1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Synthesis and characterization of new metal carbon catalysts for hydrogenation of d glucose

179 705 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 179
Dung lượng 3,8 MB

Nội dung

SYNTHESIS AND CHARACTERIZATION OF NEW METAL-CARBON CATALYSTS FOR HYDROGENATION OF D-GLUCOSE LIU JIAJIA NATIONAL UNIVERSITY OF SINGAPORE 2010 SYNTHESIS AND CHARACTERIZATION OF NEW METAL-CARBON CATALYSTS FOR HYDROGENATION OF D-GLUCOSE LIU JIAJIA (M.Eng, Tianjin University) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CHEMICAL AND BIOMOLECULAR ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2010 Acknowledgement Acknowledgement I am heartily thankful to my supervisor, Assoc. Prof. Zhao X. S., George, whose constant encouragement, invaluable guidance, patience and support throughout the whole period of my PhD candidature. I would also like to thank Assoc. Prof. Zhao for his guidance on writing scientific papers including this PhD thesis. In addition, I want to express my sincerest appreciation to the Department of Chemical and Biomolecular Engineering for offering me the chance to study at NUS with a scholarship. It’s my pleasure to work with a group of brilliant, warmhearted and lovely people. Wish all my lab mates go well with their work. Particular acknowledgement goes to Dr. Liu Tao, Mr. Chia Phai Ann, Mr. Shang Zhenhua, Dr. Yuan Zeliang, Mr. Mao Ning, Mr. Liu Zhicheng, Dr. Rajarathnam D., Madam Chow Pek Jaslyn, Mdm Fam Hwee Koong Samantha, Ms Lee Chai Keng, Ms Tay Choon Yen, Mr. Toh Keng Chee, Mr. Chun See Chong, Ms. Ng Ai Mei, Ms. Lum Mei Peng Sharon, and Ms. How Yoke Leng Doris for their kind supports. I thank my parents and my husband. It is no exaggeration to say that I could not complete the PhD work without their generous help, boundless love, encouragement and support. Lastly, I offer my regards and blessing to all of those who supported me in any respect during the completion of the project. i Table of Contents Table of Contents Acknowledgement i Table of Contents ii Summary . v Nomenclature . viii List of Tables ix List of Figures . x Chapter 1. Introduction 1.1 Hydrogenation reactions . 1.2 Importance of hydrogenation of D-glucose 1.3 Catalysts for hydrogenation reactions . 1.4 Carbon-supprted catalysts for hydrogenation reactions 1.5 Recent advance on template approach to preparing novel porous carbons and catalysts . 1.6 Objective of project . 1.7 Structure of thesis . Chapter 2. Literature review 11 2.1 Hydrogenation reactions . 11 2.2 Catalysts in hydrogenation reactions 13 2.3 Hydrogenation of D-glucose . 37 2.4 Porous carbon as a catalyst support 43 Chapter 3. Experimental section 59 3.1 Chemicals 59 3.2 Synthesis methods . 60 ii Table of Contents 3.3 Characterization techniques 63 3.4 Evaluation of catalytic properties . 75 Chapter 4. Ru nanoparticles embedded in templated porous carbon and catalytic performance in D-glucose hydrogenation . 77 4.1 Introduction . 77 4.2 Characterization of Ru nanoparticles catalysts . 77 4.3 Catalytic properties . 84 4.4 Summary . 91 Chapter 5. Bimetallic Ru-Cu nanoparticles sandwiched in porous carbon . 92 5.1 Introduction . 92 5.2 Characterization of bimetallic Ru-Cu catalysts 94 5.3 Catalytic properties . 106 5.4 Summary . 108 Chapter 6. Ruthenium nanoparticles embedded in mesoporous carbon fibers . 109 6.1 Introduction . 109 6.2 Characterization of Ru nanoparticles catalysts . 111 6.3 Catalytic properties . 122 6.4 Summary . 126 Chapter 7. Kinetics of the catalytic hydrogenation of D-glucose over bimetallic RuCu carbon catalyst . 127 7.1 Introduction . 127 7.2 Kinetics of the hydrogenation of D-glucose . 128 7.3 Modeling results of kinetics and mechanism 132 7.4 Summary . 135 Chapter 8. Conclusions and recommendations . 137 iii Table of Contents 8.1 Conclusions . 137 8.2 Recommendations . 139 References . 140 Appendix . 162 iv Summary Summary Catalytic hydrogenation is a process for the reduction of chemical substances, and has found numerous applications in the chemical and petrochemical industries. The hydrogenation reaction can be carried out heterogeneously or homogeneously. The heterogeneous catalysts are in generally a metal supported on a solid that are prepared by using conventional methods, such as impregnation followed by hydrogen reduction. Such supported catalysts suffer from a number of problems, such as aggregation and leaching of the metal particles. Thus, new methods that afford the preparation of catalytically highly active, chemically and thermally stable, technically reusable, and cost-effective are highly desirable. In this thesis work, the template strategy was employed to prepare new heterogeneous catalysts. The catalysts were characterized using a number of techniques, such as extended X-ray absorption spectroscopy (XAS) and chemisorption of hydrogen and carbon monoxide. The catalytic properties of the catalysts were evaluated using the hydrogenation of D-glucose in a batch reactor. First, ruthenium nanoparticles embedded in the pore walls of templated carbon (denoted RuC) were prepared by using H-form zeolite Y and mesoporous silica SBA15 as templates. Compared with other ruthenium catalysts prepared using conventional methods, the RuC catalysts prepared using the template method exhibited a significantly improved catalytic performance because of the unique structure of the RuC catalysts. Second, bimetallic ruthenium-copper (Ru-Cu) nanoparticles embedded in the pore walls of mesoporous carbon were prepared. The presence of bimetallic entities was supported by the characterization data of both Ru LIII-edge and Cu K-edge X-ray v Summary absorption. It was observed that additional active sites were created because of the spillover of H from Ru to Cu at low Cu contents while three-dimensional islands of segregated metallic Cu phase covering the surface of Ru nanoparticles appeared at high Cu contents. Third, alumina microfibers were also used as templates to prepare Ru nanoparticles embedded in mesoporous carbon fibers. In comparison with Ru nanoparticles supported on other carbon materials (e.g., multi-walled carbon nanotubes, carbon fibers, alumina microfibers, and the activated charcoals), the Ru catalyst prepared using the template method displayed a remarkably higher catalytic activity and a better stability, again attributed to the features of unblocked mesopores, hydrogen spillover, and unique surface contact between the Ru nanoparticles and the carbon supports. In addition, the incorporation of nitrogen significantly improved the catalytic performance due to the enhanced hydrogen adsorption, improved surface wettability, and modified electronic properties of the Ru nanoparticles. Fourth, the kinetics of D-glucose hydrogenation over a bimetallic catalyst was studied. In the operation regime studied, the reaction rate showed a first order dependency with respect to hydrogen. The rate dependence on D-glucose was found to be concentration-dependent: at low D-glucose concentrations the reaction rate showed a first order dependency while at higher concentrations a zero order behavior was observed. Experimental data were fitted to the kinetic model using the Matlab software with the fminsearch method. The kinetic model was found to nicely predict the experimental data. In short, the template method offers opportunities to prepare novel solid catalysts with unique properties, such as controllable catalyst particle size, enhanced catalyst dispersion, improved thermal stability, lowered diffusion resistance of both reagent vi Summary and product, and intimate interfacial contact between metal particles and the carbon support. In addition, the template method could be extended to the preparation of bimetallic or tri-metallic carbon nanocomposites. Furthermore the template method allows one to easily control the chemical properties of carbon by changing carbon precursor (incorporation of heteroatom such as nitrogen). vii Nomenclature Nomenclature 1D One-dimensional 3D Three-dimensional o Degree Centigrade C λ BET Wavelength Brunauer-Emmett-Teller BJH Barrett-Joyner-Halenda CVD Chemical vapor deposition d Diameter DI Deionized EDX Energy dispersive X-ray spectroscopy FT-IR Fourier transform infrared FESEM Field emission scanning electron microscopy h hour HK Horvath-Kawazoe method HRTEM High-Resolution Transmission Electron Microscopy mL mille liter nm nanometer P123 Poly(ethylene glycol)20-block poly(ethyleneglycol)20 PSD Pore size distribution SBA Santa Babara SEM Scanning electron microscopy TEM Transmission electron microscopy TEOS Tetraethyl orthosilicate TGA Thermogravimetric analysis XAS X-ray Absorption Spectroscopy XPS X-ray Photoelectron Spectroscopy XRD X-ray Diffraction viii poly(propylene glycol)70-block Reference Ghosh, K., M. Kumar, T. Maruyama, Y. Ando. Tailoring the Field Emission Property of Nitrogen-Doped Carbon Nanotubes by Controlling the Graphitic/Pyridinic Substitution. Carbon, 48, pp.191-200. 2010. Gomez, S., J. A. Peters, T. Maschmeyer. The Reductive Amination of Aldehydes and Ketones and the Hydrogenation of Nitriles: Mechanistic Aspects and Selectivity Control. Adv. Synth. Catal., 344, pp.1037-1057. 2002. Goodman, D. W., C. H. F. Peden. Hydrogen Spillover from Ruthenium to Copper in Cu/Ru Catalysts: A Potential Source of Error in Active Metal Titration. J. Catal., 95, pp.321-324. 1985. Gorgulho, H. F., F. Goncalves, M. F. R. Pereira, J. L. Figueiredo. Synthesis and Characterization of Nitrogen-Doped Carbon Xerogels. Carbon, 47, pp.20322039. 2009. Guczi, L. Bimetallic Nano-Particles: Featuring Structure and Reactivity. Catal. Today, 101, pp.53-64. 2005. Guo, H. B., H. X. Li, J. Zhu, W. H. Ye, M. H. Qiao, W. L. Dai. Liquid Phase Glucose Hydrogenation to D-glucitol over an Ultrafine Ru-B Amorphous Alloy Catalyst. J. Mol. Catal. A-Chem, 200, pp.213-221. 2003. Haller, G. L., D. E. Resasco, H. P. D.D. Eley, B. W. Paul. Metal-Support Interaction: Group VIII Metals and Reducible Oxides. Adv. Catal., 36, pp.173-235. 1989. Halpern, J. in Asymmetric Synthesis. pp. 41-69, London: Academic Press. 1985. Hansen, T. W., J. B. Wagner, P. L. Hansen, S. Dahl, H. Topsoe, C. J. H. Jacobsen. Atomic-Resolution in Situ Transmission Electron Microscopy of a Promoter of a Heterogeneous Catalyst. Science, 294, pp.1508-1510. 2001. Highfield, J., T. Liu, Y. S. Loo, B. Grushko, A. Borgna. Skeletal Ru/Cu Catalysts Prepared from Crystalline and Quasicrystalline Ternary Alloy Precursors: Characterization by X-ray Absorption Spectroscopy and CO Oxidation. Phys. Chem. Chem. Phys., 11, pp.1196-1208. 2009. Hoffer, B. W., E. Crezee, F. Devred, P. R. M. Mooijman, W. G. Sloof, P. J. Kooyman, A. D. van Langeveld, F. Kapteijn, J. A. Moulijn. The Role of the Active Phase of Raney-type Ni Catalysts in the Selective Hydrogenation of D-glucose to Dsorbitol. Appl. Catal. A: Gen., 253, pp.437-452. 2003a. Hoffer, B. W., E. Crezee, P. R. M. Mooijman, A. D. van Lagneveld, F. Kapteijn, J. A. Moulijn. Carbon Supported Ru Catalysts as Promising Alternative for Raneytype Ni in the Selective Hydrogenation of D-glucose. Catal. Today, 79, pp.3541. 2003b. Holmes, S. M., P. Foran, P. L. Roberts, J. M. Newton. Encapsulation of Metal Particles within the Wall Structure of Mesoporous Carbons. Chem. Commun., 12, 19121913. 2005. 147 Reference Hong, A. J., A. J. Rouco, D. E. Resasco, G. L. Haller. Effect of Silica Support on RuCu Cluster Morphology as Determined by Catalytic Activity. J. Phys. Chem., 91, pp.2665-2671. 1987. Hong, A. J., A. J. Rouco, D. E. Resasco, G. L. Haller. Effect of Silica Support on Ruthenium-Copper Cluster Morphology as Determined by Catalytic Activity. J. Phys. Chem., 91, pp.2665-2671. 1987. Hou, P. X., H. Orikasa, T. Yamazaki, K. Matsuoka, A. Tomita, N. Setoyama, Y. Fukushima, T. Kyotani. Synthesis of Nitrogen-Containing Microporous Carbon with a Highly Ordered Structure and Effect of Nitrogen Doping on H2O Adsorption. Chem. Mater., 17, pp.5187-5193. 2005a. Hou, P. X., T. Yamazaki, H. Orikasa, T. Kyotani. An Easy Method for the Synthesis of Ordered Microporous Carbons by the Template Technique. Carbon, 43, pp.2624-2627. 2005b. Hoxha, F., N. van Vegten, A. Urakawa, F. Krurneich, T. Mallat, A. Baiker. Remarkable Particle Size effect in Rh-Catalyzed Enantioselective Hydrogenations. J. Catal., 261, pp.224-231. 2009. Hu, A., G. T. Yee, W. Lin. Magnetically Recoverable Chiral Catalysts Immobilized on Magnetite Nanoparticles for Asymmetric Hydrogenation of Aromatic Ketones. J. Am. Chem. Soc., 127, pp.12486-12487. 2005. Huang, J., T. Jiang, H. X. Gao, B. X. Han, Z. M. Liu, W. Z. Wu, Y. H. Chang, G. Y. Zhao. Pd Nanoparticles Immobilized on Molecular Sieves by Ionic Liquids: Heterogeneous Catalysts for Solvent-Free Hydrogenation. Angew. Chem. Int. Ed., 43, pp.1397-1399. 2004. Huang, S. F., K. Terakura, T. Ozaki, T. Ikeda, M. Boero, M. Oshima, J. Ozaki, S. Miyata. First-principles Calculation of the Electronic Properties of Graphene Clusters Doped with Nitrogen and Boron: Analysis of Catalytic Activity for the Oxygen Reduction Reaction. Phys. Rev. B, 80, pp. 2009. Huber, G. W., R. D. Cortright, J. A. Dumesic. Renewable Alkanes by Aqueous-Phase Reforming of Biomass-Derived Oxygenates13. Angew. Chem. Int. Ed., 43, pp.1549-1551. 2004. Huber, G. W., J. W. Shabaker, J. A. Dumesic. Raney Ni-Sn Catalyst for H2 Production from Biomass-Derived Hydrocarbons. Science, 300, pp.2075-2077. 2003. Ismagilov, Z. R., A. E. Shalagina, O. Y. Podyacheva, A. V. Ischenko, L. S. Kibis, A. I. Boronin, Y. A. Chesalov, D. I. Kochubey, A. I. Romanenko, O. B. Anikeeva, T. I. Buryakov, E. N. Tkachev. Structure and Electrical Conductivity of NitrogenDoped Carbon Nanofibers. Carbon, 47, pp.1922-1929. 2009. Jen, P. H., Y. H. Hsu, S. D. Lin. The Activity and Stability of Pd/C Catalysts in Benzene Hydrogenation. Catal. Today, 123, pp.133-141. 2007. 148 Reference Jiang, Y. J., Q. M. Gao. Heterogeneous Hydrogenation Catalyses over Recyclable Pd(0) Nanoparticle Catalysts Stabilized by PAMAM-SBA-15 Organic-Inorganic Hybrid Composites. J. Am. Chem. Soc., 128, pp.716-717. 2006. Joo, S. H., S. J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, R. Ryoo. Ordered Nanoporous Arrays of Carbon Supporting High Dispersions of Platinum Nanoparticles. Nature, 412, pp.169-172. 2001. Jun, S., S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna, O. Terasaki. Synthesis of New, Nanoporous Carbon with Hexagonally Ordered Mesostructure. J. Am. Chem. Soc., 122, pp.10712-10713. 2000. Kacer, P., L. Cerveny. Structure Effects in Hydrogenation Reactions on Noble Metal Catalysts. Appl. Catal. A: Gen., 229, pp.193-216. 2002. Kantam, M. L., B. P. C. Rao, B. M. Choudary, B. Sreedhar. Selective Transfer Hydrogenation of Carbonyl Compounds by Ruthenium Nanoclusters Supported on Alkali-Exchanged Zeolite Beta. Adv. Synth. Catal., 348, pp.1970-1976. 2006. Kijenski, J., P. Winiarek, T. Paryjczak, A. Lewicki, A. Mikolajska. Platinum Deposited on Monolayer Supports in Selective Hydrogenation of Furfural to Furfuryl alcohol. Appl. Catal. A: Gen., 233, pp.171-182. 2002. Kim, D. B., D.-H. Lim, H.-J. Chun, H.-H. Kwon, H.-I. Lee. Nitrogen-Containing Graphitized Carbon Support for Methanol Oxidation Pt Catalyst. Carbon, 48, pp.673-679. 2010. Kim, M., S. Hwang, J.-S. Yu. Novel Ordered Nanoporous Graphitic C3N4 as a Support for Pt-Ru Anode Catalyst in Direct Methanol Fuel Cell. J. Mater. Chem., 17, pp.1656-1659. 2007. Kim, T.-W., I.-S. Park, R. Ryoo. A Synthetic Route to Ordered Mesoporous Carbon Materials with Graphitic Pore Walls13. Angew. Chem. Int. Ed., 42, pp.43754379. 2003. King, T. S., X. Wu, B. C. Gerstein. Direct Evidence for Spillover of Hydrogen from Ruthenium to Copper in Supported Cu-Ru/SiO2 Catalysts - a Study by NMR of Chemisorbed Hydrogen. J. Am. Chem. Soc., 108, pp.6056-6058. 1986. Kiraly, Z., B. Veisz, A. Mastalir, G. Kofarago. Preparation of Ultrafine Palladium Particles on Cationic and Anionic Clays, Mediated by Oppositely Charged Surfactants: Catalytic Probes in Hydrogenations. Langmuir, 17, pp.5381-5387. 2001. Kluson, P., L. Cerveny. Selective Hydrogenation over Ruthenium Catalysts. Appl. Catal. A: Gen., 128, pp.13-31. 1995. Knox, J. H., B. Kaur, G. R. Millward. Structure and Performance of Porous Graphitic Carbon in Liquid Chromatography. J. Chromatogr. A, 352, pp.3-25. 1986. 149 Reference Kolaric, S., V. Sunjic. Comparative Study of Homogeneous Hydrogenation of Dglucose and D-mannose Catalyzed by Water soluble [Ru(tri(msulfophenyl)phosphine)] Complex. J. Mol. Catal. A-Chem, 110, pp.189-193. 1996. Koo-amornpattana, W., J. M. Winterbottom. Pt and Pt-alloy Catalysts and Their Properties for the Liquid-phase Hydrogenation of Cinnamaldehyde. Catal. Today, 66, pp.277-287. 2001. Koopman, P. G. J., A. P. G. Kieboom, H. V. Bekkum. Preparation and High Temperature Activation of Ruthenium on Carbon Hydrogenation Catalysts. Carbon, 17, pp.399-402. 1979. Kralik, M., A. Biffis. Catalysis by Metal Nanoparticles Supported on Functional Organic Polymers. J. Mol. Catal. A-Chem, 177, pp.113-138. 2001. Kumar, N., P. Mäki-Arvela, J. Hajek, T. Salmi, D. Y. Murzin, T. Heikkilä, E. Laine, P. Laukkanen, J. Väyrynen. Physico-chemical and Catalytic Properties of RuMCM-41 Mesoporous Molecular Sieve Catalyst: Influence of Ru Modification Methods. Microporous Mesoporous Mat., 69, pp.173-179. 2004. Kun, I., G. Szöllösi, M. Bartók. Crotonaldehyde Hydrogenation over Clay-Supported Platinum Catalysts. J. Mol. Catal. A-Chem, 169, pp.235-246. 2001. Kusserow, B., S. Schimpf, P. Claus. Hydrogenation of Glucose to Sorbitol over Nickel and Ruthenium Catalysts. Adv. Synth. Catal., 345, pp.289-299. 2003. Kuusisto, J., J. P. Mikkola, M. Sparv, J. Warna, H. Karhu, T. Salmi. Kinetics of the Catalytic Hydrogenation of D-lactose on a Carbon Supported Ruthenium Catalyst. Chem. Eng. J., 139, pp.69-77. 2008. Kyotani, T., T. Nagai, S. Inoue, A. Tomita. Formation of New Type of Porous Carbon by Carbonization in Zeolite Nanochannels. Chem. Mater., 9, pp.609-615. 1997. Kyotani, T., Z. X. Ma, A. Tomita. Template Synthesis of Novel Porous Carbons Using Various Types of Zeolites. Carbon, 41, pp.1451-1459. 2003. Lai, S. Y., J. C. Vickerman. Carbon Monoxide Hydrogenation over Silica-Supported Ruthenium-Copper Bimetallic Catalysts. J. Catal., 90, pp.337-350. 1984. Lang, H. F., R. A. May, B. L. Iversen, B. D. Chandler. Dendrimer-encapsulated Nanoparticle Precursors to Supported Platinum Catalysts. J. Am. Chem. Soc., 125, pp.14832-14836. 2003. Lashdaf, M., A. O. I. Krause, M. Lindblad, M. Tiitta, T. Venäläinen. Behaviour of Palladium and Ruthenium Catalysts on Alumina and Silica Prepared by Gas and Liquid Phase Deposition in Cinnamaldehyde Hydrogenation. Appl. Catal. A: Gen., 241, pp.65-75. 2003. 150 Reference Lee, J.-S., S. H. Joo, R. Ryoo. Synthesis of Mesoporous Silicas of Controlled Pore Wall Thickness and Their Replication to Ordered Nanoporous Carbons with Various Pore Diameters. J. Am. Chem. Soc., 124, pp.1156-1157. 2002. Lee, J., S. Yoon, T. Hyeon, S. M. Oh, K. B. Kim. Synthesis of a New Mesoporous Carbon and its Application to Electrochemical Double-Layer Capacitors. Chem. Commun., 15, 2177-2178. 1999. Lee, J., J. Kim, T. Hyeon. Recent Progress in the Synthesis of Porous Carbon Materials. Adv. Mater., 18, pp.2073-2094. 2006. Lee, S. S., B. K. Park, S. H. Byeon, F. Chang, H. Kim. Mesoporous Silica-Supported Pd Nanoparticles; Highly Selective Catalyst for Hydrogenation of Olefins in Supercritical Carbon Dioxide. Chem. Mater., 18, pp.5631-5633. 2006. Lei, Z. B., Y. G. Zhang, H. Wang, Y. X. Ke, J. M. Li, F. Q. Li, J. Y. Xing. Fabrication of Well-ordered Macroporous Active Carbon with a Microporous Framework. J. Mater. Chem., 11, pp.1975-1977. 2001. Lenarda, M., R. Ganzerla, L. Storaro, R. Frattini, S. Enzo, R. Zanoni. X-ray Diffraction and X-ray Photoelectron Spectroscopy Study of the Ru-Cu/SiO2 System Prepared by Low Temperature Reduction: Occurrence of a Metastable Amorphous or Nanocrystalline Phase. J. Mater. Res., 11, pp.325-331. 1996. Lenz, J., B. C. Campo, M. Alvarez, M. A. Volpe. Liquid Phase Hydrogenation of Alpha,Beta-unsaturated Aldehydes over Gold Supported on Iron Oxides. J. Catal., 267, pp.50-56. 2009. Li, B., Z. Xu. A Nonmetal Catalyst for Molecular Hydrogen Activation with Comparable Catalytic Hydrogenation Capability to Noble Metal Catalyst. J. Am. Chem. Soc., 131, pp.16380-16382. 2009. Li, F. B., Q. L. Qian, F. Yan, G. Q. Yuan. Nitrogen-doped Porous Carbon Microspherules as Supports for Preparing Monodisperse Nickel Nanoparticles. Carbon, 44, pp.128-132. 2006. Li, H., D. S. Chu, J. Liu, M. H. Qiao, W. L. Dai, H. X. Li. A Novel RutheniumPhosphorus Amorphous Alloy Catalyst for Maltose Hydrogenation to Maltitol. Adv. Synth. Catal., 350, pp.829-836. 2008. Li, H., P. Yang, D. Chu, H. Li. Selective Maltose Hydrogenation to Maltitol on a Ternary Co-P-B Amorphous Catalyst and the Synergistic Effects of Alloying B and P. Appl. Catal. A: Gen., 325, pp.34-40. 2007. Li, H. X., H. Li, M. H. Wang. Glucose Hydrogenation over Promoted Co-B Amorphous Alloy Catalysts. Appl. Catal. A: Gen., 207, pp.129-137. 2001. Li, H. X., W. J. Wang, J. F. Deng. Glucose Hydrogenation to Sorbitol over a Skeletal Ni-P Amorphous Alloy Catalyst (Raney Ni-P). J. Catal., 191, pp.257-260. 2000. 151 Reference Li, J., M. H. Qiao, J. F. Deng. Amorphous Ni-B/gamma-Al2O3 Catalyst Prepared in a Modified Drying Approach and its Excellent Activity in Benzene Hydrogenation. J. Mol. Catal. A-Chem, 169, pp.295-301. 2001. Li, J., Y. M. Zhang, D. F. Han, Q. Gao, C. Li. Asymmetric Transfer Hydrogenation Using Recoverable Ruthenium Catalyst Iimmobilized into Magnetic Mesoporous Silica. J. Mol. Catal. A-Chem, 298, pp.31-35. 2009. Liang, C., Z. Li, S. Dai. Mesoporous Carbon Materials: Synthesis and Modification. Angew. Chem. Int. Ed., 47, pp.3696-3717. 2008. Liang, Y. Y., X. L. Feng, L. J. Zhi, U. Kolb, K. Mullen. A Simple Approach towards One-dimensional Mesoporous Carbon with Superior Electrochemical Capacitive Activity. Chem. Commun., 9, 809-811. 2009. Liberková, K., R. Touroude. Performance of Pt/SnO2 Catalyst in the Gas Phase Hydrogenation of Crotonaldehyde. J. Mol. Catal. A-Chem, 180, pp.221-230. 2002a. Liberková, K., R. Touroude, D. Y. Murzin. Analysis of Deactivation and Selectivity Pattern in Catalytic Hydrogenation of a Molecule with Different Functional Groups: Crotonaldehyde Hydrogenation on Pt/SnO2. Chem. Eng. Sci., 57, pp.2519-2529. 2002b. Lim, S., S. H. Yoon, I. Mochida, D. H. Jung. Direct Synthesis and Structural Analysis of Nitrogen-Doped Carbon Nanofibers. Langmuir, 25, pp.8268-8273. 2009. Liu, B., L. Lu, T. Cai, K. Iwatani. Selective Hydrogenation of Cinnamaldehyde over Raney Cobalt Catalysts Modified with Salts of Heteropolyacids. Appl. Catal. A: Gen., 180, pp.105-111. 1999. Liu, J. Tian, X. N. Zhao, X. S. Hydrogenation of Glucose over Ru Nanoparticles Embedded in Templated Porous Carbon. Aust. J. Chem., 62, pp.1020-1026. 2009. Liu, R. B., B. Tesche, H. Knozinger. Characterization of Rucu/SiO2 Catalysts by Infrared-Spectroscopy of Adsorbed Carbon-Monoxide. J. Catal., 129, pp.402413. 1991. Liu, S. H., R. F. Lu, S. J. Huang, A. Y. Lo, C. Shu-Hua, S. B. Liu. Controlled Synthesis of Highly Dispersed Platinum Nanoparticles in Ordered Mesoporous Carbon. Chem. Commun., 15, 3435-3437. 2006. Lindlar, H., Dubuis, R. Palladium Catalyst for Partial Reduction of Acetylenes. Org. Synth. Coll., 5, pp. 880-884. 1973. Lu, A.-H., W. Schmidt, N. Matoussevitch, H. Bönnemann, B. Spliethoff, B. Tesche, E. Bill, W. Kiefer, F. Schüth. Nanoengineering of a Magnetically Separable Hydrogenation Catalyst. Angew. Chem. Int. Ed., 43, pp.4303-4306. 2004a. 152 Reference Lu, A. H., A. Kiefer, W. Schmidt, F. Schuth. Synthesis of Polyacrylonitrile-based Ordered Mesoporous Carbon with Tunable Pore Structures. Chem. Mater., 16, pp.100-103. 2004b. Lu, A.-H., F. Schüth. Nanocasting: A Versatile Strategy for Creating Nanostructured Porous Materials. Adv. Mater., 18, pp.1793-1805. 2006. Lu, X. F., C. Wang, Y. Wei. One-Dimensional Composite Nanomaterials: Synthesis by Electrospinning and Their Applications. Small, 5, pp.2349-2370. 2009. Lynch, J. Physico-Chemical Analysis of Industrial Catalysts. pp. 219-236, Paris: Editions Technip. 2003. Lyth, S. M., Y. Nabae, S. Moriya, S. Kuroki, M. Kakimoto, J. Ozaki, S. Miyata. Carbon Nitride as a Nonprecious Catalyst for Electrochemical Oxygen Reduction. J. Phys. Chem. C, 113, pp.20148-20151. 2009. Ma, B., H. F. Schaefer, N. L. Allinger. Theoretical Studies of the Potential Energy Surfaces and Compositions of the d-Aldo- and d-Ketohexoses. J. Am. Chem. Soc., 120, pp.3411-3422. 1998. Ma, Z. X., T. Kyotani, A. Tomita. Preparation of a High Surface Area Microporous Carbon Having the Structural Regularity of Y Zeolite. Chem. Commun., 14, 2365-2366. 2000. Ma, Z. X., T. Kyotani, Z. Liu, O. Terasaki, A. Tomita. Very High Surface Area Microporous Carbon with a Three-Dimensional Nano-Array Structure: Synthesis and its Molecular Structure. Chem. Mater., 13, pp.4413. 2001. Ma, Z. X., T. Kyotani, A. Tomita. Synthesis Methods for Preparing Microporous Carbons with a Structural Regularity of Zeolite Y. Carbon, 40, pp.2367-2374. 2002. Machnikowski, J., B. Grzyb, J. V. Weber, E. Frackowiak, J. N. Rouzaud, F. Béguin. Structural and Electrochemical Characterisation of Nitrogen Enriched Carbons Produced by the Co-pyrolysis of Coal-tar Pitch with Polyacrylonitrile. Electrochim. Acta, 49, pp.423-432. 2004. Mäki-Arvela, P., L. P. Tiainen, M. Lindblad, K. Demirkan, N. Kumar, R. Sjöholm, T. Ollonqvist, J. Väyrynen, T. Salmi, D. Y. Murzin. Liquid-phase Hydrogenation of Citral for Production of Citronellol: Catalyst Selection. Appl. Catal. A: Gen., 241, pp.271-288. 2003. Maki-Arvela, P., J. Hajek, T. Salmi, D. Y. Murzin. Chemoselective Hydrogenation of Carbonyl Compounds over Heterogeneous Catalysts. Appl. Catal. A: Gen., 292, pp.1-49. 2005. Makkee, M., A. P. G. Kieboom, H. Vanbekkum. Hydrogenation of D-Fructose and DFructose D-Glucose Mixtures. Carbohydr. Res., 138, pp.225-236. 1985. 153 Reference Manyar, H. G., D. Weber, H. Daly, J. M. Thompson, D. W. Rooney, L. F. Gladden, E. H. Stitt, J. J. Delgado, S. Bernal, C. Hardacre. Deactivation and Regeneration of Ruthenium on Silica in the Liquid-phase Hydrogenation of Butan-2-one. J. Catal., 265, pp.80-88. 2009. Marchi, A. J., D. A. Gordo, A. F. Trasarti, C. R. Apesteguia. Liquid Phase Hydrogenation of Cinnamaldehyde on Cu-based Catalysts. Appl. Catal. A: Gen., 249, pp.53-67. 2003. Maris, E. P., W. C. Ketchie, V. Oleshko, R. J. Davis. Metal Particle Growth During Glucose Hydrogenation over Ru/SiO2 Evaluated by X-ray Absorption Spectroscopy and Electron Microscopy. J. Phys. Chem. B, 110, pp.7869-7876. 2006. Masalska, A. Ni-loaded Catalyst Containing ZSM-5 Zeolite for Toluene Hydrogenation. Appl. Catal. A: Gen., 294, pp.260-272. 2005. Mastalir, A., B. Rac, Z. Kiraly, A. Molnar. In Situ Generation of Pd Nanoparticles in MCM-41 and Catalytic Applications in Liquid-phase Alkyne Hydrogenations. J. Mol. Catal. A-Chem, 264, pp.170-178. 2007. Matsuoka, T., H. Hatori, M. Kodama, J. Yamashita, N. Miyajima. Capillary Condensation of Water in the Mesopores of Nitrogen-enriched Carbon Aerogels. Carbon, 42, pp.2346-2349. 2004. Matsuoka, K., Y. Yamagishi, T. Yamazaki, N. Setoyama, A. Tomita, T. Kyotani. Extremely High Microporosity and Sharp Pore Size Distribution of a Large Surface area Carbon Prepared in the Nanochannels of Zeolite Y. Carbon, 43, pp.876-879. 2005. Meng, Q., H. Li, H. X. Li. Self-assembly of Mesoporous Ruthenium-boron Amorphous Alloy Catalysts with Enhanced Activity in Maltose Hydrogenation to Maltitol. J. Phys. Chem. C, 112, pp.11448-11453. 2008. Meyers, C. J., S. D. Shah, S. C. Patel, R. M. Sneeringer, C. A. Bessel, N. R. Dollahon, R. A. Leising, E. S. Takeuchi. Templated Synthesis of Carbon Materials from Zeolites (Y, beta, and ZSM-5) and a Montmorillonite Clay (K10): Physical and Electrochemical Characterization. J. Phys. Chem. B, 105, pp.2143-2152. 2001. Miao, S. D., Z. M. Liu, B. X. Han, J. Huang, Z. Y. Sun, J. L. Zhang, T. Jiang. Ru Nanoparticles Immobilized on Montmorillonite by Ionic Liquids: A Highly Efficient Heterogeneous Catalyst for the Hydrogenation of Benzene. Angew. Chem. Int. Ed., 45, pp.266-269. 2006. Mikkola, J.-P., T. Salmi, R. Sjöholm. Modelling of Kinetics and Mass Transfer in the Hydrogenation of Xylose over Raney Nickel Catalyst. J. Chem. Technol. Biotechnol., 74, pp.655-662. 1999. Molnar, A., A. Sarkany, M. Varga. Hydrogenation of Carbon-carbon Multiple Bonds: Chemo-, Regio- and Stereo-selectivity. J. Mol. Catal. A-Chem, 173, pp.185221. 2001. 154 Reference Narayan, R. L., T. S. King. Hydrogen Adsorption States on Silica-supported Ru-Ag and Ru-Cu Bimetallic Catalysts Iinvestigated via Microcalorimetry. Thermochim. Acta, 312, pp.105-114. 1998. Nieto-Márquez, A., D. Toledano, P. Sánchez, A. Romero, J. L. Valverde. Impact of Nitrogen Doping of Carbon Nanospheres on the Nickel-catalyzed Hydrogenation of Butyronitrile. J. Catal., 269, pp.242-251. 2010. Nishimura, S. Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis. pp. 52-63, New York: John Wiley & Songs, INC. 2001. Pan, X. L., Z. L. Fan, W. Chen, Y. J. Ding, H. Y. Luo, X. H. Bao. Enhanced Ethanol Production inside Carbon-nanotube Reactors Containing Catalytic Particles. Nat. Mater., 6, pp.507-511. 2007. Panella, B., A. Vargas, A. Baiker. Magnetically Separable Pt Catalyst for Asymmetric Hydrogenation. J. Catal., 261, pp.88-93. 2009. Papp, A., A. Molnar, A. Mastalir. Catalytic Investigation of Pd Particles Supported on MCM-41 for the Selective Hydrogenations of Terminal and Internal Alkynes. Appl. Catal. A: Gen., 289, pp.256-266. 2005. Patterson, H. B. W. Hydrogenation of Fat and Oils. pp. 132-230, London and New York: Applied Science Publishers. 1983. Penny A. Chaloner, M. A. E., Ferenc Joo, Luis A. Oro. Homogeneous Hydrogenation. London: Kluwer Academic. 1994. Perrard, A., P. Gallezot, J.-P. Joly, R. Durand, C. Baljou, B. Coq, P. Trens. Highly Efficient Metal Catalysts Ssupported on Activated Carbon Cloths: A Catalytic Application for the Hydrogenation of D-glucose to D-sorbitol. Appl. Catal. A: Gen., 331, pp.100-104. 2007. Pham-Huu, C., N. Keller, G. Ehret, L. J. Charbonniere, R. Ziessel, M. J. Ledoux. Carbon Nanofiber Supported Palladium Catalyst for Lliquid-phase Reactions An Active and Selective Catalyst for Hydrogenation of Cinnamaldehyde into Hydrocinnamaldehyde. J. Mol. Catal. A-Chem, 170, pp.155-163. 2001. Pinna, F., F. Menegazzo, M. Signoretto, P. Canton, G. Fagherazzi, N. Pernicone. Consecutive Hydrogenation of Benzaldehyde over Pd Catalysts: Influence of Supports and Sulfur Poisoning. Appl. Catal. A: Gen., 219, pp.195-200. 2001. Planeix, J. M., N. Coustel, B. Coq, V. Brotons, P. S. Kumbhar, R. Dutartre, P. Geneste, P. Bernier, P. M. Ajayan. Application of Carbon Nanotubes as Supports in Heterogeneous Catalysis. J. Am. Chem. Soc., 116, pp.7935-7936. 1994. Ponec, V. On the Role of Promoters in Hydrogenations on Metals; α,β-Unsaturated Aldehydes and Ketones. Appl. Catal. A: Gen., 149, pp.27-48. 1997. Ramos-Fernandez, E. V., A. F. P. Ferreira, A. Sepulveda-Escribano, F. Kapteijn, F. Rodriguez-Reinoso. Enhancing the Catalytic Performance of Pt/ZnO in the 155 Reference Selective Hydrogenation of Cinnamaldehyde by Cr Addition to the Support. J. Catal., 258, pp.52-60. 2008. Raymundo-Piñero, E., D. Cazorla-Amorós, A. Linares-Solano. The Role of Different Nitrogen Functional Groups on the Removal of SO2 from Flue Gases by Ndoped Activated Carbon Powders and Fibres. Carbon, 41, pp.1925-1932. 2003. Recchia, S., C. Dossi, N. Poli, A. Fusi, L. Sordelli, R. Psaro. Outstanding Performances of Magnesia-Supported Platinum-Tin Catalysts for Citral Selective Hydrogenation. J. Catal., 184, pp.1-4. 1999. Reyes, P., M. C. Aguirre, J. L. G. Fierro, G. Santori, O. Ferretti. Hydrogenation of Crotonaldehyde on Rh-Sn/SiO2 Catalysts Prepared by Reaction of Tetrabutyltin on Prereduced Rh/SiO2 Precursors. J. Mol. Catal. A-Chem, 184, pp.431-441. 2002. Rioux, R. M., H. Song, J. D. Hoefelmeyer, P. Yang, G. A. Somorjai. High-surface-area Catalyst Design: Synthesis, Characterization, and Reaction Studies of Platinum Nanoparticles in Mesoporous SBA-15 Silica. J. Phys. Chem. B, 109, pp.21922202. 2005. Rocha, A. S., E. L. Moreno, G. P. M. da Silva, J. L. Zotin, A. C. Faro. Tetralin Hydrogenation on Dealuminated Y Zeolite-supported Bimetallic Pd-Ir Catalysts. Catal. Today, 133, pp.394-399. 2008. Rodríguez-Reinoso, F. The Role of Carbon Materials in Heterogeneous Catalysis. Carbon, 36, pp.159-175. 1998. Rodriguez, A. T., M. Chen, Z. Chen, C. J. Brinker, H. Fan. Nanoporous Carbon Nanotubes Synthesized through Confined Hydrogen-Bonding Self-Assembly. J. Am. Chem. Soc., 128, pp.9276-9277. 2006. Rodriguez, N. M., M.-S. Kim, R. T. K. Baker. Carbon Nanofibers: A Unique Catalyst Support Medium. J. Phys. Chem., 98, pp.13108-13111. 1994. Rossi, L. M., F. P. Silva, L. L. R. Vono, P. K. Kiyohara, E. L. Duarte, R. Itri, R. Landers, G. Machado. Superparamagnetic Nanoparticle-supported Palladium: a Highly Stable Magnetically Recoverable and Reusable Catalyst for Hydrogenation Reactions. Green Chem., 9, pp.379-385. 2007. Rouco, A. J., G. L. Haller, J. A. Oliver, C. Kemball. A Comparative Investigation of Silica-supported Ru-Cu and Ru-Ag Catalysts. J. Catal., 84, pp.297-307. 1983. Rueping, M., A. P. Antonchick, T. Theissmann. A Highly Enantioselective Brosted Acid Catalyzed Cascade Reaction: Organocatalytic Transfer Hydrogenation of Quinolines and their Application in the Synthesis of Alkaloids13. Angew. Chem. Int. Ed., 45, pp.3683-3686. 2006. Rylander, P. Catalytic Hydrogenation in Organic Syntheses. pp. 5-6, New York: Academic Press. 1979. 156 Reference Ryoo, R., S. H. Joo, S. Jun. Synthesis of Highly Ordered Carbon Molecular Sieves via Template-mediated Structural Transformation. J. Phys. Chem. B, 103, pp.77437746. 1999. Ryoo, R., S. H. Joo, M. Kruk, M. Jaroniec. Ordered Mesoporous Carbons. Adv. Mater., 13, pp.677-681. 2001. Saadi, A., Z. Rassoul, M. M. Bettahar. Gas Phase Hydrogenation of Benzaldehyde over Supported Copper Catalysts. J. Mol. Catal. A-Chem, 164, pp.205-216. 2000. Sabatier, P.; Senderens, J.-B. New Methane Synthesis. Ann. Chim. Phys. 1905, 4, pp.319-323. Sadek, A. Z., C. Zhang, Z. Hu, J. G. Partridge, D. G. McCulloch, W. Wlodarski, K. Kalantar-zadeh. Uniformly Dispersed Pt-Ni Nanoparticles on Nitrogen-Doped Carbon Nanotubes for Hydrogen Sensing. J. Phys. Chem. C, 114, pp.238-242. 2010. Santori, G. F., M. L. Casella, O. A. Ferretti. Hydrogenation of Carbonyl Compounds Using Tin-modified Platinum-based Catalysts Prepared via Surface Organometallic Chemistry on Metals (SOMC/M). J. Mol. Catal. A-Chem, 186, pp.223-239. 2002. Scharringer, P., T. E. Muller, J. A. Lercher. Investigations into the Mechanism of the Liquid-phase Hydrogenation of Nitriles over Raney-Co Catalysts. J. Catal., 253, pp.167-179. 2008. Schimpf, S., C. Louis, P. Claus. Ni/SiO2 Catalysts Prepared with Ethylenediamine Nickel Precursors: Influence of the Pretreatment on the Catalytic Properties in Glucose Hydrogenation. Appl. Catal. A: Gen., 318, pp.45-53. 2007. Schoenmakerstolk, M. C., J. W. Verwijs, J. J. F. Scholten. The CatalyticHydrogenation of Benzene over Supported Metal-Catalysts. 3. Gas-phase Hydrogenation of Benzene over Silica-supported Ru-Cu Catalysts. Appl. Catal., 30, pp.339-352. 1987. Serp, P., M. Corrias, P. Kalck. Carbon Nanotubes and Nanofibers in Catalysis. Appl. Catal. A: Gen., 253, pp.337-358. 2003. Shalagina, A. E., Z. R. Ismagilov, O. Y. Podyacheva, R. I. Kvon, V. A. Ushakov. Synthesis of Nitrogen-containing Carbon Nanofibers by Catalytic Decomposition of Ethylene/ammonia Mixture. Carbon, 45, pp.1808-1820. 2007. Sharma, G., Mei, Y., Lu, Y., Ballauff, M., Irrgang, T., Proch S., Kempe, R. Spherical Polyelectrolyte Brushes as Carriers for Platinum Nanoparticles in Heterogeneous Hydrogenation Reactions. J. Catal., 246, pp.10-14.2007. 157 Reference Shastri, A. G., J. Schwank, S. Galvagno. The Microstructure of Bimetallic Ru-Cu/SiO2 Catalysts-a Chemisorption and Analytical Electron-microscopy Study. J. Catal., 100, pp.446-457. 1986. Shephard, D. S., T. Maschmeyer, G. Sankar, J. M. Thomas, D. Ozkaya, B. F. G. Johnson, R. Raja, R. D. Oldroyd, R. G. Bell. Preparation, Characterisation and Performance of Encapsulated Copper-ruthenium Bimetallic Catalysts Derived from Molecular Cluster cCarbonyl Precursors. Chem.-Eur. J., 4, pp.1214-1224. 1998. Silva, A. M., O. A. A. Santos, M. J. Mendes, E. Jordao, M. A. Fraga. Hydrogenation of Citral over Ruthenium-tin Catalysts. Appl. Catal. A: Gen., 241, pp.155-165. 2003. Sinfelt, J. H. Supported "bimetallic cluster" Catalysts. J. Catal., 29, pp.308-315. 1973. Sinfelt, J. H., G. H. Via, F. W. Lytle. Structure of Bimetallic Clusters-extented X-ray Absorption Fine-structure (EXAFS) Studieds of Ru-Cu Clusters. J. Chem. Phys., 72, pp.4832-4844. 1980. Singh, U. K., M. A. Vannice. Kinetics of Liquid-phase Hydrogenation Reactions over Supported Metal Catalysts - a Review. Appl. Catal. A: Gen., 213, pp.1-24. 2001. Smale, M. W., T. S. King. Ethane Hydrogenolysis over Well-defined Ru-Cu/SiO2 Catalysts. J. Catal., 119, pp.441-450. 1989. Smale, M. W., T. S. King. Kinetics of Ethane Hydrogenolysis over Silica-supported Ruthenium-groupd IB Metal-catalysts. J. Catal., 125, pp.335-352. 1990. Song, H., R. M. Rioux, J. D. Hoefelmeyer, R. Komor, K. Niesz, M. Grass, P. Yang, G. A. Somorjai. Hydrothermal Growth of Mesoporous SBA-15 Silica in the Presence of PVP-Stabilized Pt Nanoparticles:  Synthesis, Characterization, and Catalytic Properties. J. Am. Chem. Soc., 128, pp.3027-3037. 2006. Sordelli, L., R. Psaro, G. Vlaic, A. Cepparo, S. Recchia, C. Dossi, A. Fusi, R. Zanoni. EXAFS Studies of Supported Rh-Sn Catalysts for Citral Hydrogenation. J. Catal., 182, pp.186-198. 1999. Sprock, M., X. Wu, T. S. King. N-Butane Hydrogenolysis over Silica-supported RuCu Catalysts. J. Catal., 138, pp.617-629. 1992. Srinivas, S. T., P. K. Rao. Direct Observation of Hydrogen Spillover on CarbonSupported Platinum and Its Influence on the Hydrogenation of Benzene. J. Catal., 148, pp.470-477. 1994. Steinhart, M., C. Liang, G. W. Lynn, U. Gösele, S. Dai. Direct Synthesis of Mesoporous Carbon Microwires and Nanowires. Chem. Mater., 19, pp.23832385. 2007. 158 Reference Strohl, J. K., T. S. King. Monte Carlo Simulations of Supported Bimetallic Catalysts. J. Catal., 116, pp.540-555. 1989. Su, F. and Zhao, X. S. Synthesis and Characterization of Microporous Carbons Templated by Ammonium-form Zeolite Y. Carbon, 42, pp.2821-2831. 2004. Su, F., Lv, L., Zhao, X. S. Synthesis of Nanostructured Porous Carbon. Int. J. Nanosci., 4, pp.261-268. 2005. Su, F. and Zhao, X. S. Template Synthesis of Microporous Carbon for Direct Methanol Fuel Cell Application. Carbon, 43, pp.2368-2373. 2005. Su, F., Lee, F. Y., Lv, L., Liu, J., Tian, X. N., Zhao, X. S. Sandwiched Ruthenium/Carbon Nanostructures for Highly Active Heterogeneous Hydrogenation. Adv. Funct. Mater., 17, pp.1926-1931. 2007a. Su, F., Lv, L., Lee, F. Y., Liu, T., Cooper, A. I., and Zhao, X. S. Thermally Reduced Ruthenium Nanoparticles as a Highly Active Heterogeneous Catalyst for Hydrogention of Monoaromatics. J. Am. Chem. Soc., 129, pp. 14213-14223. 2007b. Sulman, E., Y. Bodrova, V. Matveeva, N. Semagina, L. Cerveny, V. Kurtc, L. Bronstein, O. Platonova, P. Valetsky. Hydrogenation of Dehydrolinalool with Novel Catalyst Derived from Pd Colloids Stabilized in Micelle Cores of Polystyrene-poly-4-vinylpyridine Block Copolymers. Appl. Catal. A: Gen., 176, pp.75-81. 1999. Sun, Z. Y., Z. M. Liu, B. X. Han, Y. Wang, J. M. Du, Z. L. Xie, G. J. Han. Fabrication of Ruthenium-Carbon Nanotube Nanocomposites in Supercritical Water. Adv. Mater., 17, pp.928. 2005. Szöllösi, G., B. Török, L. Baranyi, M. Bartók. Chemoselective Hydrogenation of Cinnamaldehyde to Cinnamyl Alcohol over Pt/K-10 Catalyst. J. Catal., 179, pp.619-623. 1998. Toebes, M. L., F. F. Prinsloo, J. H. Bitter, A. J. van Dillen, K. P. de Jong. Influence of Oxygen-Containing Surface Groups on the Activity and Selectivity of Carbon Nanofiber-Supported Ruthenium Catalysts in the Hydrogenation of Cinnamaldehyde. J. Catal., 214, pp.78-87. 2003. Tosheva, L., J. Parmentier, V. Valtchev, C. Vix-Guterl, J. Patarin. Carbon Spheres Prepared from Zeolite Beta Beads. Carbon, 43, pp.2474-2480. 2005. Van Gorp, K., E. Boerman, C. V. Cavenaghi, P. H. Berben. Catalytic Hydrogenation of Fine Chemicals: Sorbitol Production. Catal. Today, 52, pp.349-361. 1999. Villani, K., C. E. A. Kirschhock, D. Liang, G. Van Tendeloo, J. A. Martens. Catalytic Carbon Oxidation over Ruthenium-Based Catalysts. Angew. Chem. Int. Ed., 45, pp.3106-3109. 2006. 159 Reference Vinu, A., K. Ariga, T. Mori, T. Nakanishi, S. Hishita, D. Golberg, Y. Bando. Preparation and Characterization of Well-Ordered Hexagonal Mesoporous Carbon Nitride. Adv. Mater., 17, pp.1648-1652. 2005. Vinu, A. Two-Dimensional Hexagonally-Ordered Mesoporous Carbon Nitrides with Tunable Pore Diameter, Surface Area and Nitrogen Content. Adv. Funct. Mater., 18, pp.816-827. 2008. Vu, H., F. Goncalves, R. Philippe, E. Lamouroux, M. Corrias, Y. Kihn, D. Plee, P. Kalck, P. Serp. Bimetallic Catalysis on Carbon Nanotubes for the Selective Hydrogenation of Cinnamaldehyde. J. Catal., 240, pp.18-22. 2006. Wan, Y., Wang, H., Zhao, Q., Klingstedt, M., Terasaki, O., and Zhao, D. Ordered Mesoporous Pd/Silica-Carbon as a Highly Active Heterogeneous Catalyst for Coupling Reaction of Chlorobenzene in Aqueous Media. J. Am. Chem. Soc., 131, pp. 4541-4550. 2009. Wang, L., R. T. Yang. Hydrogen Storage Properties of Carbons Doped with Ruthenium, Platinum, and Nickel Nanoparticles. J. Phys. Chem. C, 112, pp.12486-12494. 2008. Wang, L. F., F. H. Yang, R. T. Yang. Hydrogen Storage Properties of B- and N-Doped Microporous Carbon. Aiche J., 55, pp.1823-1833. 2009a. Wang, L. F., R. T. Yang. Hydrogen Storage Properties of N-Doped Microporous Carbon. J. Phys. Chem. C, 113, pp.21883-21888. 2009b. White, R. J., M. Antonietti, M. M. Titirici. Naturally Inspired Nitrogen Doped Porous Carbon. J. Mater. Chem., 19, pp.8645-8650. 2009. Wisniak, J., M. Hershkowitz, S. Stein. Hydrogenation of Xylose over Platinum Group Catalysts. Product R&D, 13, pp.232-236. 1974. Wisnlak, J., R. Simon. Hydrogenation of Glucose, Fructose, and Their Mixtures. Ind. Eng. Chem. Prod. Res. Develop., 18, pp.50-57. 1979. Wu, X., B. C. Gerstein, T. S. King. Characterization of Silica-Supported Cu Monometallic and Ru-Cu Bimetallic Catalysts by Hydrogen Chemisorption and NMR of Adsorbed Hydrogen. J. Catal., 121, pp.271-293. 1990. Wu, X., B. C. Gerstein, T. S. King. The Effect of Chlorine on Hydrogen Chemisorption by Silica-Supported Ru Catalysts: A Proton NMR Study. J. Catal., 135, pp.68-80. 1992. Xia, Y. D., R. Mokaya. Synthesis of Ordered Mesoporous Carbon and Nitrogen-Doped Carbon Materials with Graphitic Pore Walls via a Simple Chemical Vapor Deposition Method. Adv. Mater., 16, pp.1553. 2004. 160 Reference Xia, Y. D., R. Mokaya. Generalized and Facile Synthesis Approach to N-Doped Highly Graphitic Mesoporous Carbon Materials. Chem. Mater., 17, pp.15531560. 2005. Xia, Y. D., G. S. Walker, D. M. Grant, R. Mokaya. Hydrogen Storage in High Surface Area Carbons: Experimental Demonstration of the Effects of Nitrogen Doping. J. Am. Chem. Soc., 131, pp.16493-16499. 2009. Yang, C.-M., M. El-Merraoui, H. Seki, K. Kaneko. Characterization of NitrogenAlloyed Activated Carbon Fiber. Langmuir, 17, pp.675-680. 2001. Yang, P. F., Z. X. Jiang, P. L. Ying, C. Li. Effect of Surface Composition on the Catalytic Performance of Molybdenum Phosphide Catalysts in the Hydrogenation of Acetonitrile. J. Catal., 253, pp.66-73. 2008. Yu, C., J. Fan, B. Tian, D. Zhao, G. D. Stucky. High-Yield Synthesis of Periodic Mesoporous Silica Rods and Their Replication to Mesoporous Carbon Rods. Adv. Mater., 14, pp.1742-1745. 2002. Yu, J. S., S. Kang, S. B. Yoon, G. Chai. Fabrication of Ordered Uniform Porous Carbon Networks and Their Application to a Catalyst Supporter. J. Am. Chem. Soc., 124, pp.9382-9383. 2002. Yu, W., H. Liu, M. Liu, Q. Tao. Selective hydrogenation of α,β-Unsaturated Aldehyde to α,β-Unsaturated Alcohol over Polymer-stabilized Platinum Colloid and the Promotion Effect of Metal Cations. J. Mol. Catal. A-Chem., 138, pp.273-286. 1999. Yuan, Q., A. X. Yin, C. Luo, L. D. Sun, Y. W. Zhang, W. T. Duan, H. C. Liu, C. H. Yan. Facile Synthesis for Ordered Mesoporous Gamma-Aluminas with high Thermal Stability. J. Am. Chem. Soc., 130, pp.3465-3472. 2008. Zakhidov, A. A., R. H. Baughman, Z. Iqbal, C. X. Cui, I. Khayrullin, S. O. Dantas, I. Marti, V. G. Ralchenko. Carbon Structures with Three-Dimensional Periodicity at Optical Wavelengths. Science, 282, pp.897-901. 1998. Zhao, D., J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science, 279, pp.548-552. 1998. Zhao, X. S., Su, F., Yan, Q., Guo, W., Bao, X.Y., Lv, L., and Zhou, Z. Templating Methods for Preparation of Porous Structures. J. Mater. Chem., 16, pp. 637-648. 2006a. Zhao, X.S., Bao, X. Y., Guo, W., and Lee, F. Y. Immobilizing Catalysts on Porous Materials. Mater. Today, 9, pp. 32-39. 2006b. Zheng, M., J. Cao, X. Ke, G. Ji, Y. Chen, K. Shen, J. Tao. One-step Synthesis of New Mesoporous Carbon Nanofibers through an Easy Template Method. Carbon, 45, pp.1111-1113. 2007. 161 Appendix APPENDIX List of publications coming from this thesis work Papers published (or accepted) in international referred journal and book (1) Liu, J., Zhao, X.S. Glucose Hydrogenation over Ru Nanoparticles Embedded in Template Porous Carbon. Studies in Surface Science and Catalysis, 2008, 174, 13151318. (2) Liu, J., Tian, X.N., and Zhao, X. S. Hydrogenation of Glucose over Ru Nanoparticles Embedded in Templated Porous Carbon. Australian Journal of Chemistry, 2009, 62, 1020-1026. (3) Su, F., Lee F. Y., Lv, L., Liu, J., Tian, X.N., and Zhao, X.S. Sandwiched Ruthenium/Carbon Nanostructures for Highly Active Heterogeneous Hydrogenation. Advanced Functional Materials, 2007, 17, 1926-1931. (4) Su, F., Zhou, Z., Guo, W., Liu, J., Tian X.N., and Zhao, X.S. Template Approaches to Synthesis of Porous Carbon. in Chemistry and Physics of Carbon, Vol. 30, pp. 63128, Ed: L. R. Radovic, CRC Press, 2008. (5) Liu, J., Zhao, X.S. Ru Nanoparticles Embedded in Templated Carbon Pore Walls as a Highly Active Catalyst for Glucose Hydrogenation. Accepted by 14th International Congress on Catalysis. 2008, Seoul, Korea. (6) Zhao, X.S., Su, F., and Liu, J. Metal Nanoparticles Embedded in Porous Carbon as a New Catalyst System (keynote). Accepted by XIX International Materials Research Congress, 2010, Cancún, Mexico. (7) Liu, J., Zhao, X.S. Ruthenium Nanoparticles Embedded in Carbon Microfibers as a Catalyst for Glucose Hydrogenation. Accepted by The 6th Tokyo Conference on Advanced Catalytic Science and Technology & 5th Asia-Pacific Congress on Catalysis (TOCAT6/APCAT5), 2010, Sapporo, Japan. Papers submitted to international referred journal (8) Liu, J., Zhang, L.L., Liu, T. and Zhao, X.S. Bimetallic Ruthenium-Copper Nanoparticles embedded in Porous Carbon for Hydrogenation of D-glucose. To be submit to ACS catalysis, 2010. (9) Liu, J., Bai, P. and Zhao, X.S. Template Approach to the Synthesis of Mesoporous Carbon Microfiber Supported Ruthenium Catalyst for the Hydrogenation of D-glucose. To be submit to Physical Chemistry Chemical Physics, 2010. 162 [...]... ketones; ii) hydrogenation of unsaturated aldehydes; iii) hydrogenation of aromatic aldehydes and ketones; iv) sugar hydrogenation; v) enantioselective carbonyl hydrogenation; vi) hydrogenation of esters, anhydrides and carboxylic acids The rates of hydrogenation of carbonyl compounds depend on the nature of catalyst, the structure of compounds, such as aliphatic or aromatic and hindered or unhindered, the... facilitated the addition of hydrogen to molecules of hydrocarbon compounds Since then catalytic hydrogenation has been widely used in various fields Important examples of industrial hydrogenation processes are the synthesis of methanol, liquid fuels, hydrogenated oils, cyclohexanol and cyclohexane In the food industry, hydrogenation is applied to process vegetable oils and fats (Patterson, 1983) Triglycerides... preferred for special applications (Molnar et al., 2001) 2.1.2 Hydrogenation of C=O bonds Hydrogenation of carbonyl groups occurs readily over most catalysts However, hydrogenolysis of the resulting hydroxyl group and further reduced to methylene group must be careful to be prevented The hydrogenation of carbonyl groups can be summarized to a few reaction types: i) hydrogenation of aliphatic aldehydes and. .. used to prepare hydrogenation catalysts A systematic comparative study of preparing catalysts via gas phase deposition and via wet impregnation and testing in cinnamaldehyde hydrogenation was performed by Lashdaf et al (2003) Small Pd metal crystallites were formed by gas-phase deposition method even with high metal loadings, whereas larger Pd particles were achieved via impregnation Additionally, Pd... they resided on the surface sufficiently long enough to allow side reactions to occur Catalytic hydrogenation of nitriles may result in several products: primary, secondary, and tertiary amines; imines; hydrocarbons; aldehydes; amides; and alcohols The main product depends on the nature of catalyst, structure of substrate, basic and acidic additives, the reaction medium and other reaction conditions... catalytic performances of the RuC catalysts were compared with other Ru-C catalysts prepared by conventional method Chapter 5 describes the fabrication of bimetallic Ru-Cu nanoparticles embedded in the pore walls of mesoporous carbon The presence of bimetallic entities was characterized and the bimetallic catalysts were evaluated in D- glucose hydrogenation Chapter 6 is the details of synthesis of the mesoporous... kinds of fatty acid combined in any one triglyceride will determine the chemical and physical nature of the fat Unsaturated vegetable fats and oils can be hydrogenated by the catalytic addition of hydrogen at the ethylenic linkages of their acids to produce saturated or partially saturated fats and oils of higher melting point The most common forms are shortening, margarines, and the partially hydrogenated... SiO2 supported) catalysts Promoters typically enhance the activity and selectivity of both precious and base 12 Chapter 2 Literature Review metal catalysts for carbonyl reductions where the types and amounts of promoters need to be optimized for the desired reaction 2.1.3 Hydrogenation of nitrogen-containing multiple bonds The metal catalyzed hydrogenation of nitro-, nitroso-, azo-, and nitrile-groups... industrial application of hydrogenation of carbon- carbon multiple bonds The classical heterogeneous catalysts for carbon- carbon multiple bond hydrogenations involve supported precious metals, activated base metal catalysts (such as Raney-Ni) and nickel supported on oxides For fine chemicals 11 Chapter 2 Literature Review manufacture activated carbon is the most common support material Aluminas and. .. types of catalysts, homogeneous catalysts and heterogeneous catalysts The 3 Chapter 1 Introduction homogeneous catalysts are metal complexes that are soluble in the reaction medium Such metal complexes consist of a central metal ion and organic ligands The activity and selectivity of homogeneous catalysts are adjusted by changing the ligands The catalytic cycle starts with oxidative additive of an . SYNTHESIS AND CHARACTERIZATION OF NEW METAL- CARBON CATALYSTS FOR HYDROGENATION OF D- GLUCOSE LIU JIAJIA (M.Eng, Tianjin University) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR. SYNTHESIS AND CHARACTERIZATION OF NEW METAL- CARBON CATALYSTS FOR HYDROGENATION OF D- GLUCOSE LIU JIAJIA NATIONAL UNIVERSITY OF SINGAPORE 2010 SYNTHESIS. reactions 1 1.2 Importance of hydrogenation of D- glucose 3 1.3 Catalysts for hydrogenation reactions 3 1.4 Carbon- supprted catalysts for hydrogenation reactions 6 1.5 Recent advance on template approach

Ngày đăng: 11/09/2015, 10:18

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN