhonrat, H. Alper, S. C. Bourque and L. Manzer. A Divergent, Solid-Phase Approach to Dendritic Ligands on Beads. Heterogeneous Catalysis for Hydroformylation Reactions, Journal of Organic Chemistry, 65, pp.1881-1885. 2000. [152] Reynhardt, J. P. K., Y. Yang, A. Sayari and H. Alper. Periodic Mesoporous Silica-Supported Recyclable Rhodium-Complexed Dendrimer Catalysts, Chemistry of Materials, 16, pp.4095-4102. 2004. [153] Lu, S. M. and H. Alper. Hydroformylation Reactions with Recyclable Rhodium-Complexed Dendrimers on a Resin, Journal of the American Chemical Society, 125, pp.13126-13131. 2003. 176 References [154] Reek, J. N. H., D. de Groot, G. E. Oosterom, P. C. J. Kamer and P. W. N. M. van Leeuwen. Phosphine-Functionalized Dendrimers for Transition-Metal Catalysis, Comptes Rendus Chimie, 6, pp.1061-1077. 2003. [155] Ropartz, L., R. E. Morris, D. F. Foster and D. J. C. Hamilton. Increased Selectivity in Hydroformylation Reactions Using Dendrimer Based catalysts; A Positive Dendrimer Effect, Chemical Communication, pp.361-362. 2001. [156] Reetz, M. T., G. Lohmer and R. Schwickardi. Synthesis and Catalytic Activity of Dendritic Diphosphane Metal Complexes, Angewandte ChemieInternational Edition, 36, pp.1526-1529. 1997. [157] Ribourdouille, Y., G. D. Engel, R.-P. Mireille and L. H. Gade. A strongly positive dendrimer effect in asymmetric catalysis: allylic aminations with Pyrphos-palladium functionalised PPI and PAMAM Dendrimers, Chemical Communication, pp.1228-1229. 2003. [158] Bu, J., Judeh Z. M. A., C. B. Ching and S. Kawi. Epoxidation of olefins catalyzed by Mn(II) salen complex anchored on PAMAM-SiO2 dendrimer, Catalysis Letters, 85, pp.183-187. 2003. [159] Dahan, A. and M. Portnoy. Dendritic Effect in Polymer-Supported Catalysis of the Intramolecular Pauson–Khand Reaction,Chemical Communications, pp.2700-2701. 2002. [160] Reynhardt, J. P. K. and H. Alper. Hydroesterification Reactions with Palladium-Complexed PAMAM Dendrimers Immobilized on Silica, Journal of Organic Chemistry, 68, pp.8353-8360. 2003. [161] Wong, E. W., P. E. Sheehan and C. M. Lieber. Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes, Science, 277, pp.1971-1975. 1997. [162] Park, W. I., G. C. Yi, M. Kim and S. J. Pennycook, Quantum Confinement Observed in ZnO/ZnMgO Nanorod Heterostructures, Advanced Materials, 15, pp.526-529. 2003. [163] Wittmann, H. F., R. H. Friend, M. S. Khan and J. Lewis, Optical Spectroscopy of Platinum and Palladium-Containing Poly-Ynes, Journal of Physical Chemistry B, 101, pp.2693-2698. 1994. [164] Nishihata, Y., J. Mizuki, T. Akao, H. Tanaka, M. Uenishi, M. Kimura, T. Okamoto and N. Hamada. Nature, 418, pp.164-167. 2002. [165] Schlogl, R. and S. B. A. Hamid. Nanocatalysis: Mature Science Revisited or Something Really New?, Angewandte Chemie-International Edition, 43, pp.1628-1637. 2004. 177 References [166] Zhao, M. and R. M. Crooks. Homogeneous Hydrogenation Catalysis with Monodisperse, Dendrimer-Encapsulated Pd and Pt Nanoparticles, Angewandte Chemie-International Edition, 38, pp.364-366. 1999. [167] Zarur, A. J. and J. Y. Ying. Reverse Microemulsion Synthesis of Nanostructured Complex Oxides for Catalytic Combustion. Nature, 403, pp.65-67. 2000. [168] Stevens, P. D., G. Li, J. Fan, M. Yen and Y. Gao. Recycling of Homogeneous Pd Catalysts using Superparamagnetic Nanoparticles as Novel Soluble Supports for Suzuki, Heck, and Sonogashira Cross-Coupling Reactions, Chemical Communication, pp.4435-4437. 2005. [169] Zhang, Y., H. B. Zhang, G. D. Lin, P. Chen, Y. Z. Yuan and K. R. Tsai. Preparation, Characterization and Catalytic Hydroformylation Properties of Carbon Nanotubes-Supported Rh–Phosphine Catalyst, Applied Catalysis A: General, 187, pp.213–224. 1999. [170] Gao, R., C. D. Tan and R. T. K. Baker. Ethylene Hydroformylation on Graphite Nanofiber Supported Rhodium Catalysts, Catalysis Today, 65, pp.1929. 2001. [171] Abu-Reziq R., H. Alper, D. S. Wang and M. K. Post. Metal Supported on Dendronized Magnetic Nanoparticles: Highly Selective Hydroformylation Catalysts. Journal of the American Chemical Society, 128, pp.5279-5282. 2006. [172] Shen, S. C. and S. Kawi. Understanding of the Effect of Al Substitution on the Hydrothermal Stability of MCM-41, Journal of Physical Chemistry B, 103 (42), pp. 8870-8876. 1999. [173] Inagaki, S., Y. Fukushima, K. Kuroda and K. Kuroda. Adsorption Isotherm of Water Vapor and Its Large Hysteresis on Highly Ordered Mesoporous Silica, Journal of Colloid and Interface Science, 180, pp. 623-624. 1996. [174] Augustine, R. L. Heterogeneous Catalysis for the Synthetic Chemist. pp. 164. New York: Marcel Dekker, Inc. 1996. [175] Brunel, D., A. Cauvel, F. Fajula and F. DiRenzo, “MCM-41 Type Silicas as Supports for Immobilized Catalysts” in Page 173 of Zeolites : A Refined Tool for Designing Catalytic Sites, Edited by L. Bonneviot and S. Kaliaguine, Elsevier, 1995. [176] Mukhopadhyay, K., A. B. Mandale and R. V. Chaudhari. Encapsulated HRh(CO)(PPh3)3 in Microporous and Mesoporous Supports: Novel Heterogeneous Catalysts for Hydroformylation, Chemistry Materials, 15, pp.1766-1777. 2003. 178 References [177] Huang, L. and S. Kawi. An Active and Stable Wilkinson’s Complex-Derived SiO2-Tethered Catalyst via an Amine Ligand for Cyclohexene Hydroformylation, Catalysis Letters, 92, pp.57-62. 2004. [178] Yiu, H. H. P., P. A. Wright and N. P. Botting. Enzyme Immobilisation Using SBA-15 Mesoporous Molecular Sieves with Functionalised Surfaces, Journal of Molecular Catalysis B: Enzymatic, 15, pp.81-92. 2001 [179] Huang, L. and S. Kawi. An Active and RhH(CO)(PPh3)3-Derived SiO2Tethered Catalyst via an Thiol Ligand for Cyclohexene Hydroformylation, Catalysis Letters, 90, pp.165-169. 2003. [180] Reuben, B. G. and H. A. Wittcoff. Pharmaceutical Chemicals in Perspective; John Wiley: New York, 1989. [181] Breuzard J. A. J., M. L. Tommasino, F. Touchard, M. Lemaire and M. C. Bonnet. Thioureas as new chiral ligands for the asymmetric hydroformylation of styrene with rhodium(I) catalysts, Journal of Molecular Catalysis A: Chemical, 156, pp.223-232. 2000. [182] Inmaculada, del R., O. Pamies, P. W. N. M. van Leeuwen, C. Claver. Mechanistic Study of the Hydroformylation of Styrene Catalyzed by the Rhodium: BDPP System, Journal of Organometallic Chemistry, 608, pp.115121. 2000. [183] Chen, J. H. and H. Alper. A Novel Water-Soluble Rhodium-Poly(enolate-covinyl alcohol-co-vinyl acetate) Catalyst for the Hydroformylation of Olefins, Journal of the American Chemical Society, 119, pp. 893-895. 1997. [184] Ajjou, A. N. and H. Alper. A New, Efficient, and in Some Cases Highly Regioselective Water-Soluble Polymer Rhodium Catalyst for Olefin Hydroformylation, Journal of the American Chemical Society, 120, pp. 14661468. 1998. [185] Weber, W. A., B. L. Phillips and B. C. Gates. Molecular Intracage Chemistry: [Rh6(CO)15]2- in Zeolite NaX, Chemistry-A European Journal, 5, pp.28992913. [186] Nozaki, K., Y. Itoi, F. Shibahara, E. Shirakawa, T. Ohta, H. Takaya and T. Hiyama. Asymmetric Hydroformylation of Olefins in a Highly Cross-Linked Polymer Matrix, Journal of the American Chemical Society, 120, pp. 40514052. 1998. [187] Alini, S., A. Bottino, G. Capannelli, A. Comite and S. Pananelli. Preparation and Characterisation of Rh/Al2O3 Catalysts and Their Application in the Adiponitrile partial Hydrogenation and Styrene Hydroformylation, Applied Catalysis A-General, 292, pp.105-112. 2005. [188] Astruc, D and Chardac, F. Dendritic Catalysts and dendrimers in Catalysis, Chemical Reviews, 101, pp.2991-3023. 2001. 179 References [189] Tomalia D. A., V. Berry, M. Hall and D. M. Hedstrand. Starburst Dendrimers 4. Covalently Fixed Unimolecular Assemblages Reminiscent of Spheroidal Micelles, Marcomolecules, 20, pp.1164-1167. 1987. [190] Tomalia, D. A., J. R. Dewald, M. J. Hll, S. J. Martin and P.B. Smith, Preprints of the 1st SPSJ International Polymer Conference, Soc. of Polym. Sci., Japan, Kyoto, 1984, p. 65. [191] Reynhardt J. P. K., Y. Yang, A. Sayari and H. Alper. Polyamidoamine Dendrimers Prepared Inside the Channels of Pore-Expanded Periodic Mesoporous Silica, Advanced Functional Materials, 15, pp.1641-1646. 2005. [192] Acosta E. J., C. S. Carr, E. E. Simanek and D. F. Shantz. Engineering nanospaces: Iterative synthesis of melamine-based dendrimers on aminefunctionalized SBA-15 leading to complex hybrids with controllable chemistry and porosity, Advanced Materials, 16, pp.985-989. 2004. [193] Dufaud V. and M. E. Davis. Design of Heterogeneous Catalysts via Multiple Active Site Positioning in Organic-Inorganic Hybrid Materials, Journal of the American Chemical Society, 125, pp.9403-9413. 2003. [194] Wolfgang A. H. and B. Cornils, Organometallic Homogeneous CatalysisQuo vadis?, Angewandte Chemie-International Edition, 36, pp.1048-1067. 1997. [195] Richard M. C. , B. I. Lemon III, L. Sun, L. K.Yeung, M. Zhao, DendrimerEncapsulated Metals and Semiconductors: Synthesis, Characterization, and Applications, Topics in Current Chemistry, 22, pp. 81-135. 2001. [196] Agbossou, F., J.-F. Carpentier and A. Mortreux. Asymmetric Hydroformylationt. Chemical Reviews, 95, pp.2485-2506. 1995. [197] Paul, C. J. K., A. van Rooy, G. C. Schoemaker, P. W. N. M. van Leeuwen. Review In situ Mechanistic Studies in Rhodium Catalyzed Hydroformylation of Alkenes, Coordination Chemistry Reviews, 248, pp.2409–2424. 2004. [198] Eilbracht P., L. Ba¨rfacker, C. Buss, C. Hollmann, B. E. Kitsos-Rzychon, C. L. Kranemann, T. Rische, R. Roggenbuck, and A. Schmidt. Tandem Reaction Sequences under Hydroformylation Conditions: New Synthetic Applications of Transition Metal Catalysis. Chem. Rev. 1999, 99, 3329-3365. [199] Cornils, B. and W. A. Herrmann. Applied Homogeneous Catalysis with Organometallic Compounds, Vol. 1, VCH, Weinheim, 1996, p. 59. [200] Cornils, B. and W. A. Herrmann. Applied Homogeneous Catalysis with Organometallic Compounds, VCH, 1996, pp. 605-623. 180 References [201] Annis, D. A.; Jacobsen, E. N. Polymer-Supported Chiral Co(salen) Complexes: Synthetic Applications and Mechanistic Investigations in the Hydrolytic Kinetic Resolution of Terminal Epoxides, Journal of the American Chemical Society, 121, pp.4147-4154. 1999. [202] Gonzalez, A. C., A. Corma, M. Iglesias M. and F. Sanchez. From Homogeneous to Heterogeneous Catalysis: Supported Pd(II) Metal Complexes with Chiral Triaza Donor Ligands Comparative Catalytic Study with Rh(I) and Ir(i) Complexes for Hydrogenation Reactions. Catalysis Today, 107, pp.362-370, 2005. [203] R. N. George, E. He, and C. N. Moorefield. Suprasupermolecules with Novel Properties: Metallodendrimers. Chemical Reviews, 99, pp.1689-1746. 1999. [204] Antochshuk, V. and M. Jaroniec. Simultaneous Modification of Mesopores and Extraction of Template Molecules from MCM-41 with Trialkylchlorosilanes. Chemical Communications, pp. 2373–2374. 1999. [205] Schmidt, R., E. W. Hansen, M. Stocker, D. Akporiaye and O. H. Ellestad, Pore Size Determination of MCM-41 Mesoporous Materials by Means of 'H NMR Spectroscopy, N2 Adsorption, and HREM. A Preliminary Study, Journal of the American Chemical Society, 117, pp.4049-4056. 1995. [206] Li P. and S. Kawi. Dendritic SBA-15 Supported Wilkinson’s Catalyst for Hydroformylation of Styrene, Catalysis Today, 131, pp.61-69. 2008. [207] Jaroniec, C. P., M. Kruk, , M. Jaroniec, A. Sayari. Tailoring Surface and Structural Properties of MCM-41 Silicas by Bonding Organosilanes, Journal of Physical Chemistry B, 102, pp.5503-5510. 1998. [208] Handbook of X-Ray Photoelectron Spectroscopy, Physical Electronics, Perkin-Elmer,1979 [209] Burk, M. J., A. Gerlach and D. Semmerji. An Immobilized Homogeneous Catalyst for Efficient and Selective Hydrogenation of Functionalized Aldehydes, Alkenes, and Alkynes, The Journal of Organic Chemistry, 65, pp.8933-8939. 2000. [210] Yuri S. V., T. G. Cherkasova and I. S. Podkorytov. Action of Triphenylphosphine on [Rh(HCOO)(PPh3)2(CO)]. A novel synthetic route to [HRh(PPh3)3(CO)], Inorganic Chemistry Communications, 7, pp.489-491, 2004. [211] Konstantinos C. A., K. A. Vallianatou, A. Grigoropoulo, C. P. Raptopoulou, A. Terzis, I. D. Kostas, P. Kyritsis and G. Pneumatikakis, Synthesis and characterization of new RhI complexes bearing CO, PPh3 and chelating P,Oor Se,Se-ligands: Application to hydroformylation of styrene, Journal of Organometallic Chemistry, 692, pp.4129-4138, 2007. 181 References [212] Scott. P. J. and G. L. Rempel Homogeneous catalytic hydroformylation of Styrene-butadiene copolymers in the presence of HRh(CO)(PPh3)3, Macromolecules, 25, pp.2811-2819. 1992. [213] Caporali M., P. Frediani, A. Salvini and G. Laurenczy. In situ high pressure FT-IR spectroscopy on alkene hydroformylation catalysed by RhH(CO)(PPh3)3 and Co2(CO)8, Inorganica Chimica Acta, 357, pp.4537-4543. 2004. [214] Bath S. S. and L. Vaska. Five-Coordinate Hydrido-Carbonyl Complexes of Rhodium and Iridium and their Analogy with CoH(CO)4, 85, pp.3500-3501. 1963. [215] Damonese, L., M. Datt, M. Green and C. Steenkamp. Recent Advances in High-Pressure Infrared and NMR Techniques for the Determination of Catalytically Active Species in Rhodium- and Cobalt-Catalysed Hydroformylation Reactions Coordination Chemistry Reviews, 248, pp. 2393–2407. 2004. [216] Knozinger, H. XPS Photoelectron Study of Rhodium Complexes Attached to Chemically Modified Silicas, Inorganica Chimica Acta, 37, pp. 537-538. 1979. [217] Caroline, R. N., L. B. Nathalie, P. Laurent, J. C. Clement and H. des Abbayes. Rhodium-Catalyzed Hydroformylation of Styrene at Low Temperature Using Potentially Hemilabile Phosphite-Phosphonate Ligands, Tetrahedron Letters, 42, pp.643-645. 2001. [218] Pariente, S., P. Trens, F. Fajula, F. D. Renzo and N. Tanchoux. Heterogeneous Catalysis and Confinement Effects - The Isomerization of 1Hexene on MCM-41 Materials, Applied Catalysis A: General, 307, pp.51–57. 2006. [219] Axet, M. R., S. Castillon and C. Claver. Rhodium-Diphosphite Catalysed Hydroformylation of Allylbenzene and Propenylbenzene Derivatives. Inorganica Chimica Acta, 359, pp.2973-2979. 2006. [220] Rieu, J. P., A. Boucherle, H. Cousse and G. Mouzin. Methods for the Synthesis of Antiinflammatory 2-Aryl Propionic Acids. Tetrahedron, 42, pp.4095-4131. 1986. [221] Botteghi, C, S. Paganelli, A. Schionato and M. Marchetti. The Asymmetric Hydroformylation in the Synthesis of Pharmaceuticals. Chirality, 3,pp.55-369. 1991. [222] Konstantinos A. C., K. A. Vallianatou, A. Grigoropoulos, C. P. Raptopoulou, A. Terzis, I. D. Kostas, P. Kyritsis and G. Pneumatikakis. Synthesis and characterization of new Rh-I complexes bearing CO, PPh3 and chelating P,Oor Se,Se-ligands: Application to hydroformylation of styrene, Journal of Organometallic Chemistry, 692, pp.4129-4138. 2007. 182 References [223] Kostas, I. D. Synthesis of New Rhodium Complexes with a Hemilabile Nitrogen-Containing Bis(phosphinite) or Bis(phosphine) Ligand. Application to Hydroformylation of Styrene, Journal of Organometallic Chemistry, 626, pp.221-226. 2001. [224] Keglevich, G., T. Kégl , T. Chuluunbaatar, B. Dajka, P. Mátyus, B. Balogh, L. Kollá. Hydroformylation of Styrene in the Presence of Rhodium-2,4,6Trialkylphenyl-phosphole in situ Catalytic Systems, Journal of Molecular Catalysis A: Chemical, 200, pp.131-136. 2003. [225] Kleman, A. M. and M. A. Abraham. Asymmetric Hydroformylation of Styrene in Supercritical Carbon Dioxide. Industrial & Engineering Chemicstry Research, 45, pp. 1324-1330. 2006. [226] Pagar, N. S., R. M. Deshpande and R. V. Chaudhari. Hydroformylation of Olefins using Dispersed Molecular Catalysts on Solid Supports. Catalysis Letters, 110, pp.129-133. 2006. [227] Moffat, A. J. New Oxo Chemistry Via Solid Poplymer-Cobalt Carbonyl Complexes, Journal of Catalysis, 18, pp.193-199. 1970. [228] Fierro, J. L. G., M. D. Merchan, S. Rojas and P. Terreros. 1-Heptene Hydroformylation over Phosphinated Silica-Anchored Rhodium Thiolate Complexes, Journal of Molecular Catalysis A: Chemical, 166, pp. 255-264. 2001. [229] Gao, H. and R. J. Angelici, Hydroformylation of 1-Octene under Atmospheric Pressure Catalyzed by Rhodium Carbonyl Thiolate Complexes Tethered to Silica, Organometallics, 17, pp.3063-3069. 1998. [230] Nowotny, M., T. Maschmeyer, B. F. G. Johnson, P. Lahuerta, J. M. Thomas and J. E. Davies. Heterogeneous Dinuclear Rhodium(ii) Hydroformylation CatalystsÐPerformance Evaluation and Silsesquioxane-Based Chemical Modeling, Angewandte Chemie-International Edition, 40, pp.955-958. 2001. [231] Liu, A. M., K. Hidajat and S. Kawi. Combining the Advantages of Homogeneous and Heterogeneous Catalysis: Rhodium Complex on Functionalized MCM-41 for the Hydrogenation of Arenas, Journal of Molecular Catalysis A: Chemical, 168, pp. 303-306. 2001. [232] Ali, B. E., J. Tijani, M. Fettouhi, M. E. Faer and A. A. Arfaj. Rhodium(I) and Rhodium(III)–Heteropolyacids Supported on MCM-41 for the Catalytic Hydroformylation of Styrene Derivatives, Applied Catalysis A: General, 283, pp.185–196. 2005. [233] Huo, Q., R. Leon, P. M. Petroff and G. D. Stucky. Mesostructure Design wit Gemini Surfactants Supercage Formation in a 3-Dimensional Hexagonal Array, 268, pp.1324-1327. 1995. 183 References [234] Thomas, J. M. Design, Synthesis, and In Situ Characterization of New Solid Catalysts, Angewandte Chemie-International Edition, 38, pp.3588-3628. 1999. [235] Balogh, L., A. Leuze-Jallouli, P. Dvornic, Y. Kunugi, A. Blumstein and D. A. Tomalia, Architectural Copolymers of PAMAM Dendrimers and Ionic Polyacetylenes. Macromolecules, 32, pp.1036-1042. 1999. [236] Xiao, Y. C., L. Shao, T.-S. Chung and D. A. Schiraldi. Effects of Thermal Treatments and Dendrimers Chemical Structures on the Properties of Highly Surface Cross-Linked Polyimide Films. Industrial & Engineering Chemicstry Research, 44, pp.3059-3067. 2005. [237] Chung, T.-S., M. L. Chng, K. P. Pramoda and Y. C. Xiao. PAMAM Dendrimer-Induced Cross-Linking Modification of Polyimide Membranes. Langmuir, 20, pp.2966-2969. 2004. [238] Chao, C. M., G. P. Wang, K. H. Wu and T. C. Chang. Synthesis and Characterization of Polyaniline-Polyamidoamine Dendrimers Blends. Journal of Polymer Science Part B-Polymer Physics, 44, pp.1-8. 2006. [239] Xiao, Y. C., T.-S. Chung and M. L. Chng. Surface Characterization, Modification Chemistry, and Separation Performance of Polyimide and Polyamidoamine Dendrimer Composite Films. Langmuir, 20, pp.8230-8238. 2004. [240] Screenivasa, R. P. and M. P. Srinivasan. Covalent Molecular Assembly of Multilayer Dendrimer Ultrathin Films in Supercritical Medium, Journal Colloid and Interface Science, 306, pp.118-127. 2007. [241] Kim, J. J. and H. Alper. Ionic Diamine Rhodium(I) Complexes—Highly Active Catalysts for the Hydroformylation of Olefins, Chemical Communication, pp.3059-3061. 2005. [242] Peng, Q. R., Y. Yang and Y. Z. Yuan. Immobilization of Rhodium Complexes Ligated with Triphenyphosphine Analogs on Amino-functionalized MCM-41 and MCM-48 for 1-Hexene Hydroformylation. Journal of Molecular Catalysis A: Chemical, 219, pp.175-181. 2004. [243] Michal, K. and M. Jaroniec. Relations between Pore Structure Parameters and Their Implications for Characterization of MCM-41 Using Gas Adsorption and X-ray Diffraction, Chemistry Materials, 11, pp.492-500. 1999. [244] Lee, J. J. and W. T. Ford. Reactivity of Organic Anions Promoted by a Quaternary Ammonium Ion Dendrimer. Macromolecules, 27, pp.4632-4634. 1994. [245] Chow, H. F. and C. C. Mak. Dendritic Bis(ozazoline)copper(II) Catalysts. 2. Synthesis, Reactivity, and Substrate Selectivity. Journal of Organic Chemistry, 62, pp.5116-5127. 1997. 184 References [246] Mak, C. C. and H. F. Chow. Dendritic Catalysts: Reactivity and Mechanism of the Dendritic Bis(oxazoline)metal Complex Catalyzed Diels-Alder Reaction. Macromolecules, 30, pp.1228-1230. 1997. [247] Strohmeier W. and M. Michel. Kinetics and Product Distribution in Homogeneous Hydroformylation of 1-Hexene with RhHCO(PPh3)3 without Solvent. Zeitschrift Fur Physikalische Chemie-Wiesbaden, 124, pp.23-31. 1981. [248] Tran, M. T., N. S. Gnep, G. Szabo and M.Guisnet. Isomerization ofn-Butane over H-Mordenites under Nitrogen and Hydrogen: Influence of the Acid Site Density, Journal of Catalysis, 174, pp.185-190. 1998. [249] Alvila, L., T. A. Pakkanen, T. T. Pakkanen and O. Krause. Catalytic Hydroformylation of 1-Hexene over CO2Rh2(CO)12 Supported on Inorganic Carrier Materials. Journal of Molecular Catalysis A: Chemical, 75, pp.333345. 1992. [250] Borrelli, N. F., D. W. Hall, H. J. Holland, D. W. Smith, Quantum Confinement Effects of Semiconducting Mircrocrystallites in Glass. Journal of Applied Physics, 61, pp.5399-5409. 1987. [251] Gates B. C. Supported Metal Clusters: Synthesis, Structure, and Catalysis. Chemical Reviews, 95, pp.511-522. 1995. [252] Shen, S. C. ,K. Hidajat, L. E. Yu and S. Kawi. Novel Nanocrystalline Ga-AlZn Complex oxide: Catalyst for Simultaneous Treatment of NPAC and Lean NOx. Catalysis Today, 98, pp.387-392. 2004. [253] Tour, J. M. Conjugated Macromolecules of Precise Length and Constitution. Organic Synthesis for the Construction of Nanoarchitectures, Chemical Reviews, 96, pp.537-553. 1996. [254] Frechet, J. M. J. and D. A. Tomalia. Dendrimers and Other Dendritic Polymers John Wiley & Sons, pp. 23. 2001 [255] Chow, H. F. and C. W. Wan. Multicenter Homogeneous Dendritic Catalysts: The Higher the Generation, the Better the Reactivity and Selectivity?AComparative Study of the Catalytic Efficiency of Dendrimeric [1,1Binaphthalene]-2,2’-diol- Derived Catalysts, Helvetica Chimica Acta, 85, pp.3444-3454. 2002. [256] Reek, J. N. H., S. Arevalo, R. Van Heerbeeken, P. W. N. M. van Leeuwen. Dendrimers in Catalysis, Advances in Catalysis, 49, pp.71-151. 2006. [257] Ricken, S., P. W. Osinski, P. Eilbracht and R. Haag. A New Approach to Dendritic Supported NIXANTPHOS-based Hydroformylation Catalysts, Journal of Molecular Catalysis A: Chemical, 257, pp.78-88. 2006. [258] Vogtle F. Topics in Current Chemistry 212, Dendrimers III Design, Dimension, Function, pp. 3. 2001 185 References [259] Hu, A., T. Y. Gordon and W. Lin. Magnetically Recoverable Chiral Catalysts Immobilized on Magnetite Nanoparticles for Asymmetric Hydrogenation of Aromatic Ketones, Journal of the American Chemical Society, 127, pp.1248612487. 2005. [260] Rong, M. Z., Q. L. Ji, M. Q. Zhang and K. Friedrich. Graft Polymerization of Vinyl Monomers onto Nanosized Alumina Particles, European Polymer Journal, 38, pp.1573-1582. 2002. [261] Shen, S. C., K. Hidajat, L. E. Yu and S. Kawi. Simple Hydrothermal Synthesis of Nanostructured and Nanorod Zn-Al Complex Oxides as Novel Nanocatalysts, Advanced Materials, 16, pp.541-545. 2004. [262] Arena, C. G., D. Drago and F. Faraone. Hydroformylation of Styrene and 1Octene Catalyzed by Binuclear and Oligomer Rhodium(I) Complexes Containing the Bis-p-Phosphinito Ligands[(p-Ph2POC6H4)2X](X=O, CMe2, S), Journal of Molecular Catlalysis, 144, pp.379-388. 1999. [263] Nithyanandhan, J. and N. Jayaraman. Synthesis and Reactivity Profiles of Phosphinated Poly(Alkyl Aryl Ether) Dendrimers, Tetrahedron, 61, pp.1118411191. 2005. [264] Bu, J., R. Li, C. W. Quah, and K. J. Carpenter. Propagation of PAMAM Dendrons on Silica Gel: A Study on the Reaction Kinetics, Macromolecules, 37, pp.6687-6694. 2004. [265] Ropartz L., K. J. Haxton, D. F. Foster, R. E. Morris, A. M. Z. Slawin and D. J. Cole-Hamilton. Phosphine containing dendrimers for highly regioselective rhodium catalysed hydroformylation of alkenes: a positive 'dendritic effect', Journal of the Chemical Society-Dalton Transactions, pp.4323-4334. 2002. [266] Dvornic, P. R., H. T. Claire, S. E. Keinath, and E. J. Hill. Organic-Inorganic Polyamidoamine (PAMAM) Dendrimer-Polyhedral Oligosilsesquioxane (POSS) Nanohybrids, Macromolecules, 37, pp.7818-7831. 2004. [267] Feuerbacher, N. and F. Vögtle. Dendrimers, Springer Berlin Heidelberg, Chapter 1. pp.3. 1998. [268] Suomalainen, P., H. Riihimäki, S. Jääskeläinen, M. Haukka, J. T. Pursiainen and T. A. Pakkanen. Structural and Catalytic Properties of Alkyl-Substituted Phosphanes. Effect of Ortho-Modification on Rhodium-Catalyzed 1-Hexene Hydroformylation, Catalysis Letters, 77, pp.125-130. 2001. 186 Appendix Appendix List of Papers in Conferences and Journal [1] “Encapsulated RhCl(PPh3)3 and Rh4(CO)12 in Functionalized MCM-41 Supports: Novel Heterogeneous Catalysts for Hydroformylation Reaction”, authored by S. Kawi. and Li P. Conference Name: AIChE Session: Catalysis For Pharmaceuticals and Fine Chemicals [2] “Wilkinson’s Catalysts Supported on PAMAM Dendrimer/SBA-15: A Novel Hydrid Catalyst for Hydroformylation of Styrene”, authored by Li P. and S. Kawi. Conference Name: 4th Asis Pacific Congress on Catalysis (APCAT 4) Session: Nanotechnology in Catalysis [3] Li P. and S. Kawi. “Dendritic SBA-15 Supported Wilkinson’s Catalyst for Hydroformylation of Styrene”, Catalysis Today, 131, pp.61-69. 2008. [4] Li P. and S. Kawi. “SBA-15-based polyamidoamine dendrimer tethered Wilkinson’s rhodium complex for hydroformylation of styrene”, Journal of Catalysis, (In press, 2008) [5] Li P. and S. Kawi. “MCM-41 based polyamidoamine supported Wilkinson’s catalyst for hydroformylation of styrene”, Journal of Molecular Catalysis A-Chemical, (Submitted, 2008) [6] Li P., T. Warintorn and S. Kawi. “Highly active and selective nano-alumina supported Wilkinson’s catalysts for the hydroformylation of styrene”, Industrial & Engineering Chemistry Research, (Submitted, 2008) 187 [...]... supported Wilkinson’s catalysts Hydroformylation of styrene using nano-alumina and SBA-15 supported Wilkinson’s catalysts Regio-selctivity of hydroformylation of styrene using nanoalumina and SBA-15 supported Wilkinson’s catalysts Activity of hydroformylation of styrene using nano-alumina supported Wilkinson’s catalysts of PAMAM Dendrimer Generation 0 to 3 Selectivity of hydroformylation of styrene using nano-alumina... 7.2 Hydroformylation of styrene using nano-alumina and αalumina supported Wilkinson’s catalysts 143 Selectivity of hydroformylation of styrene using nano-alumina and Fig 7.3 Fig 7.4 Fig 7.5 Fig 7.6 Fig 7.7 Fig 7.8 Fig 7.9 α-alumina supported Wilkinson’s catalysts Hydroformylation of styrene using nano-alumina and αalumina supported Wilkinson’s catalysts Regio-selctivity of hydroformylation of styrene. .. CO (3b) Fig 2.1 Generally accepted mechanism for rhodium- catalyzed hydroformylation Figure 2.1 illustrates the generally accepted mechanism of rhodium- catalyzed hydroformylation reaction [33] The elemental steps are as follows: (a) The rhodium precursor break up and forms rhodium hydride tricarbonyl species (1) under the hydroformylation conditions; (b) The formed hydride coordinates the vinyl substrate... as-synthesized catalysts The substrate we choose for this project is styrene which is a model substrate studied extensively and can give us informative implications for synthesis of intermediates for pharmaceuticals The hydroformylation reaction is shown in Scheme 1.1 shown below: 5 Chapter 1 Introduction CHO O CO/H2 + Rh Styrene 3-phenylpropionaldehyde 2-phenylpropionaldehde Scheme 1.1 Hydroformylation of Styrene. .. Fig 5.8a Fig 5.8b Fig 5.9a Fig 5.9b Fig 5.10 Fig 5.11 Fig 5.12 Fig 6.1 Generally accepted mechanism for rhodium- catalyzed hydroformylation Associative pathway for the rhodium- triphenylphosphine-catalyzed hydroformylation of olefins Dissociative pathway for the rhodium- triphenylphosphinecatalyzed hydroformylation of olefins Three different configurations of surface hydroxyl groups PAMAM (generation 3)... (g) used WPM0 Hydroformylation of styrene using homogeneous Wilkinson’s catalyst; passivated MCM-41 based heterogenized Wilkinson’s catalysts, WPM0-WPM2 and non-passivated MCM-41 based heterogenized Wilkinson’s catalysts, WM0-WM2 Activity of hydroformylation of styrene using homogeneous PAMAM dendrimer with homogeneous RhCl(PPh3)3 118 119 119 122 125 127 129 Fig 6.6a Hydroformylation of styrene using... species catalyzed hydroformylation reactions [18, 19] 8 Chapter 2 Literature Review On the way of seeking more active and selective catalysts, various metals have been tested [20] And the accepted order of hydroformylation activity on the basis of unmodified monometallic catalysts is: Rh >> Co > Ir, Ru > Os > Pt > Pd > Fe > Ni Rhodium becomes the focus of the second generation hydroformylation catalysts, ... industry nowadays The rhodium- phosphine-catalyzed hydroformylation, first reported by Wilkinson and coworkers in the late 1960s, which operated at lower pressure and temperature than earlier cobalt-based catalysts provided a better choice of transition metal for hydroformylation And the rhodium- based catalysts were commercialized by Union Carbide in 1970s So far, homogeneous hydroformylation process... to hydroformylation, MCM-41, SBA-15, nanoparticle and dendrimers Chapter 3 demonstrates the experimental steps in detail for synthesis of materials, heterogenized catalysts and instruments applied for reactions and characterizations Chapters 4, 5, 6 and 7 describe in details the results and discussion sections for each topic covering the using of SBA-15, MCM-41 and nano-alumina as supports for hydroformylation. .. that the main goal in rhodium- catalyzed hydroformylation of olefins, concerns the control of regioselectivity It is obvious that some steps in the hydroformylation cycle are crucial in deciding the final regioselectivity For example, step c controls the ratio between branch and linear alkyl rhodium intermediates and if these alkyl rhodium intermediates go forward in the cycle will form branch and linear . FUNCTIONALISED NANOSTRUCTURED DENDRITIC RHODIUM CATALYSTS FOR STYRENE HYDROFORMYLATION REACTIONS LI PENG (B. Eng., Tianjin University) A THESIS SUBMITTED FOR. mechanism for rhodium- catalyzed hydroformylation 11 Fig. 2.2 Associative pathway for the rhodium- triphenylphosphine-catalyzed hydroformylation of olefins 13 Fig 2.3 Dissociative pathway for. are stable during the hydroformylation reactions. The synthesized nano-Al 2 O 3 catalysts are highly active, selective and stable. Keywords: Hydroformylation, styrene, rhodium, Wilkinson’s