A functional genomics approach for elucidation of novel mechanisms involved in GnRH regulation of the gonadotropins

185 275 0
A functional genomics approach for elucidation of novel mechanisms involved in GnRH regulation of the gonadotropins

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

A FUNCTIONAL GENOMICS APPROACH FOR ELUCIDATION OF NOVEL MECHANISMS INVOLVED IN GnRH REGULATION OF THE GONADOTROPINS LUO MIN NATIONAL UNIVERSITY OF SINGAPORE 2007 A FUNCTIONAL GENOMICS APPROACH FOR ELUCIDATION OF NOVEL MECHANISMS INVOLVED IN GnRH REGULATION OF THE GONADOTROPINS By LUO MIN (B. SC.) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF BIOLOGICAL SCIENCES NATIONAL UNIVERSITY OF SINGAPORE 2007 NOVEL MECHANISMS INVOLVED IN GnRH Luo Min REGULATION OF THE GONADOTROPINS 2007 ACKNOWLEDGEMENTS This thesis is the result of four years work whereby I have been accompanied and supported by many people. It is a pleasant aspect that I have now the opportunity to express my heartfelt thanks and gratitude to all of them. The first person I would like to thank is my supervisor Dr. Philippa Melamed for her encouragement, patience, guidance and advice throughout this project, without which this thesis could not have been possible. I would like to express my gratitude to my wonderful labmates, especially Ms Koh Mingshi, Ms Tan Siew Hoon, Ms Wang Sihui, Mr Feng Jiajun, Mr Lim Yi Wei Stefan and Mr Yang Meng for all their suggestions and help. I also would like to thank my friends: Ms Hu Zhehua, Ms Qin Yafeng, Ms Wang Xiaoxing, Mr Li Mo, Ms Qian Zhuolei, Mr Yu Hongbing and Mr Hu Yi, for their invaluable friendship and encouragement. I am really glad that I have come to know them in my life. The financial assistance in the form of a research scholarship provided by NUS is greatly acknowledged. Finally, I wish to thank my family, for their constant support and unconditional love. i ABSTRACT The pituitary gonadotropes synthesize and secrete luteinizing hormone (LH) and folliclestimulating hormone (FSH), which control reproductive development and function. In mature gonadotropes and in the LβT2 cell line, both hormones are regulated by GnRH, but the hormone-specific β subunits are not expressed in the αT3-1 cells, which represent an immature gonadotrope. In order to identify novel factors and mechanisms involved in basal and GnRH-induced gonadotropin gene transcription, subtractive hybridization was carried out to reveal genes expressed in mature LβT2 but not in immature αT3-1 cells, or those whose expression in LβT2 cells is induced following GnRH treatment. A number of candidate genes was identified, among them the ubiquitin-conjugating enzyme (ubc4), and calmodulin-dependent serine/threonine protein phosphatase calcineurin, both of which are up-regulated following GnRH treatment. Functional studies revealed that GnRH increases estrogen receptor α (ERα) degradation and transactivation of the LHβ gene in LβT2 cells, apparently through stimulation of ubc4 expression. It was further demonstrated that the stimulatory effect of ERα on LHβ expression is mediated through interactions with other regulatory transcription factors Pitx1 and Sf-1 on the proximal promoter, without necessarily requiring an ERE. Calcineurin is activated by GnRH and regulates both basal and GnRH stimulated human αGSU promoter activity, through its target NFAT proteins. NFAT4, which is not affected by GnRH treatment, is constitutively associated with the human αGSU promoter and mediates the promoter basal activity, while NFAT3, activated by GnRH through calcineurin, is associated with the human αGSU promoter only after GnRH treatment and may mediate the GnRH effect on the human αGSU promoter. Furthermore, calcineurin plays a role in the GnRHmediated derepression of the FSHβ gene in the immature gonadotrope αT3-1 cells, possibly by activating its targets MEF2D and Nur77. Nur77 expression is induced by GnRH, which is calcineurin-dependent. Both of the two factors are associated with the FSHβ gene promoter and activate FSHβ gene transcription or promoter activity when over-expressed. It was further demonstrated that GnRH-activated CaMKI is also required for GnRH to overcome the histone deacetylase (HDAC)-mediated repression of the FSHβ gene. ii Table of contents Page ACKNOWLEDGEMENTS……………………………………………………………… .I ABSTRACT……………………………………………………………… .II TABLE OF CONTENTS…………………………………………………………………… III LIST OF FIGURES……………………………………………………………………… .VII LIST OF TABLES………………………………………………………………… .………X LIST OF ABBREVIATIONS……………………………………………………………… .XII Chapter Introduction…………………………………………………………… …1 1.1 Gonadotropins . 1.1.1 Physiology of the gonadotropins 1.1.2 Genomic organization of the gonadotropins 1.1.3 Biological functions of the gonadotropins 1.1.4 Murine αT3-1 and LβT2 gonadotrope cell lines . 1.2 Molecular regulation of gonadotropin synthesis and secretion . 1.2.1 Transcriptional regulation of gonadotropin subunits 1.2.1.1 Transcriptional regulation of the αGSU subunit 1.2.1.2 Transcriptional regulation of the LHβ and FSHβ subunits 11 1.2.2 GnRH induced signaling pathways in stimulation of gonadotropins . 14 1.2.2.1 Calcium . 16 1.2.2.2 PKC/MAPK pathway . 17 1.2.2.3 cAMP/PKA pathway 18 1.2.3 Gonadal peptide mediated regulation of FSHβ gene expression 20 1.2.4 Estrogen (E2)-mediated regulation of LHβ gene expression 21 1.3 High throughput approaches for studying gene expression 26 1.4 Hypothesis and aims 31 Chapter Materials and Methods ………………………………………………….32 iii 2.1 Tissue culture . 32 2.1.1 Medium and culture conditions 32 2.1.2 Storing of cells 32 2.1.3 Recovery of cells 33 2.1.4 Transient transfection of cells . 33 2.1.5 Chemical treatment of cells 34 2.2 Plasmid construction . 35 2.2.1 Site-directed mutagenesis of promoters . 35 2.2.2 Contruction of expression vectors 38 2.2.3 Construction of siRNA constructs 39 2.2.3.1 Oligonucleotide design 39 2.2.3.2 Annealing of oligos . 40 2.2.3.3 Restriction digestion of vectors . 41 2.2.3.4 Extraction of DNA from gel 41 2.2.3.5 Ligation of annealed oligos and linearized pSUPER vector . 41 2.2.4 Constructs for mammalian two-hybrid assay 42 2.3 Isolation, verification and maxiprep of plasmids . 43 2.3.1 Transformation of plasmids into Escherichia coli (E.coli) cells 43 2.3.2 Plasmid isolation and verification 44 2.3.3 Large scale plasmid isolation and purification . 46 2.4 RT-PCR analysis 46 2.4.1 RNA isolation . 46 2.4.2 First strand cDNA synthesis . 46 2.4.3 PCR and gel electrophoresis analysis . 47 2.4.4 Real-time PCR quantification analysis . 50 2.5 Chloroamphenicol acetyl transferase (CAT) assay 52 2.6 Luciferase analysis . 53 2.6.1 Mammalian two-hybrid assay 53 2.6.2 Promoter activity study . 54 2.7 Statistical analysis 54 iv 2.8 Western blot . 54 2.9 Subtractive hybridization . 57 2.9.1 RNA extraction and mRNA isolation . 57 2.9.2 cDNA synthesis and digestion 57 2.9.3 Ligation of tester with two different adaptors 57 2.9.4 First hybridization . 58 2.9.5 Second hybridization 59 2.9.6 Primary PCR amplification 59 2.9.7 Secondary PCR amplification 60 2.9.8 Ligation and sequencing the clones 61 2.10 Chromatin Immunoprecipitation (ChIP) 61 2.11 Plasmid Immunoprecipitation (PIP) 64 Chapter Results . 66 3.1 Subtractive hybridization . 66 3.1.1 Subtractive hybridization of LβT2 and αT3-1 cells . 66 3.1.2 Subtractive hybridization of LβT2 cells with and without GnRH treatment . 68 3.2 GnRH induction of ubc4 expression promotes estrogen receptor ubiquitylation and trans-activation of the LHβ gene……………………………… …………… .72 3.2.1 GnRH induces ubc4 expression in LβT2 cells…………………………… .72 3.2.2 Over-expression of ubc4 reduces ERα protein levels, as does GnRH…… .74 3.2.3 GnRH reduction of ERα protein levels in gonadotropes is proteasome dependent………………………………………………………………………… 76 3.2.4 The liganded ERα transactivates LHβ directly in synergy with Sf-1 and Pitx1 without requiring a consensus ERE… ……………………………………… 77 3.2.5 GnRH-induced ubc4 enhances ERα transactivation of the LHβ gene…… .81 3.2.6 Ubc4 increases the synergistic effect of ERα with Sf-1 and Pitx1 on the LHβ promoter………… .……………………………………………………………….83 3.2.7 Ubc4 over-expression increases the interaction of ERα with Sf-1or Pitx1 .84 v 3.3 Calcineurin is involved in the GnRH activation of the αGSU gene promoter 86 3.3.1 Calcineurin catalytic subunit A expression levels increase in response to GnRH………………………………………………………………………………86 3.3.2 Calcineurin mediates the basal and GnRH stimulatory effect on the human αGSU promoter……….… ………………………………………………… ……88 3.3.3 The calcineurin target, NFAT, is necessary for the human αGSU promoter activity…………………………………………………………………………… .93 3.4 Calcineurin plays a role in the GnRH-mediated derepression of the FSHβ gene in the immature gonadotrope…………………………….…………………… .…102 3.4.1 Inhibition of calcineurin abolishes the GnRH derepression effects on the FSHβ gene……………………………………….………………….…………….102 3.4.2 Nur77 and MEF2D activate the FSHβ gene.……… .… .………….…… 103 3.4.3 The mechanism for Nur77 and MEF2D activation of the FSHβ gene….….107 3.4.4 CaMKs roles in mediating of GnRH effects on the FSHβ gene……… … 108 Chapter Discussion ………………….………………………… ……………… 110 4.1 Differential gene expression in gonadotropes…………………………………110 4.1.1 Differential gene expression in the differentiating gonadotrope 110 4.1.2 Genes up-regulated following GnRH treatment in mature gonadotropes 112 4.2 Ubc4 regulation of LHβ gene expression through increasing ERα transactivation . 115 4.3 Calcineurin is involved in GnRH-stimulated human αGSU promoter activity . 122 4.4 The role of calcineurin in GnRH-mediated derepression of the FSHβ gene in the immature gonadotrope . 132 4.5 General conclusion and future work . 140 Chapter References 142 vi LIST OF FIGURES Page Figure 1.1: Anatomical and functional connections of the hypothalamic-pituitary axis Figure 1.2: A diagrammatic representation of the gonadotrope cell lineage development in the mouse. Figure 1.3: Overview of the regulation of gonadotropins in the hypothalamic-pituitary-gonadal axis Figure 1.4: Several elements define the αGSU gene expression 10 Figure 1.5: Signal transduction pathways activated by GnRH. . .15 Figure 1.6: Schematic model of basal and GnRH-stimulated gonadotropin subunit gene expression. 19 Figure 1.7: Disparity between the binding sites on the LHβ gene proximal promoters of teleosts and mammals. . 22 Figure 1.8: Genomic organization and functional domains of murine ERα. 23 Figure 1.9: The ubiquitin-proteasome pathway 25 Figure 1.10: Overview of the BD PCR-Select subtractive hybridization method. . 30 Figure 3.1: The subtracted PCR products for the control skeletal muscle cDNA. . 69 Figure 3.2: The subtracted PCR products for the LβT2 cDNA following GnRH treatment. 70 Figure 3.3: Subtractive efficiency was confirmed by reduction of GAPDH abundance after PCR-select subtraction 70 Figure 3.4: The mRNA levels of ubc4 increase following GnRH treatment in LβT2 cells 73 Figure 3.5: GnRH treatment increases of the protein levels of ubc4 73 Figure 3.6: Transfection of siRNA to knockdown ubc4 increases ERα protein levels in cells exposed to GnRH . 75 Figure 3.7: GnRH exposure of gonadotropes causes a reduction in ERα protein levels. . 75 Figure 3.8: Proteasome inhibitor MG132 abates the GnRH effect on ERα protein levels. 76 Figure 3.9: The liganded ERα transactivates two vertebrate LHβ gene promoters in synergy with Sf-1 and Pitx1. 78 Figure 3.10: The response elements required for the activation of the LHβ gene promoters by ERα 80 Figure 3.11: Ubc4 is involved in mediating the effect of GnRH on the LHβ gene and increases ERα transactivation. . 82 Figure 3.12: Ubc4 increases ERα transactivation, and the synergistic effect of ERα with Sf-1 and Pitx-1 . 83 Figure 3.13: Ubc4 increases ERα interaction with Sf-1 and Pitx1 . 85 Figure 3.14: GnRH exposure of gonadotropes is followed by an increase the mRNA levels of CnA…… .87 vii Kaiser, U. B., Halvorson, L. M., and Chen, M. T. (2000). Sp1, steroidogenic factor (SF1), and early growth response protein (egr-1) binding sites form a tripartite gonadotropin-releasing hormone response element in the rat luteinizing hormone-beta gene promoter: an integral role for SF-1. Mol Endocrinol 14: 1235-1245. Kaiser, U. B., Sabbagh, E., Chen, M. T., Chin, W. W., and Saunders, B. D. (1998a). Sp1 binds to the rat luteinizing hormone beta (LHbeta) gene promoter and mediates gonadotropin-releasing hormone-stimulated expression of the LHbeta subunit gene. J Biol Chem 273: 12943-12951. Kaiser, U. B., Sabbagh, E., Saunders, B. D., and Chin, W. W. (1998b). Identification of cis-acting deoxyribonucleic acid elements that mediate gonadotropin-releasing hormone stimulation of the rat luteinizing hormone beta-subunit gene. Endocrinology 139: 24432451. Kakar, S. S., Winters, S. J., Zacharias, W., Miller, D. M., and Flynn, S. (2003). Identification of distinct gene expression profiles associated with treatment of LbetaT2 cells with gonadotropin-releasing hormone agonist using microarray analysis. Gene 308: 67-77. Katagiri, Y., Hirata, Y., Milbrandt, J., and Guroff, G. (1997). Differential regulation of the transcriptional activity of the orphan nuclear receptor NGFI-B by membrane depolarization and nerve growth factor. J Biol Chem 272: 31278-31284. Katagiri, Y., Takeda, K., Yu, Z. X., Ferrans, V. J., Ozato, K., and Guroff, G. (2000). Modulation of retinoid signalling through NGF-induced nuclear export of NGFI-B. Nat Cell Biol 2: 435-440. Kawakami, T., Chiba, T., Suzuki, T., Iwai, K., Yamanaka, K., Minato, N., Suzuki, H., Shimbara, N., Hidaka, Y., Osaka, F., et al. (2001). NEDD8 recruits E2-ubiquitin to SCF E3 ligase. Embo J 20: 4003-4012. Kay, T. W., Chedrese, P. J., and Jameson, J. L. (1994). Gonadotropin-releasing hormone causes transcriptional stimulation followed by desensitization of the glycoprotein hormone alpha promoter in transfected alpha T3 gonadotrope cells. Endocrinology 134: 568-573. Kay, T. W., and Jameson, J. L. (1992). Identification of a gonadotropin-releasing hormone-responsive region in the glycoprotein hormone alpha-subunit promoter. Mol Endocrinol 6: 1767-1773. Kehoe, D. M., Villand, P., and Somerville, S. (1999). DNA microarrays for studies of higher plants and other photosynthetic organisms. Trends Plant Sci 4: 38-41. 153 Keri, R. A., Bachmann, D. J., Behrooz, A., Herr, B. D., Ameduri, R. K., Quirk, C. C., and Nilson, J. H. (2000). An NF-Y binding site is important for basal, but not gonadotropinreleasing hormone-stimulated, expression of the luteinizing hormone beta subunit gene. J Biol Chem 275: 13082-13088. Keri, R. A., Wolfem M. W., Saunders, T. L., Anderson, I., Kendall, S. K., Wagner, T., Yeung, J., Gorski, J., Nett, T. M., Camper, S. A., and Neilson, J. H. (1994). The proximal promoter of the bovine luteinizing hormone ?subunit gene confers gonadotrope-specific expression and regulation by gonadotropin-releasing hormone, testosterone, and 17?estradiol in transgenic mice. Mol Endocrinol 8: 1807-1816. Khokhlatchev, A. V., Canagarajah, B., Wilsbacher, J., Robinson, M., Atkinson, M., Goldsmith, E., and Cobb, M. H. (1998). Phosphorylation of the MAP kinase ERK2 promotes its homodimerization and nuclear translocation. Cell 93: 605-615. Kincaid, R. L., Nightingale, M. S., and Martin, B. M. (1988). Characterization of a cDNA clone encoding the calmodulin-binding domain of mouse brain calcineurin. Proc Natl Acad Sci USA 85: 8983-8987. Kirk, S. E., Dalkin, A. C., Yasin, M., Haisenleder, D. J., and Marshall, J. C. (1994). Gonadotropin-releasing hormone pulse frequency regulates expression of pituitary follistatin messenger ribonucleic acid: a mechanism for differential gonadotrope function. Endocrinology 135: 876-880. Kissinger, C. R., Parge, H. E., Knighton, D. R., Lewis, C. T., Pelletier, L. A., Tempczyk, A., Kalish, V. J., Tucker, K. D., Showalter, R. E., Moomaw, E. W., and et al. (1995). Crystal structures of human calcineurin and the human FKBP12-FK506-calcineurin complex. Nature 378: 641-644. Klee, C. B., and Krinks, M. H. (1978). Purification of cyclic 3',5'-nucleotide phosphodiesterase inhibitory protein by affinity chromatography on activator protein coupled to Sepharose. Biochemistry 17: 120-126. Klee, C. B., Ren, H., and Wang, X. (1998). Regulation of the calmodulin-stimulated protein phosphatase, calcineurin. J Biol Chem 273: 13367-13370. Knight, J. (2001). When the chips are down. Nature 410: 860-861. Koegl, M., Hoppe, T., Schlenker, S., Ulrich, H. D., Mayer, T. U., and Jentsch, S. (1999). A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell 96: 635-644. Koh, M. (2004). Mechanisms of hormonally-induced transcription of LH subunit gene in its chromatin setting. Thesis for Master degree submitted to Department of Biological Science, National University of Singapore. 154 Kumar, T. R., Wang, Y., Lu, N., and Matzuk, M. M. (1997). Follicle stimulating hormone is required for ovarian follicle maturation but not male fertility. Nat Genet 15: 201-204. Landefeld, T., Kepa, J., and Karsch, F. (1984). Estradiol feedback effects on the alphasubunit mRNA in the sheep pituitary gland: correlation with serum and pituitary luteinizing hormone concentrations. Proc Natl Acad Sci U S A 81: 1322-1326. Landefeld, T. D., Kepa, J., and Karsch, F. J. (1983). Regulation of alpha subunit synthesis by gonadal steroid feedback in the sheep anterior pituitary. J Biol Chem 258: 2390-2393. Le Dr 閍 n, Y., Liu, D., Xiong, F., and Hew, C. L. (1997). Presence of cis-acting elements on gonadotropin gene promoters in diverse species dictates the selective recruitment of different transcription factors by steroidogenic factor-1. Mol Cell Endocrinol 135: 31-40. Lee, S. L., Sadovsky, Y., Swirnoff, A. H., Polish, J. A., Goda, P., Gavrilina, G., and Milbrandt, J. (1996). Luteinizing hormone deficiency and female infertility in mice lacking the transcription factor NGFI-A (Egr-1). Science 273: 1219-1221. Lee, S. L., Wesselschmidt, R. L., Linette, G. P., Kanagawa, O., Russell, J. H., and Milbrandt, J. (1995). Unimpaired thymic and peripheral T cell death in mice lacking the nuclear receptor NGFI-B (Nur77). Science 269: 532-535. Levi, N. L., Hanoch, T., Benard, O., Rozenblat, M., Harris, D., Reiss, N., Naor, Z., and Seger, R. (1998). Stimulation of Jun N-terminal kinase (JNK) by gonadotropin-releasing hormone in pituitary alpha T3-1 cell line is mediated by protein kinase C, c-Src, and CDC42. Mol Endocrinol 12: 815-824. Lewis, S. A., Lee, M. G., and Cowan, N. J. (1985). Five mouse tubulin isotypes and their regulated expression during development. J Cell Biol 101: 852-861. Li, M., Brooks, C. L., Wu-Baer, F., Chen, D., Baer, R., and Gu, W. (2003). Mono- versus polyubiquitination: differential control of p53 fate by Mdm2. Science 302: 1972-1975. Liang, P., and Pardee, A. B. (1992). Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257: 967-971. Lievens, S., Goormachtig, S., and Holsters, M. (2001). A critical evaluation of differential display as a tool to identify genes involved in legume nodulation: looking back and looking forward. Nucleic Acids Res 29: 3459-3468. Ling, N., Ying, S. Y., Ueno, N., Shimasaki, S., Esch, F., Hotta, M., and Guillemin, R. (1986). A homodimer of the beta-subunits of inhibin A stimulates the secretion of pituitary follicle stimulating hormone. Biochem Biophys Res Commun 138: 1129-1137. 155 Lippmann, W. (1975). Stimulation of cyclic AMP accuulation in the rat anterior pituitary in vitro by analogs of luteinizing hormone-releasing hormone. Experientia 31: 403-404. Liu, D., Xiong, F., and Hew, C. L. (1995). Functional analysis of estrogen-responsive elements in chinook salmon (Oncorhynchus tschawytscha) gonadotropin II beta subunit gene. Endocrinology 136: 3486-3493. Liu, F., Austin, D. A., Mellon, P. L., Olefsky, J. M., and Webster, N. J. (2002a). GnRH activates ERK1/2 leading to the induction of c-fos and LHbeta protein expression in LbetaT2 cells. Mol Endocrinol 16: 419-434. Liu, F., Usui, I., Evans, L. G., Austin, D. A., Mellon, P. L., Olefsky, J. M., and Webster, N. J. (2002b). Involvement of both G(q/11) and G(s) proteins in gonadotropin-releasing hormone receptor-mediated signaling in L beta T2 cells. J Biol Chem 277: 32099-32108. Liu, J., Farmer, J. D. J., Lane, W. S., Friedman, J., Weissman, I., and Schreiber, S. L. (1991). Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 66: 807-815. Liu, W., Youn, H. D., and Liu, J. O. (2001). Thapsigargin-induced apoptosis involves Cabin1-MEF2-mediated induction of Nur77. Eur J Immunol 31: 1757-1764. Liu, Z. G., Smith, S. W., McLaughlin, K. A., Schwartz, L. M., and Osborne, B. A. (1994). Apoptotic signals delivered through the T-cell receptor of a T-cell hybrid require the immediate-early gene nur77. Nature 367: 281-284. Lonard, D. M., Nawaz, Z., Smith, C. L., and O'Malley, B. W. (2000). The 26S proteasome is required for estrogen receptor a and coactivator turnover and for efficient estrogen receptor a transactivation. Mol Cell 5: 939-948. Lu, Q., Ebling, H., Mittler, J., Baur, W. E., and Kraus, R. H. (2002). MAP kinase mediates growth factor-induced nuclear translocation of estrogen receptor alpha. FEBS Letts 516: 1-8. Lubahn, D. B., Moyer, J. S., Golding, T. S., Couse, J. F., Korach, K. S., and Smithies, O. (1993). Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene. Proc Natl Acad Sci U S A 90: 11162-11166. Luo, C., Burgeon, E., Carew, J. A., McCaffrey, P. G., Badalian, T. M., Lane, W. S., Hogan, P. G., and Rao, A. (1996a). Recombinant NFAT1 (NFATp) is regulated by calcineurin in T cells and mediates transcription of several cytokine genes. Mol Cell Biol 16: 3955-3966. 156 Luo, C., Shaw, K. T., Raghavan, A., Aramburu, J., Garcia-Cozar, F., Perrino, B. A., Hogan, P. G., and Rao, A. (1996b). Interaction of calcineurin with a domain of the transcription factor NFAT1 that controls nuclear import. Proc Natl Acad Sci U S A 93: 8907-8912. Luo, M., Koh, M., Feng, J., Wu, Q., and Melamed, P. (2005). Cross talk in hormonally regulated gene transcription through induction of estrogen receptor ubiquitylation. Mol Cell Biol 25: 7386-7398. Luo, X., Ikeda, Y., and Parker, K. L. (1994). A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 77: 481-490. Mages, H. W., Rilke, O., Bravo, R., and Senger, G. a. K., R.A. (1994). NOT, a human immediate-early response gene closely related to the steroid/thyroid hormone receptor NAK1/TR3. Mol Endocrinol 8: 1583-1591. Mao, Z., and Wiedmann, M. (1999). Calcineurin enhances MEF2 DNA binding activity in calcium-dependent survival of cerebellar granule neurons. J Biol Chem 274: 3110231107. Marantz, Y., Reiss, N., Przedecki, F., and Naor, Z. (1995). Involvement of protein phosphatases in gonadotropin releasing hormone regulated gonadotropin secretion. Mol Cell Endocrinol 111: 7-11. Marsaud, V., Gougelet, A., Maillard, S., and Renoir, J. M. (2003). Various phosphorylation pathways, depending on agonist and antagonist binding to endogenous estrogen receptor alpha (ERalpha), differentially affect ERalpha extractability, proteasome-mediated stability, and transcriptional activity in human breast cancer cells. Mol Endocrinol 17: 2013-2027. Matheos, D. P., Kingsbury, T. J., Ahsan, U. S., and Cunningham, K. W. (1997). Tcn1p/Crz1p, a calcineurin-dependent transcription factor that differentially regulates gene expression in Saccharomyces cerevisiae. Genes Dev 15: 3445-3458. Mather, J. P., Moore, A., and Li, R. H. (1997). Activins, inhibins, and follistatins: further thoughts on a growing family of regulators. Proc Soc Exp Biol Med 215: 209-222. Matz, M. V., and Lukyanov, S. A. (1998). Different strategies of differential display: areas of application. Nucleic Acids Res 26: 5537-5543. Maurer, R. A., Kim, K. E., Schoderbek, W. E., Roberson, M. S., and Glenn, D. J. (1999). Regulation of glycoprotein hormone alpha-subunit gene expression. Recent Prog Horm Res 54: 455-484. 157 Mazhawidza, W., Winters, S. J., Kaiser, U. B., and Kakar, S. S. (2006). Identification of gene networks modulated by activin in LbetaT2 cells using DNA microarray analysis. Histol Histopathol 21: 167-178. McKinsey, T. A., Zhang, C. L., Lu, J., and Olson, E. N. (2000). Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 408: 106-111. McKinsey, T. A., Zhang, C. L., and Olson, E. N. (2001). Control of muscle development by dueling HATs and HDACs. Curr Opin Genet Dev 11: 497-504. McKinsey, T. A., Zhang, C. L., and Olson, E. N. (2002). MEF2: a calcium-dependent regulator of cell division, differentiation and death. Trends Biochem Sci 27: 40-47. Melamed, P., Koh, M., Preklathan, P., Bei, L., and Hew, C. (2002). Multiple mechanisms for Pitx-1 transactivation of a luteinizing hormone beta subunit gene. J Biol Chem 277: 26200-26207. Metivier, R., Gay, F. A., Hubner, M. R., Flouriot, G., Salbert, G., Gannon, F., Kah, O., and Pakdel, F. (2002). Formation of an hER alpha-COUP-TFI complex enhances hER alpha AF-1 through Ser118 phosphorylation by MAPK. Embo J 21: 3443-3453. Miska, E. A., Langley, E., Wolf, D., Karlsson, C., Pines, J., and Kouzarides, T. (2001). Differential localization of HDAC4 orchestrates muscle differentiation. Nucleic Acids Res 29: 3439-3447. Mitchell, R., Sim, P. J., Leslie, T., Johnson, M. S., and Thomson, F. J. (1994). Activation of MAP kinase associated with the priming effect of LHRH. J Endocrinol 140: 15-18. Mulvaney, J. M., and Roberson, M. S. (2000). Divergent signaling pathways requiring discrete calcium signals mediate concurrent activation of two mitogen-activated protein kinases by gonadotropin-releasing hormone. J Biol Chem 275: 14182-14189. Mulvaney, J. M., Zhang, T., Fewtrell, C., and Roberson, M. S. (1999). Calcium influx through L-type channels is required for selective activation of extracellular signalregulated kinase by gonadotropin-releasing hormone. J Biol Chem 274: 29796-29804. Muramatsu, M., and Inoue, S. (2000). Estrogen receptors: how they control reproductive and nonreproductive functions? Biochem Biophys Res Commun 270: 1-10. Musaro, A., McCullagh, K. J., Naya, F. J., Olson, E. N., and Rosenthal, N. (1999). IGF-1 induces skeletal myocyte hypertrophy through calcineurin in association with GATA-2 and NF-ATc1. Nature 400: 581-585. Nakamura, T., Takio, K., Eto, Y., Shibai, H., Titani, K., and Sugino, H. (1990). Activinbinding protein from rat ovary is follistatin. Science 247: 836-838. 158 Naor, Z. (1990). Signal transduction mechanisms of Ca2+ mobilizing hormones: the case of gonadotropin-releasing hormone. Endocr Rev 11: 326-353. Naor, Z., Benard, O., and Seger, R. (2000). Activation of MAPK cascades by G-proteincoupled receptors: the case of gonadotropin-releasing hormone receptor. Trends Endocrinol Metab 11: 91-99. Naor, Z., Harris, D., and Shacham, S. (1998). Mechanism of GnRH receptor signaling: combinatorial cross-talk of Ca2+ and protein kinase C. Front Neuroendocrinol 19: 1-19. Nathan, D. F., Vos, M. H., and Lindquist, S. (1997). In vivo functions of the Saccharomyces cerevisiae Hsp90 chaperone. Proc Natl Acad Sci U S A 94: 12949-12956. Nawaz, Z., Lonard, D. M., Dennis, A. P., Smith, C. L., and O'Malley, B. W. (1999). Proteasome-dependent degradation of the human estrogen receptor. Proc Natl Acad Sci U S A 96: 1858-1862. Norris, D. O. (1997). Vertebrate Endocrinology (3rd Ed) Academic Press, Inc., San Diego, USA. 4. Northrop, J. P., Ho, S. N., Chen, L., Thomas, D. J., Timmerman, L. A., Nolan, G. P., Admon, A., and Crabtree, G. R. (1994). NF-AT components define a family of transcription factors targeted in T-cell activation. Nature 369: 497-502. Nussey, S. S., and Whitehead, S. A. (1999). Endocrinology, an integrated approach. BIOS Scientific Publishers Ltd. Oka, T., Dai, Y. S., and Molkentin, J. D. (2005). Regulation of calcineurin through transcriptional induction of the calcineurin A(beta) promoter in vitro and in vivo. Mol Cell Biol 25: 6649-6659. Onate, S. A., Tsai, S. Y., Tsai, M. J., and O'Malley, B. W. (1995). Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270: 1354-1357. Ortolan, T. G., Tongaonkar, P., Lambertson, D., Chen, L., Schauber, C., and Madura, K. (2000). The DNA repair protein rad23 is a negative regulator of multi-ubiquitin chain assembly. Nat Cell Biol 2: 601-608. Papavasiliou, S. S., Zmeili, S., Khoury, S., Landefeld, T. D., Chin, W. W., and Marshall, J. C. (1986). Gonadotropin-releasing hormone differentially regulates expression of the genes for luteinizing hormone a and ?subunits in male rats. Proc Natl Acad Sci USA 83: 4026-4029. Passmore, L. A. (2004). The anaphase-promoting complex (APC): the sum of its parts? Biochem Soc Trans 32: 724-727. 159 Passmore, L. A., and Barford, D. (2004). Getting into position: the catalytic mechanisms of protein ubiquitylation. Biochem J 379: 513-525. Pekarsky, Y., Hallas, C., Palamarchuk, A., Koval, A., Bullrich, F., Hirata, Y., Bichi, R., Letofsky, J., and Croce, C. M. (2001). Akt phosphorylates and regulates the orphan nuclear receptor Nur77. Proc Natl Acad Sci U S A 98: 3690-3694. Perissi, V., Aggarwal, A., Glass, C. K., Rose, D. W., and Rosenfeld, M. G. (2004). A corepressor/coactivator exchange complex required for transcriptional activation by nuclear receptors and other regulated transcription factors. Cell 116: 511-526. Pernasetti, F., Vasilyev, V. V., Rosenberg, S. B., Bailey, J. S., Huang, H. J., Miller, W. L., and Mellon, P. L. (2001). Cell-specific transcriptional regulation of follicle-stimulating hormone-beta by activin and gonadotropin-releasing hormone in the LbetaT2 pituitary gonadotrope cell model. Endocrinology 142: 2284-2295. Perrino, B. A., Ng, L. Y., and Soderling, T. R. (1995). Calcium regulation of calcineurin phosphatase activity by its B subunit and calmodulin. Role of the autoinhibitory domain. J Biol Chem 270: 340-346. Philips, A., Maira, M., Mullick, A., Chamberland, M., Lesage, S., Hugo, P., and Drouin, J. (1997). Antagonism between Nur77 and glucocorticoid receptor for control of transcription. Mol Cell Biol 17: 5952-5959. Pierce, J. G., and Parsons, T. F. (1981). Glycoprotein hormones: structure and function. Annu Rev Biochem 50: 465-495. Pratt, M. A. C., Satkunaratnam, A., and Novosad, D. M. (1998). Estrogen activates ref-1 kinase and induces expression of Egr-1 in MCF-7 breast cancer cells. Mol Cell Biochem 189: 119-125. Quirk, C. C., Lozada, K. L., Keri, R. A., and H., N. J. (2001). A single Pitx1 binding site is essential for activity of the LH beta promoter in transgenic mice. Mol Endocrinol 15: 734-746. Quirk, C. C., Seachrist, D. D., and Nilson, J. H. (2003). Embryonic expression of the luteinizing hormone beta gene appears to be coupled to the transient appearance of p8, a high mobility group-related transcription factor. J Biol Chem 278: 1680-1685. Rachez, C., Lemon, B. D., Suldan, Z., Bromleigh, V., Gamble, M., Naar, A. M., Erdjument-Bromage, H., Tempst, P., and Freedman, L. P. (1999). Ligand-dependent transcription activation by nuclear receptors requires the DRIP complex. Nature 398: 824-828. 160 Rajapurohitam, V., Bedard, N., and Wing, S. S. (2002). Control of ubiquitylation of proteins in rat tissues by ubiquitylation conjugating enzymes and isopeptidases. Am J Physiol Endocrinol Metab 282: E739-745. Rao, A., Luo, C., and Hogan, P. G. (1997). Transcription factors of the NFAT family: regulation and function. Annu Rev Immunol 15: 707-747. Reid, G., Hubner, M. R., Metivier, R., Brand, H., Denger, S., Manu, D., Beaudouin, J., Ellenberg, J., and Gannon, F. (2003). Cyclic, proteasome-mediated turnover of unliganded and liganded ERalpha on responsive promoters is an integral feature of estrogen signaling. Mol Cell 11: 695-707. Reinhart, J., Mertz, L. M., and Catt, K. J. (1992). Molecular cloning and expression of cDNA encoding the murine gonadotropin-releasing hormone receptor. J Biol Chem 267: 21281-21284. Reiss, N., Llevi, L. N., Shacham, S., Harris, D., Seger, R., and Naor, Z. (1997). Mechanism of mitogen-activated protein kinase activation by gonadotropin-releasing hormone in the pituitary of alphaT3-1 cell line: differential roles of calcium and protein kinase C. Endocrinology 138: 1673-1682. Richards, J. S., and Hedin, L. (1988). Molecular aspects of hormone action in ovarian follicular development, ovulation and luteinization. Annu Rev Physiol 50: 441-463. Roberson, M. S., Bliss, S. P., Xie, J., Navratil, A. M., Farmerie, T. A., Wolfe, M. W., and Clay, C. M. (2005). Gonadotropin-releasing hormone induction of extracellular-signal regulated kinase is blocked by inhibition of calmodulin. Mol Endocrinol 19: 2412-2423. Roberson, M. S., Misra-Press, A., Laurance, M. E., Stork, P. J., and Maurer, R. A. (1995). A role for mitogen-activated protein kinase in mediating activation of the glycoprotein hormone alpha-subunit promoter by gonadotropin-releasing hormone. Mol Cell Biol 15: 3531-3539. Roberson, M. S., Schoderbek, W. E., Tremml, G., and Maurer, R. A. (1994). Activation of the glycoprotein hormone alpha-subunit promoter by a LIM-homeodomain transcription factor. Mol Cell Biol 14: 2985-2993. Roberson, M. S., Zhang, T., Li, H. L., and Mulvaney, J. M. (1999). Activation of the p38 mitogen-activated protein kinase pathway by gonadotropin-releasing hormone. Endocrinology 140: 1310-1318. Roy, D., Angelini, N. L., and Belsham, D. D. (1999). Estrogen directly respresses gonadotropin-releasing hormone (GnRH) gene expression in estrogen receptor-alpha (ERalpha)- and ERbeta-expressing GT1-7 GnRH neurons. Endocrinology 140: 50455053. 161 Ruf, F., Fink, M. Y., and Sealfon, S. C. (2003). Structure of the GnRH receptorstimulated signaling network: insights from genomics. Front Neuroendocrinol 24: 181199. Rusnak, F., and Mertz, P. (2000). Calcineurin: form and function. Physiol Rev 80: 14831521. Sadie, H., Styger, G., and Hapgood, J. (2003). Expression of the mouse gonadotropinreleasing hormone receptor gene in alpha T3-1 gonadotrope cells is stimulated by cyclic 3',5'-adenosine monophosphate and protein kinase A, and is modulated by Steroidogenic factor-1 and Nur77. Endocrinology 144: 1958-1971. Sambrook, J., Frisch, E. F., and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY: 16.32-16.36. Sargent, T. D., and Dawid, I. B. (1983). Differential gene expression in the gastrula of Xenopus laevis. Science 222: 135-139. Saunders, B. D., Sabbagh, E., Chin, W. W., and Kaiser, U. B. (1998). Differential use of signal transduction pathways in the gonadotropin-releasing hormone-mediated regulation of gonadotropin subunit gene expression. Endocrinology 139: 1835-1843. Saville, B., Poukka, H., Wormke, M., Janne, O. A., Palvimo, J. J., Stoner, M., Samudio, I., and Safe, S. (2002). Cooperative coactivation of estrogen receptor alpha in ZR-75 human breast cancer cells by SNURF and TATA-binding protein. J Biol Chem 277: 2485-2497. Schena, M., Shalon, D., Davis, R. W., and Brown, P. O. (1995). Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270: 467470. Schnell, J. D., and Hicke, L. (2003). Non-traditional functions of ubiquitin and ubiquitinbinding proteins. J Biol Chem 278: 35857-35860. Schoderbek, W. E., Kim, K. E., Ridgway, E. C., Mellon, P. L., and Maurer, R. A. (1992). Analysis of DNA sequences required for pituitary-specific expression of the glycoprotein hormone alpha-subunit gene. Mol Endocrinol 6: 893-903. Schoderbek, W. E., Roberson, M. S., and Maurer, R. A. (1993). Two different DNA elements mediate gonadotropin releasing hormone effects on expression of the glycoprotein hormone alpha-subunit gene. J Biol Chem 268: 3903-3910. Schreiber, S. L. (1992). Immunophilin-sensitive protein phosphatase action in cell signaling pathways. Cell 70: 365-368. 162 Shaw, J. P., Utz, P. J., Durand, D. B., Toole, J. J., Emmel, E. A., and Crabtree, G. R. (1988). Identification of a putative regulator of early T cell activation genes. Science 241: 202-205. Sheng, H. Z., Zhadanov, A. B., Mosinger, B., Jr., Fujii, T., Bertuzzi, S., Grinberg, A., Lee, E. J., Huang, S. P., Mahon, K. A., and Westphal, H. (1996). Specification of pituitary cell lineages by the LIM homeobox gene Lhx3. Science 272: 1004-1007. Shinoda, K., Lei, H., Yoshii, H., Nomura, M., Nagano, M., Shiba, H., Sasaki, H., Osawa, Y., Ninomiya, Y., Niwa, O., and et al. (1995). Developmental defects of the ventromedial hypothalamic nucleus and pituitary gonadotroph in the Ftz-F1 disrupted mice. Dev Dyn 204: 22-29. Shupnik, M. A. (1990). Effects of gonadotropin-releasing hormone on rat gonadotropin gene transcription in vitro: requirement for pulsatile administration for luteinizing hormone-beta gene stimulation. Mol Endocrinol 4: 1444-1450. Shupnik, M. A., and Fallest, P. C. (1994). Pulsatile GnRH regulation of gonadotropin subunit gene transcription. Neurosci Biobehav Rev 18: 597-599. Shupnik, M. A., and Rosenzweig, B. A. (1991). Identification of an estrogen-responsive element in the rat LH beta gene. DNA-estrogen receptor interactions and functional analysis. J Biol Chem 266: 17084-17091. Smith, C. L., DeVera, D. G., Lamb, D. J., Nawaz, Z., Jiang, Y. H., Beaudet, A. L., and O'Malley, B. W. (2002). Genetic ablation of the steroid receptor coactivator-ubiquitin ligase, E6-AP, results in tissue-selective steroid hormone resistance and defects in reproduction. Mol Cell Biol 22: 525-535. Sompayrac, L., Jane, S., Burn, T. C., Tenen, D. G., and Danna, K. J. (1995). Overcoming limitations of the mRNA differential display technique. Nucleic Acids Res 23: 4738-4739. Stathopoulos, A. M., and Cyert, M. S. (1997). Calcineurin acts through the CRZ1/TCN1encoded transcription factor to regulate gene expression in yeast. Genes Dev 11: 34323444. Steger, D. J., Hecht, J. H., and Mellon, P. L. (1994). GATA-binding proteins regulate the human gonadotropin alpha-subunit gene in the placenta and pituitary gland. Mol Cell Biol 14: 5592-5602. Stein, J., and Liang, P. (2002). Differential display technology: a general guide. Cell Mol Life Sci 59: 1235-1240. Stojilkovic, S. S., and Catt, K. J. (1995). Expression and signal transduction pathways of gonadotropin-releasing hormone receptors. Recent Prog Horm Res 50: 161-205. 163 Stollberg, J., Urschitz, J., Urban, Z., and Boyd, C. D. (2000). A quantitative evaluation of SAGE. Genome Res 10: 1241-1248. Strack, P., Caligiuri, M., Pelletier, M., Boisclair, M., Theodoras, A., Beer-Romero, P., Glass, S., Parsons, T., Copeland, R. A., Auger, K. R., et al. (2000). SCF(beta-TRCP) and phosphorylation dependent ubiquitinationof I kappa B alpha catalyzed by Ubc3 and Ubc4. Oncogene 19: 3529-3536. Strahl, B. D., Huang, H. J., Sebastian, J., Ghosh, B. R., and Miller, W. L. (1998). Transcriptional activation of the ovine follicle-stimulating hormone beta-subunit gene by gonadotropin-releasing hormone: involvement of two activating protein-1-binding sites and protein kinase C. Endocrinology 139: 4455-4465. Su, B., and Karin, M. (1996). Mitogen-activated protein kinase cascades and regulation of gene expression. Curr Opin Immunol 8: 402-411. Sugimoto, T., Stewart, S., and Guan, K. L. (1997). The calcium/calmodulin-dependent protein phosphatase calcineurin is the major Elk-1 phosphatase. J Biol Chem 272: 2941529418. Sumi, M., Kiuchi, K., Ishikawa, T., Ishii, A., Hagiwara, M., Nagatsu, T., and Hidaka, H. (1991). The newly synthesized selective Ca2+/calmodulin dependent protein kinase II inhibitor KN-93 reduces dopamine contents in PC12h cells. Biochem Biophys Res Commun 181: 968-975. Suszko, M. I., Lo, D. J., Suh, H., Camper, S. A., and Woodruff, T. K. (2003). Regulation of the rat follicle-stimulating hormone beta-subunit promoter by activin. Mol Endocrinol 17: 318-332. Szeto, D. P., Rodriguez-Esteban, C., Ryan, A. K., O'Connell, S. M., Liu, F., Kioussi, C., Gleiberman, A. S., Izpisua-Belmonte, J. C., and Rosenfeld, M. G. (1999). Role of the Bicoid-related homeodomain factor Pitx1 in specifying hindlimb morphogenesis and pituitary development. Genes Dev 13: 484-494. Tapanainen, J. S., Aittomaki, K., Min, J., Vaskivuo, T., and Huhtaniemi, I. T. (1997). Men homozygous for an inactivating mutation of the follicle-stimulating hormone (FSH) receptor gene present variable suppression of spermatogenesis and fertility. Nat Genet 15: 205-206. Topilko, P., Schneider-Maunoury, S., Levi, G., Trembleau, A., Gourdji, D., Driancourt, M. A., Rao, C. V., and Charnay, P. (1998). Multiple pituitary and ovarian defects in Krox-24 (NGFI-A, Egr-1)-targeted mice. Mol Endocrinol 12: 107-122. Treier, M., Gleiberman, A. S., O'Connell, S. M., Szeto, D. P., McMahon, J. A., McMahon, A. P., and Rosenfeld, M. G. (1998). Multistep signaling requirements for pituitary organogenesis in vivo. Genes Dev 12: 1691-1704. 164 Tremblay, G. B., Tremblay, A., Copeland, N. G., Gilbert, D. J., Jenkins, N. A., Labrie, F., and Giguere, V. (1997). Cloning, chromosomal localization, and functional analysis of the murine estrogen receptor beta. Mol Endocrinol 11: 353-365. Tremblay, J. J., and Drouin, J. (1999). Egr-1 is a downstream effector of GnRH and synergizes by direct interaction with Ptx1 and SF-1 to enhance luteinizing hormone beta gene transcription. Mol Cell Biol 19: 2567-2576. Tremblay, J. J., Lanctot, C., and Drouin, J. (1998). The pan-pituitary activator of transcription, Ptx1 (pituitary homeobox 1), acts in synergy with SF-1 and Pit1 and is an upstream regulator of the Lim-homeodomain gene Lim3/Lhx3. Mol Endocrinol 12: 428441. Tremblay, J. J., Marcil, A., Gauthier, Y., and Drouin, J. (1999). Ptx1 regulates SF-1 activity by an interaction that mimics the role of the ligand-binding domain. Embo J 18: 3431-3441. Turgeon, J. L., Kimura, Y., Waring, D. W., and Mellon, P. L. (1996). Steroid and pulsatile gonadotropin-releasing hormone (GnRH) regulation of luteinizing hormone and GnRH receptor in a novel gonadotrope cell line. Mol Endocrinol 10: 439-450. Vale, W., Rivier, J., Vaughan, J., McClintock, R., Corrigan, A., Woo, W., Karr, D., and Spiess, J. (1986). Purification and characterization of an FSH releasing protein from porcine ovarian follicular fluid. Nature 321: 776-779. Vasilyev, V. V., Pernasetti, F., Rosenberg, S. B., Barsoum, M. J., Austin, D. A., Webster, N. J., and Mellon, P. L. (2002). Transcriptional activation of the ovine folliclestimulating hormone-beta gene by gonadotropin-releasing hormone involves multiple signal transduction pathways. Endocrinology 143: 1651-1659. Velculescu, V. E. (1999). Essay: Amersham Pharmacia Biotech & Science prize. Tantalizing transcriptomes--SAGE and its use in global gene expression analysis. Science 286: 1491-1492. Velculescu, V. E., Zhang, L., Vogelstein, B., and Kinzler, K. W. (1995). Serial analysis of gene expression. Science 270: 484-487. Verma, S., Ismail, A., Gao, X., Fu, G., Li, X., O'Malley, B. W., and Nawaz, Z. (2004). The ubiquitin-conjugating enzyme UBCH7 acts as a coactivator for steroid hormone receptors. Mol Cell Biol 24: 8716-8726. Weck, J., Anderson, A. C., Jenkins, S., Fallest, P. C., and Shupnik, M. A. (2000). Divergent and composite gonadotropin-releasing hormone-responsive elements in the rat luteinizing hormone subunit genes. Mol Endocrinol 14: 472-485. 165 Weck, J., Fallest, P. C., Pitt, L. K., and Shupnik, M. A. (1998). Differential gonadotropinreleasing hormone stimulation of rat luteinizing hormone subunit gene transcription by calcium influx and mitogen-activated protein kinase-signaling pathways. Mol Endocrinol 12: 451-457. Weissman, A. M. (2001). Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol 2: 169-178. Welcher, A. A., Torres, A. R., and Ward, D. C. (1986). Selective enrichment of specific DNA, cDNA and RNA sequences using biotinylated probes, avidin and copper-chelate agarose. Nucleic Acids Res 14: 10027-10044. West, B. E., Parker, G. E., Savage, J. J., Kiratipranon, P., Toomey, K. S., Beach, L. R., Colvin, S. C., Sloop, K. W., and Rhodes, S. J. (2004). Regulation of the folliclestimulating hormone beta gene by the LHX3 LIM-homeodomain transcription factor. Endocrinology 145: 4866-4879. White, B. R., Duval, D. L., Mulvaney, J. M., Roberson, M. S., and Clay, C. M. (1999). Homologous regulation of the gonadotropin-releasing hormone receptor gene is partially mediated by protein kinase C activation of an activator protein-1 element. Mol Endocrinol 13: 566-577. Wijayaratne, A., McDonnell, DP (2001). The human estrogen receptor-alpha is a ubiquitinated protein whose stability is affected differentially by agonists, antagonists, and selective estrogen receptor modulators. J Biol Chem 276: 35684-35692. Windle, J. J., Weiner, R. I., and Mellon, P. L. (1990). Cell lines of the pituitary gonadotrope lineage derived by targeted oncogenesis in transgenic mice. Mol Endocrinol 4: 597-603. Wojcikiewicz, R. J., Xu, Q., Webster, J. M., Alzayady, K., and Gao, C. (2003). Ubiquitination and proteasomal degradation of endogenous and exogenous inositol 1,4,5trisphosphate receptors in alpha T3-1 anterior pituitary cells. J Biol Chem 278: 940-947. Wolfe, M. W. (1999). The equine luteinizing hormone beta-subunit promoter contains two functional steroidogenic factor-1 response elements. Mol Endocrinol 13: 1497-1510. Woronicz, J. D., Calnan, B., Ngo, V., and Winoto, A. (1994). Requirement for the orphan steroid receptor Nur77 in apoptosis of T-cell hybridomas. Nature 367: 277-281. Woronicz, J. D., Lina, A., Calnan, B. J., Szychowski, S., Cheng, L., and Winoto, A. (1995). Regulation of the Nur77 orphan steroid receptor in activation-induced apoptosis. Mol Cell Biol 15: 6364-6376. 166 Wurmbach, E., Yuen, T., Ebersole, B. J., and Sealfon, S. C. (2001). Gonadotropinreleasing hormone receptor-coupled gene network organization. J Biol Chem 276: 4719547201. Xie, J., Bliss, S. P., Nett, T. M., Ebersole, B. J., Sealfon, S. C., and Roberson, M. S. (2005). Transcript profiling of immediate early genes reveals a unique role for activating transcription factor in mediating activation of the glycoprotein hormone alpha-subunit promoter by gonadotropin-releasing hormone. Mol Endocrinol 19: 2624-2638. Xiong, F., Liu, D., Elsholtz, H. P., and Hew, C. L. (1994). The Chinook salmon gonadotropinII subunit gene contains a strong minimal promoter with a proximal negative element. Mol Endocrinol 8: 771-781. Yokoi, T., Ohmichi, M., Tasaka, K., Kimura, A., Kanda, Y., Hayakawa, J., Tahara, M., Hisamoto, K., Kurachi, H., and Murata, Y. (2000). Activation of the luteinizing hormone beta promoter by gonadotropin-releasing hormone requires c-Jun NH2 terminal protein kinase. J Biol Chem 275: 21639-21647. Yoshida, T., Hattori, Y., Hoshiai, H., Hirano, M., and Takahashi, K. (1975). The effects of LH-RH on the concentration of 3',5'-cyclic AMP and RNA synthesis in rat anterior pituitary. Acta Endocrinol (Copenh) 79: 658-662. Youn, H. D., Chatila, T. A., and Liu, J. O. (2000). Integration of calcineurin and MEF2 signals by the coactivator p300 during T-cell apoptosis. Embo J 19: 4323-4331. Youn, H. D., and Liu, J. O. (2000). Cabin1 represses MEF2-dependent Nur77 expression and T cell apoptosis by controlling association of histone deacetylases and acetylases with MEF2. Immunity 13: 85-94. Zakaria, M. M., Jeong, K. H., Lacza, C., and Kaiser, U. B. (2002). Pituitary homeobox activates the rat FSHbeta (rFSHbeta) gene through both direct and indirect interactions with the rFSHbeta gene promoter. Mol Endocrinol 16: 1840-1852. Zhang, T., Mulvaney, J. M., and Roberson, M. S. (2001). Activation of mitogen-activated protein kinase phosphatase by gonadotropin-releasing hormone. Mol Cell Endocrinol 172: 79-89. Zhou, X., Marks, P. A., Rifkind, R. A., and Richon, V. M. (2001). Cloning and characterization of a histone deacetylase, HDAC9. Proc Natl Acad Sci U S A 98: 1057210577. 167 168 [...]... cAMP/PKA pathway GnRH activates the cAMP/PKA pathway, which has been shown to activate the mouse, rat and human αGSU promoter activity (Attardi and Winters, 1998; Maurer et al., 1999) In rat pituitary cells, a cAMP analogue increased αGSU mRNA levels, but not those of LHβ and FSHβ (Haisenleder et al., 1992) The crosstalk between the cAMP/PKA pathway and other intracellular signaling pathways (PKC and... Signal transduction pathways activated by GnRH GnRH activates a number of signaling pathways, including MEK, JNK, ERK1/2, cAMP/PKA, PKC, Ca2+ and CaM-dependent pathways A number of transcription factors are activated through phosphorylation by these kinases The abbreviations are given in the text (Ruf et al., 2003) 15 1.2.2.1 Calcium The roles for GnRH- induced Ca2+ signals in mediating gonadotropin... biologically active LH and FSH requires the coordinated transcription and noncovalent assembly of the two subunits 1 A B Fig 1.1: Anatomical and functional connections of the hypothalamic-pituitary axis (A) The pituitary is a small, bean-shaped gland that sits below the brain in a well-protected position (B) Embryologically, anatomically and functionally, the pituitary gland is divided into posterior and anterior... regulation of gonadotropin synthesis and secretion The differential synthesis and secretion of gonadotropins are regulated by a number of factors along the hypothalamus-pituitary-gonadal axis, including gonadotropin-releasing hormone (GnRH) , steroid hormones (estrogen, androgen and progesterone) and gonadal peptides (activin and inhibin; Gharib et al., 1990; Landefeld et al., 1983; Ling et al., 1986; Papavasiliou... secretion The gonadal peptides: inhibin, activin and follistatin (FS) also have roles in the regulation of gonadotropin gene expression by exerting positive or negative feedback Adapted from Brown and McNeilly, 1999 6 1.2.1 Transcriptional regulation of gonadotropin subunits Transcriptional regulation of gonadotropin subunit genes is mainly achieved by a series of temporally and spatially expressed transcription... Physiology of the gonadotropins The pituitary, a small gland located beneath the hypothalamus, rests in a depression of the skull base called the sella turcica It synthesizes and secretes polypeptide hormones essential for growth, reproduction, metabolic regulation, environmental adaptations and other biological activities The pituitary consists of three sections: the anterior lobe, the intermediate lobe and... signaling pathways in stimulation of gonadotropin gene expression The action of GnRH is mediated through binding a G-protein coupled seventransmembrane receptor, which is bound to two specific GTP-binding proteins (Gq, G11) (Hsieh and Martin, 1992; Liu et al., 2002b; Reinhart et al., 1992) GnRH receptor (GnRHr) activation induces activation of phospholipase C (PLC) and an increase in intracellular cAMP... Transcriptional regulation of the LHβ and FSHβ subunits In a fashion similar to the αGSU promoter, the LHβ gene is also regulated by a combinatorial array of transcription factors and regulatory elements on the promoter The proximal 140 bp region in the mammalian LHβ promoter containing Pitx1, Sf-1 and Egr-1 binding site is highly conserved across all species studied so far The three binding sites are... Hsieh and Martin, 1992) The elevated cAMP levels activate the downstream cAMP dependant kinase (PKA; Lippmann, 1975; Yoshida et al., 1975), while PLC accelerates the cleavage of phosphatidylinositol 4,5bisphosphate (PIP2), thereby stimulating production of 1, 4, 5-triphosphate (IP3) and diacylglycerol (DAG; Andrews and Conn, 1986) IP3 induces the calcium release from the intracellular stores, and also... also extracellular calcium influx through voltage-sensitive Ltype calcium channels (Naor, 1990) DAG activates protein kinase C (PKC), which activates the downstream mitogen-activated protein kinase (MAPK) pathways, including extracellular signal regulated kinase (ERK), c-jun NH2-terminal kinase (JNK), and p38 (Liu et al., 200 2a; Mitchell et al., 1994; Roberson et al., 1999; Fig 1.5) 14 Gonadotropins (LHβ, . A FUNCTIONAL GENOMICS APPROACH FOR ELUCIDATION OF NOVEL MECHANISMS INVOLVED IN GnRH REGULATION OF THE GONADOTROPINS LUO MIN NATIONAL UNIVERSITY OF SINGAPORE. SINGAPORE 2007 A FUNCTIONAL GENOMICS APPROACH FOR ELUCIDATION OF NOVEL MECHANISMS INVOLVED IN GnRH REGULATION OF THE GONADOTROPINS By LUO MIN (B. SC.) A THESIS. Glycoprotein α subunit AP-1 Activating protein 1 ATF Activating transcription factor CA-CnA Constitutively activate CnA CaM Calmodulin CnA Calcineurin catalytic subunit A ChIP Chromatin immunoprecipitation

Ngày đăng: 11/09/2015, 21:47

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan