1. Trang chủ
  2. » Giáo Dục - Đào Tạo

The roles of biologically active gasotransmitters (NO and h2s) in myocardial ischemia reperfusion

174 507 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 174
Dung lượng 655,57 KB

Nội dung

THE ROLES OF BIOLOGICALLY ACTIVE GASOTRANSMITTERS (NO AND H2S) IN MYOCARDIAL ISCHEMIA-REPERFUSION FU YILONG NATIONAL UNIVERSITY OF SINGAPORE 2008 THE ROLES OF BIOLOGICALLY ACTIVE GASOTRANSMITTERS (NO AND H2S) IN MYOCARDIAL ISCHEMIA-REPERFUSION FU YILONG (BSc, Beijing Medical University, Beijing, P.R China) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF PHARMACOLOGY NATIONAL UNIVERSITY OF SINGAPORE 2008 ACKNOWLEDGEMENT I would like to take this opportunity to acknowledge and thank all those who have helped me along the way For the both strands of this thesis - the scientific and the personal - I am grateful to a considerable number of people First and foremost, I would like to express my sincere respect and gratitude towards my supervisor, Associate Professor Zhu Yi Zhun I would like to thank him for giving me the opportunity to work on this interesting project, and also for his kind and patient guidance, critical comments, enlightening ideas and encouragements all the way I would also like to thank Prof Philip K Moore, for his co-supervision in my project I also owe my special thanks to the staff in Cardiovascular Group, Ms Wong Wan Hui, Ms Zhuo Yang, Mr Teo Eng Thiam, Daniel for their kind assistance and help in handling miscellaneous laboratory matters Appreciation also goes to Dr Wang Zhongjing, Dr Wang Hong, Ms Wong Wan Hui, Ms Chuah Shin Chet for their kind help in so many discussions and improving the outcome of this project I am also indebted to my collaborators Ms Chuah Shin Chet, Mr Tan Tong San , Ms Loh Kok Poh and Ms Zhang Huili for their industrious input in part of this work Thank all the former and current members in Cardiovascular Group for their company, encouragement, empathy, invaluable help and friendship I feel very lucky and happy having been with you in the last four years To the many scientists whose presentations I’ve listened to, whose papers I’ve read and whose company I have enjoyed while filling my head with so much new information i I say a heartfelt thank-you, especially those of you who were unaware that your contributions would end up here I wish to express my special appreciation to National University of Singapore for providing me this Ph.D research scholarship and so many opportunities in my academic pursuit and personal development Last but not the least, I extend my heartfelt gratitude to my family and my best friend Zhao Yan for their everlasting love and support throughout these years Without them, I would not have been here today FU Yilong Jan 25th, 2008 ii LIST OF ABBREVIATIONS AAR Area at Risk AMI Acute Myocardial Infarction ASA Acetylsalicylic acid (aspirin) BCA β-cyano-L-alanine BH4 Tetrahydrobiopterin BW Body Weight CABS Coronary Artery Bypass Surgery CBS cystathionine - β-synthase CHD Coronary Heart Disease CINODs Cyclooxygenase-Inhibiting Nitric Oxide Donors CO Carbon monoxide COX Cyclooxygenase CSE cystathionine γ-lyase CV Cardiovascular EDRF Endothelium-Derived Relaxing Factor eNOS endothelial Nitric Oxide Synthase ERK Extracellular signal-Regulated Kinase FAD Flavin Adenine Dinucleotide FMN Flavin Mononucleotide H2S Hydrogen Sulfide HW Heart Weight i.p Intraperitoneal I/R Ischemia-Reperfusion ICAM Intercellular Adhesion Molecule IL Interleukin iNOS inducible Nitric Oxide Synthase IS Ischemia iii LFA Lymphocyte Function-associated Antigen L-NAME NG-nitro-L-arginine methyl ester LPS Lipopolysaccharide LV Left Ventricular LVDevP Left Ventricular Developed Pressure LVW Left Ventricular Weight MI/R Myocardial Ischemia-Reperfusion MPO Myeloperoxidase N.S Not significant nNOS neuronal Nitric Oxide Synthase NO Nitric Oxide NOA NO-Aspirin NOP NO-Paracetamol NOS Nitric Oxide Synthase NOx Nitrites and Nitrates NSAID Nonsteroidal Anti-Inflammatory Drug ODFR Oxygen-Derived Free Radical ONOO- peroxynitrite PAG D, L propargylglycine PARA Paracetamol PGI2 Prostacyclin PLP pyridoxal-5’-phosphate ROS Reactive Oxygen Species RT-PCR Reverse Transcriptase – Polymerase Chain Reaction RyR2 ryanodine receptor SNP Sodium Nitroprusside SOD Superoxide Dismutase SR sarcoplasmic reticulum TNF Tumor Necrosis Factor TTC 2,3,5-Triphenyltetrazolium Chloride VEH Vehicle iv TABLE OF CONTENTS ACKNOWLEDGEMENT i LIST OF ABBREVIATIONS iii TABLE OF CONTENTS v LIST OF TABLES AND FIGURES ix SUMMARY…… xii LIST OF PUBLICATIONS xv CHAPTER INTRODUCTION 1.1 General Overview 1.2 Myocardial Ischemia-reperfusion Injury (MI/R) 1.2.1 Overview of MI/R 1.2.2 Regional rat MI/R model 1.3 Nitric Oxide (NO) 1.3.1 Overview of NO 1.3.2 Biosynthesis of NO 1.3.3 Metabolism of NO in the mammalian circulation 15 1.3.4 NO and inflammation 15 1.4 NO Donor 17 1.4.1 NO-Aspirin 18 1.4.1.1 Overview of NO-Aspirin 18 1.4.1.2 Effects of NO-Aspirin on inflammation 20 1.4.1.3 Cardiovascular effect of NO-Aspirin 21 1.4.2 NO-Paracetamol 22 1.4.2.1 Overview of NO-Paracetamol 22 1.4.2.2 Effects of NO-Paracetamol on inflammation 23 1.4.2.3 Cardiovascular effect of NO-Paracetamol 23 v 1.5 Hydrogen Sulfide (H2S) 25 1.5.1 A new member of gasotransmitter – H2S 25 1.5.2 Biosynthesis of H2S 26 1.5.3 Metabolism of H2S 27 1.5.4 Physiological functions of H2S 28 1.5.4.1 H2S and the cardiovascular system 28 1.5.4.2 H2S in inflammation 29 1.5.5 H2S releasing NSAIDs 32 1.6 Research Interests and Objectives 34 CHAPTER MATERIALS AND METHODS 40 2.1 Animals 41 2.2 Animal model of myocardial ischemia-reperfusion (MI/R) 41 2.3 Experimental protocols 43 2.3.1 Experimental protocol 43 2.3.2 Experimental protocol 45 2.3.3 Experimental protocol 48 2.4 Experimental methods 50 2.4.1 Systemic blood pressure and HR measurement 50 2.4.2 Measurement of LV haemodynamic parameters 50 2.4.3 Determination of infarct size 51 2.4.4 Measurement of plasma nitrate/nitrite 52 2.4.5 RNA extraction and reverse transcriptase – polymerase chain reaction (RT-PCR) amplification 53 2.4.6 Implantation of osmotic pumps 56 2.4.7 Assay of tissue H2S 57 2.4.8 Myocardial myeloperoxidase activity (MPO) 58 2.4.9 Myocardial cytokine assay 59 2.5 Statistical analysis 60 vi CHAPTER 3.1 RESULTS 61 Results of Experiment 1: Cardioprotective Effects of Nitric Oxide-Aspirin in Myocardial Ischemia-reperfused Rats 62 3.1.1 Mortality and infarct size 62 3.1.2 Systemic blood pressure and heart rate 64 3.1.3 Parameters of left ventricular function 66 3.1.4 Plasma nitrite/nitrate (NOx) concentration 69 3.1.5 Gene expression of NOS and COX 71 3.2 Results of Experiment 2: Role of Hydrogen Sulfide in the Rat Model of Myocardial Ischemia-Reperfusion 74 3.2.1 CSE mRNA expression in the ischemia left ventricle 74 3.2.2 H2S production in the ischemic left ventricle 76 3.2.3 Effects of PAG on H2S production 78 3.2.4 Effects of PAG and NaHS on infarct size 80 3.2.5 Effects of PAG and NaHS on left ventricular function 82 3.2.6 Effects of PAG and NaHS on MPO activity 87 3.2.7 Effects of PAG and NaHS on cytokine levels 89 3.3 Results of Experiment 3: NO-Paracetamol Reduces Pro-inflammatory Hydrogen Sulfide in Myocardial Ischemia Reperfused Rat 91 3.3.1 Effects of paracetamol and NO-Paracetamol on systemic BP and HR 91 3.3.2 Effects of paracetamol and NO-Paracetamol on infarct size 94 3.3.3 Effects of paracetamol and NO-Paracetamol on left ventricular function ……………………………………………………………………… 98 3.3.4 Effects of paracetamol and NO-Paracetamol on ischemic left ventricular H2S production 102 3.3.6 Effects of paracetamol and NO-Paracetamol on myocardial cytokine levels 108 CHAPTER DISCUSSION 112 4.1 Discussion of Experiment 113 4.1.1 Cardioprotection of pre-treatment NO-Aspirin 113 4.1.2 Cytotoxicity of iNOS-derived NO exacerbates LV dysfunction 115 vii 4.1.3 Pre-treatment of NO-Aspirin on COX mRNA expression 117 4.2 Discussion of Experiment 120 4.2.1 H2S production in the MI/R 120 4.2.2 Cardioprotective or detrimental effect of H2S in the reperfusion injury? ………………………………………………………………………122 4.2.3 H2S is a pro-inflammatory mediator in the reperfusion injury 122 4.3 Discussion of Experiment 125 CHAPTER GENERAL CONCLUSION AND FUTURE PERSPECTIVES 129 REFERENCES 138 viii FIORUCCI, S., MENCARELLI, A., MANNUCCI, R., DISTRUTTI, E., MORELLI, A., DEL SOLDATO, P & MONCADA, S (2002b) NCX-4016, a nitric oxide-releasing aspirin, protects endothelial cells against apoptosis by modulating mitochondrial function Faseb J, 16, 1645-7 FIORUCCI, S., MENCARELLI, A., MENEGUZZI, A., LECHI, A., MORELLI, A., DEL SOLDATO, P & MINUZ, P (2002c) NCX-4016 (NO-aspirin) inhibits lipopolysaccharideinduced tissue factor expression in vivo: role of nitric oxide Circulation, 106, 3120-5 FIORUCCI, S., SANTUCCI, L., FEDERICI, B., ANTONELLI, E., DISTRUTTI, E., MORELLI, O., RENZO, G.D., COATA, G., CIRINO, G., SOLDATO, P.D & MORELLI, A (1999) Nitric oxide-releasing NSAIDs inhibit interleukin-1beta converting enzyme-like cysteine proteases and protect endothelial cells from apoptosis induced by TNFalpha Aliment Pharmacol Ther, 13, 421-35 FRANGOGIANNIS, N.G., SMITH, C.W & ENTMAN, M.L (2002) The inflammatory response in myocardial infarction Cardiovasc Res, 53, 31-47 FULTON, D., BABBITT, R., ZOELLNER, S., FONTANA, J., ACEVEDO, L., MCCABE, T.J., IWAKIRI, Y & SESSA, W.C (2004) Targeting of endothelial nitric-oxide synthase to the cytoplasmic face of the Golgi complex or plasma membrane regulates Aktversus calcium-dependent mechanisms for nitric oxide release J Biol Chem, 279, 30349-57 FURCHGOTT, R.F & ZAWADZKI, J.V (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine Nature, 288, 373-6 GAO, J., KASHFI, K & RIGAS, B (2005) In vitro metabolism of nitric oxide-donating aspirin: the effect of positional isomerism J Pharmacol Exp Ther, 312, 989-97 GARREFFA, A.M., WOODMAN, O.L., CAO, A.H & RITCHIE, R.H (2006) Sodium nitroprusside protects adult rat cardiac myocytes from cellular injury induced by simulated ischemia: role for a non-cGMP-dependent mechanism of nitric oxide protection J Cardiovasc Pharmacol, 47, 1-8 143 GENG, B., CHANG, L., PAN, C., QI, Y., ZHAO, J., PANG, Y., DU, J & TANG, C (2004a) Endogenous hydrogen sulfide regulation of myocardial injury induced by isoproterenol Biochem Biophys Res Commun, 318, 756-63 GENG, B., YANG, J., QI, Y., ZHAO, J., PANG, Y., DU, J & TANG, C (2004b) H2S generated by heart in rat and its effects on cardiac function Biochem Biophys Res Commun, 313, 362-8 GERLACH, M., KEH, D., BEZOLD, G., SPIELMANN, S., KURER, I., PETER, R.U., FALKE, K.J & GERLACH, H (1998) Nitric oxide inhibits tissue factor synthesis, expression and activity in human monocytes by prior formation of peroxynitrite Intensive Care Med, 24, 1199-208 GIRALDEZ, R.R., PANDA, A., XIA, Y., SANDERS, S.P & ZWEIER, J.L (1997) Decreased nitric-oxide synthase activity causes impaired endothelium-dependent relaxation in the postischemic heart J Biol Chem, 272, 21420-6 GOLDBERG, R.J., YARZEBSKI, J., LESSARD, D & GORE, J.M (1999) A two-decades (1975 to 1995) long experience in the incidence, in-hospital and long-term case-fatality rates of acute myocardial infarction: a community-wide perspective J Am Coll Cardiol, 33, 1533-9 GRISHAM M, KAWACHI S & FS, L (2000) Role of endothelial nitric oxide synthase (eNOS) in modulating inflammation and tissue injury Nitric Oxide: Biol Chem, 272, 192 GRISHAM, M.B., JOURD'HEUIL, D & WINK, D.A (1999) Nitric oxide I Physiological chemistry of nitric oxide and its metabolites:implications in inflammation Am J Physiol, 276, G315-21 HARE, J.M (2004) Spatial confinement of isoforms of cardiac nitric-oxide synthase: unravelling the complexities of nitric oxide's cardiobiology Lancet, 363, 1338-9 HARE, J.M & STAMLER, J.S (1999) NOS: modulator, not mediator of cardiac performance Nat Med, 5, 273-4 HAYWOOD, G.A., TSAO, P.S., VON DER LEYEN, H.E., MANN, M.J., KEELING, P.J., TRINDADE, P.T., LEWIS, N.P., BYRNE, C.D., RICKENBACHER, P.R., BISHOPRIC, 144 N.H., COOKE, J.P., MCKENNA, W.J & FOWLER, M.B (1996) Expression of inducible nitric oxide synthase in human heart failure Circulation, 93, 1087-94 HOSOKI, R., MATSUKI, N & KIMURA, H (1997) The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide Biochem Biophys Res Commun, 237, 527-31 HUI, Y., DU, J., TANG, C., BIN, G & JIANG, H (2003) Changes in arterial hydrogen sulfide (H(2)S) content during septic shock and endotoxin shock in rats J Infect, 47, 155-60 IGNARRO, L.J (1989) Biological actions and properties of endothelium-derived nitric oxide formed and released from artery and vein Circ Res, 65, 1-21 IGNARRO, L.J (2000) Nitric Oxide Biology And Pathobiology ACADEMIC PRESS IGNARRO, L.J., NAPOLI, C & LOSCALZO, J (2002) Nitric oxide donors and cardiovascular agents modulating the bioactivity of nitric oxide: an overview Circ Res, 90, 21-8 ITO, Y., KATAGIRI, H., ISHII, K., KAKITA, A., HAYASHI, I & MAJIMA, M (2003) Effects of selective cyclooxygenase inhibitors on ischemia/reperfusion-induced hepatic microcirculatory dysfunction in mice Eur Surg Res, 35, 408-16 JI, X., TAN, B.K., ZHU, Y.C., LINZ, W & ZHU, Y.Z (2003) Comparison of cardioprotective effects using ramipril and DanShen for the treatment of acute myocardial infarction in rats Life Sci, 73, 1413-26 JOHANSEN, D., YTREHUS, K & BAXTER, G.F (2006) Exogenous hydrogen sulfide (H(2)S) protects against regional myocardial ischemia-reperfusion injury Evidence for a role of KATP channels Basic Res Cardiol, 101, 53-60 JONES, S.P & BOLLI, R (2006) The ubiquitous role of nitric oxide in cardioprotection J Mol Cell Cardiol, 40, 16-23 JONES, S.P., GIROD, W.G., PALAZZO, A.J., GRANGER, D.N., GRISHAM, M.B., JOURD'HEUIL, D., HUANG, P.L & LEFER, D.J (1999) Myocardial ischemia- 145 reperfusion injury is exacerbated in absence of endothelial cell nitric oxide synthase Am J Physiol, 276, H1567-73 JONES, S.P., GREER, J.J., KAKKAR, A.K., WARE, P.D., TURNAGE, R.H., HICKS, M., HAPEREN, R., DE VAN CROM, R., KAWASHIMA, S., YOKOYAMA, M & LEFER, D.J (2004) Endothelial nitric oxide synthase overexpression attenuates myocardial reperfusion injury Am J Physiol Heart Circ Physiol, 286, H276-82 JUGDUTT, B.I (2002) Nitric oxide and cardioprotection during ischemia-reperfusion Heart Fail Rev, 7, 391-405 KAMINSKI, K.A., BONDA, T.A., KORECKI, J & MUSIAL, W.J (2002) Oxidative stress and neutrophil activation the two keystones of ischemia/reperfusion injury Int J Cardiol, 86, 41-59 KAMOUN, P (2004) Endogenous production of hydrogen sulfide in mammals Amino Acids, 26, 243-54 KEEBLE, J., AL-SWAYEH, O.A & MOORE, P.K (2001) Vasorelaxant effect of nitric oxide releasing steroidal and nonsteroidal anti-inflammatory drugs Br J Pharmacol, 133, 1023-8 KEEBLE, J.E & MOORE, P.K (2002) Pharmacology and potential therapeutic applications of nitric oxide-releasing non-steroidal anti-inflammatory and related nitric oxide-donating drugs Br J Pharmacol, 137, 295-310 KELM, M (1999) Nitric oxide metabolism and breakdown Biochim Biophys Acta, 1411, 273-89 KLONER, R.A & JENNINGS, R.B (2001a) Consequences of brief ischemia: stunning, preconditioning, and their clinical implications: part Circulation, 104, 2981-9 KLONER, R.A & JENNINGS, R.B (2001b) Consequences of brief ischemia: stunning, preconditioning, and their clinical implications: part Circulation, 104, 3158-67 KOBAYASHI, Y (2006) Neutrophil infiltration and chemokines Crit Rev Immunol, 26, 307-16 146 KORHONEN, R., LAHTI, A., KANKAANRANTA, H & MOILANEN, E (2005) Nitric oxide production and signaling in inflammation Curr Drug Targets Inflamm Allergy, 4, 471-9 LECHI, C., ANDRIOLI, G., GAINO, S., TOMMASOLI, R., ZULIANI, V., ORTOLANI, R., DEGAN, M., BENONI, G., BELLAVITE, P., LECHI, A & MINUZ, P (1996a) The antiplatelet effects of a new nitroderivative of acetylsalicylic acid an in vitro study of inhibition on the early phase of platelet activation and on TXA2 production Thromb Haemost, 76, 791-8 LECHI, C., GAINO, S., TOMMASOLI, R., ZULIANI, V., BONAPACE, S., FONTANA, L., DEGAN, M., LECHI, A & MINUZ, P (1996b) In vitro study of the anti-aggregating activity of two nitroderivatives of acetylsalicylic acid Blood Coagul Fibrinolysis, 7, 2069 LEVINE, J.S., AUGUSTSSON, T.R., ANDERSON, I.C & HOELL, J.M., JR (1984) Tropospheric sources of NOx: lightning and biology Atmos Environ, 18, 1797804 LI, L., BHATIA, M., ZHU, Y.Z., ZHU, Y.C., RAMNATH, R.D., WANG, Z.J., ANUAR, F.B., WHITEMAN, M., SALTO-TELLEZ, M & MOORE, P.K (2005) Hydrogen sulfide is a novel mediator of lipopolysaccharide-induced inflammation in the mouse Faseb J, 19, 1196-8 LI, L., ROSSONI, G., SPARATORE, A., LEE, L.C., DEL SOLDATO, P & MOORE, P.K (2007) Anti-inflammatory and gastrointestinal effects of a novel diclofenac derivative Free Radic Biol Med, 42, 706-19 LIANG, F., GAO, E., TAO, L., LIU, H., QU, Y., CHRISTOPHER, T.A., LOPEZ, B.L & MA, X.L (2004) Critical timing of L-arginine treatment in post-ischemic myocardial apoptosis-role of NOS isoforms Cardiovasc Res, 62, 568-77 LIN, Y.F., RAAB-GRAHAM, K., JAN, Y.N & JAN, L.Y (2004) NO stimulation of ATPsensitive potassium channels: Involvement of Ras/mitogen-activated protein kinase pathway and contribution to neuroprotection Proc Natl Acad Sci U S A, 101, 7799-804 147 LIU, P., HOCK, C.E., NAGELE, R & WONG, P.Y (1997) Formation of nitric oxide, superoxide, and peroxynitrite in myocardial ischemia-reperfusion injury in rats Am J Physiol, 272, H2327-36 LOSCALZO, J & VITA, J (2000) Nitric Oxide and the Cardiovascular System Totawa, NJ: Humana Press; LOWICKA, E & BELTOWSKI, J (2007) Hydrogen sulfide (H2S) - the third gas of interest for pharmacologists Pharmacol Rep, 59, 4-24 MARCOTTE, P & WALSH, C (1975) Active site-directed inactivation of cystathionine gamma-synthetase and glutamic pyruvic transaminase by propargylglycine Biochem Biophys Res Commun, 62, 677-82 MARCOTTE, P & WALSH, C (1976) Vinylglycine and proparglyglycine: complementary suicide substrates for L-amino acid oxidase and D-amino acid oxidase Biochemistry, 15, 3070-6 MARSHALL, M., KEEBLE, J & MOORE, P.K (2006) Effect of a nitric oxide releasing derivative of paracetamol in a rat model of endotoxaemia Br J Pharmacol MARSHALL, M & MOORE, P.K (2004) Effect of nitric oxide releasing paracetamol and flurbiprofen on cytokine production in human blood Eur J Pharmacol, 483, 31722 MASINI, E., SALVEMINI, D., NDISANG, J.F., GAI, P., BERNI, L., MONCINI, M., BIANCHI, S & MANNAIONI, P.F (1999) Cardioprotective activity of endogenous and exogenous nitric oxide on ischaemia reperfusion injury in isolated guinea pig hearts Inflamm Res, 48, 561-8 MASSION, P.B & BALLIGAND, J.L (2003) Modulation of cardiac contraction, relaxation and rate by the endothelial nitric oxide synthase (eNOS): lessons from genetically modified mice J Physiol, 546, 63-75 MAXWELL, S.R & LIP, G.Y (1997) Reperfusion injury: a review of the pathophysiology, clinical manifestations and therapeutic options Int J Cardiol, 58, 95-117 148 MENDEZ, M & LAPOINTE, M.C (2003) PPARgamma inhibition of cyclooxygenase-2, PGE2 synthase, and inducible nitric oxide synthase in cardiac myocytes Hypertension, 42, 844-50 MIKI, T., SWAFFORD, A.N., COHEN, M.V & DOWNEY, J.M (1999) Second window of protection against infarction in conscious rabbits: real or artifactual J Mol Cell Cardiol, 31, 809-16 MINAMIYAMA, Y., TAKEMURA, S., IMAOKA, S., FUNAE, Y & OKADA, S (2007) Cytochrome P450 is responsible for nitric oxide generation from NO-aspirin and other organic nitrates Drug Metab Pharmacokinet, 22, 15-9 MINUZ, P., DEGAN, M., GAINO, S., MENEGUZZI, A., ZULIANI, V., LECHI SANTONASTASO, C., DEL SOLDATO, P & LECHI, A (2001a) NCX4016 (NO-aspirin) inhibits thromboxane biosynthesis and tissue factor expression and activity in human monocytes Med Sci Monit, 7, 573-7 MINUZ, P., DEGAN, M., GAINO, S., MENEGUZZI, A., ZULIANI, V., SANTONASTASO, C.L., SOLDATO, P.D & LECHI, A (2001b) NCX4016 (NO-Aspirin) has multiple inhibitory effects in LPS-stimulated human monocytes Br J Pharmacol, 134, 905-11 MOENS, A.L., CLAEYS, M.J., TIMMERMANS, J.P & VRINTS, C.J (2005) Myocardial ischemia/reperfusion-injury, a clinical view on a complex pathophysiological process Int J Cardiol, 100, 179-90 MOK, Y.Y., ATAN, M.S., YOKE PING, C., ZHONG JING, W., BHATIA, M., MOOCHHALA, S & MOORE, P.K (2004) Role of hydrogen sulphide in haemorrhagic shock in the rat: protective effect of inhibitors of hydrogen sulphide biosynthesis Br J Pharmacol, 143, 881-9 MOLINA-HOLGADO, E., ORTIZ, S., MOLINA-HOLGADO, F & GUAZA, C (2000) Induction of COX-2 and PGE(2) biosynthesis by IL-1beta is mediated by PKC and mitogenactivated protein kinases in murine astrocytes Br J Pharmacol, 131, 152-9 MOMI, S., PITCHFORD, S.C., ALBERTI, P.F., MINUZ, P., DEL SOLDATO, P & GRESELE, P (2005) Nitroaspirin plus clopidogrel versus aspirin plus clopidogrel against 149 platelet thromboembolism and intimal thickening in mice Thromb Haemost, 93, 535-43 MOORE, P.K & MARSHALL, M (2003) Nitric oxide releasing acetaminophen (nitroacetaminophen) Dig Liver Dis, 35 Suppl 2, S49-60 MORGAN, E.T., LI-MASTERS, T & CHENG, P.Y (2002) Mechanisms of cytochrome P450 regulation by inflammatory mediators Toxicology, 181-182, 207-10 MURCH, O., COLLIN, M., HINDS, C.J & THIEMERMANN, C (2007) Lipoproteins in inflammation and sepsis I Basic science Intensive Care Med, 33, 13-24 MUSCARA, M.N., LOVREN, F., MCKNIGHT, W., DICAY, M., DEL SOLDATO, P., TRIGGLE, C.R & WALLACE, J.L (2001) Vasorelaxant effects of a nitric oxide-releasing aspirin derivative in normotensive and hypertensive rats Br J Pharmacol, 133, 1314-22 NAGAI, Y., TSUGANE, M., OKA, J & KIMURA, H (2004) Hydrogen sulfide induces calcium waves in astrocytes Faseb J, 18, 557-9 NAKANO, A., LIU, G.S., HEUSCH, G., DOWNEY, J.M & COHEN, M.V (2000) Exogenous nitric oxide can trigger a preconditioned state through a free radical mechanism, but endogenous nitric oxide is not a trigger of classical ischemic preconditioning J Mol Cell Cardiol, 32, 1159-67 NHANES (1999–2002) National Health and Nutrition Examination Survey, CDC/ NCHS OH, G.S., PAE, H.O., LEE, B.S., KIM, B.N., KIM, J.M., KIM, H.R., JEON, S.B., JEON, W.K., CHAE, H.J & CHUNG, H.T (2006) Hydrogen sulfide inhibits nitric oxide production and nuclear factor-kappaB via heme oxygenase-1 expression in RAW264.7 macrophages stimulated with lipopolysaccharide Free Radic Biol Med, 41, 106-19 OHAMA, T., HORI, M., MOMOTANI, E., ELORZA, M., GERTHOFFER, W.T & OZAKI, H (2007) IL-1{beta} inhibits intestinal smooth muscle proliferation in an organ culture system: Involvement of COX-2 and iNOS induction in muscularis resident macrophages Am J Physiol Gastrointest Liver Physiol 150 OPIE, L.H (1989) Reperfusion injury and its pharmacologic modification Circulation, 80, 1049-62 OSHIMA, K., TAKEYOSHI, I., TSUTSUMI, H., MOHARA, J., OHKI, S., KOIKE, N., NAMEKI, T., MATSUMOTO, K & MORISHITA, Y (2006) Inhibition of cyclooxygenase-2 improves cardiac function following long-term preservation J Surg Res, 135, 380-4 PALMER, R.M., FERRIGE, A.G & MONCADA, S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor Nature, 327, 524-6 PAN, T.T., FENG, Z.N., LEE, S.W., MOORE, P.K & BIAN, J.S (2006) Endogenous hydrogen sulfide contributes to the cardioprotection by metabolic inhibition preconditioning in the rat ventricular myocytes J Mol Cell Cardiol, 40, 119-30 PAULUS, W.J (2001) The role of nitric oxide in the failing heart Heart Fail Rev, 6, 10518 PIPER, H.M., GARCIA-DORADO, D & OVIZE, M (1998) A fresh look at reperfusion injury Cardiovasc Res, 38, 291-300 QIN, Q., YANG, X.M., CUI, L., CRITZ, S.D., COHEN, M.V., BROWNER, N.C., LINCOLN, T.M & DOWNEY, J.M (2004) Exogenous NO triggers preconditioning via a cGMP- and mitoKATP-dependent mechanism Am J Physiol Heart Circ Physiol, 287, H712-8 RADOMSKI, M.W., PALMER, R.M & MONCADA, S (1990) An L-arginine/nitric oxide pathway present in human platelets regulates aggregation Proc Natl Acad Sci U S A, 87, 5193-7 RONSON, R.S., NAKAMURA, M & VINTEN-JOHANSEN, J (1999) The cardiovascular effects and implications of peroxynitrite Cardiovasc Res, 44, 47-59 ROSSONI, G., MANFREDI, B., COLONNA, V.D., BERNAREGGI, M & BERTI, F (2001) The nitroderivative of aspirin, NCX 4016, reduces infarct size caused by myocardial ischemia-reperfusion in the anesthetized rat J Pharmacol Exp Ther, 297, 380-7 151 ROSSONI, G., MANFREDI, B., DEL SOLDATO, P & BERTI, F (2004) The nitric oxidereleasing naproxen derivative displays cardioprotection in perfused rabbit heart submitted to ischemia-reperfusion J Pharmacol Exp Ther, 310, 555-62 RUBBO, H., RADI, R., TRUJILLO, M., TELLERI, R., KALYANARAMAN, B., BARNES, S., KIRK, M & FREEMAN, B.A (1994) Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation Formation of novel nitrogencontaining oxidized lipid derivatives J Biol Chem, 269, 26066-75 SCHMEDTJE, J.F., JR., JI, Y.S., LIU, W.L., DUBOIS, R.N & RUNGE, M.S (1997) Hypoxia induces cyclooxygenase-2 via the NF-kappaB p65 transcription factor in human vascular endothelial cells J Biol Chem, 272, 601-8 SCHULZ, R., KELM, M & HEUSCH, G (2004) Nitric oxide in myocardial ischemia/reperfusion injury Cardiovasc Res, 61, 402-13 SEARCY, D.G & LEE, S.H (1998) Sulfur reduction by human erythrocytes J Exp Zool, 282, 310-22 SIVARAJAH, A., MCDONALD, M.C & THIEMERMANN, C (2006) The production of hydrogen sulfide limits myocardial ischemia and reperfusion injury and contributes to the cardioprotective effects of preconditioning with endotoxin, but not ischemia in the rat Shock, 26, 154-61 SUMERAY, M.S., REES, D.D & YELLON, D.M (2000) Infarct size and nitric oxide synthase in murine myocardium J Mol Cell Cardiol, 32, 35-42 SUN, J., MORGAN, M., SHEN, R.F., STEENBERGEN, C & MURPHY, E (2007) Preconditioning results in S-nitrosylation of proteins involved in regulation of mitochondrial energetics and calcium transport Circ Res, 101, 1155-63 SZABO, C (2007) Hydrogen sulphide and its therapeutic potential Nat Rev Drug Discov, 6, 917-35 TAKANO, H., TANG, X.L., QIU, Y., GUO, Y., FRENCH, B.A & BOLLI, R (1998) Nitric oxide donors induce late preconditioning against myocardial stunning and infarction in conscious rabbits via an antioxidant-sensitive mechanism Circ Res, 83, 73-84 152 TAKIMOTO, Y., AOYAMA, T., KEYAMURA, R., SHINODA, E., HATTORI, R., YUI, Y & SASAYAMA, S (2000) Differential expression of three types of nitric oxide synthase in both infarcted and non-infarcted left ventricles after myocardial infarction in the rat Int J Cardiol, 76, 135-45 TANG, G., WU, L., LIANG, W & WANG, R (2005) Direct stimulation of K(ATP) channels by exogenous and endogenous hydrogen sulfide in vascular smooth muscle cells Mol Pharmacol, 68, 1757-64 TAQUETI, V.R., MITCHELL, R.N & LICHTMAN, A.H (2006) Protecting the pump: controlling myocardial inflammatory responses Annu Rev Physiol, 68, 67-95 VANE, J.R., MITCHELL, J.A., APPLETON, I., TOMLINSON, A., BISHOP-BAILEY, D., CROXTALL, J & WILLOUGHBY, D.A (1994) Inducible isoforms of cyclooxygenase and nitric-oxide synthase in inflammation Proc Natl Acad Sci U S A, 91, 2046-50 VERMA, S., FEDAK, P.W., WEISEL, R.D., BUTANY, J., RAO, V., MAITLAND, A., LI, R.K., DHILLON, B & YAU, T.M (2002) Fundamentals of reperfusion injury for the clinical cardiologist Circulation, 105, 2332-6 VINTEN-JOHANSEN, J., ZHAO, Z.Q., ZATTA, A.J., KIN, H., HALKOS, M.E & KERENDI, F (2005) Postconditioning A new link in nature's armor against myocardial ischemia-reperfusion injury Basic Res Cardiol, 100, 295-310 VLEEMING, W., RAMBALI, B & OPPERHUIZEN, A (2002) The role of nitric oxide in cigarette smoking and nicotine addiction Nicotine Tob Res, 4, 341-8 VROOM, M.B & VAN WEZEL, H.B (1996) Myocardial stunning, hibernation, and ischemic preconditioning J Cardiothorac Vasc Anesth, 10, 789-99 WAINWRIGHT, C.L., MILLER, A.M., WORK, L.M & DEL SOLDATO, P (2002) NCX4016 (NO-aspirin) reduces infarct size and suppresses arrhythmias following myocardial ischaemia/reperfusion in pigs Br J Pharmacol, 135, 1882-8 WALLACE, J.L (2007) Hydrogen sulfide-releasing anti-inflammatory drugs Trends Pharmacol Sci, 28, 501-5 153 WALLACE, J.L., DEL SOLDATO, P., CIRINO, G & MUSCARA, M.N (1999) Nitric oxidereleasing NSAIDs: GI-safe antithrombotics IDrugs, 2, 321-6 WANG, D., YANG, X.P., LIU, Y.H., CARRETERO, O.A & LAPOINTE, M.C (1999) Reduction of myocardial infarct size by inhibition of inducible nitric oxide synthase Am J Hypertens, 12, 174-82 WANG, P & ZWEIER, J.L (1996) Measurement of nitric oxide and peroxynitrite generation in the postischemic heart Evidence for peroxynitrite-mediated reperfusion injury J Biol Chem, 271, 29223-30 WANG, R (2002) Two's company, three's a crowd: can H2S be the third endogenous gaseous transmitter? Faseb J, 16, 1792-8 WHITEMAN, M., ARMSTRONG, J.S., CHU, S.H., JIA-LING, S., WONG, B.S., CHEUNG, N.S., HALLIWELL, B & MOORE, P.K (2004) The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrite 'scavenger'? J Neurochem, 90, 765-8 WHITEMAN, M., LI, L., KOSTETSKI, I., CHU, S.H., SIAU, J.L., BHATIA, M & MOORE, P.K (2006) Evidence for the formation of a novel nitrosothiol from the gaseous mediators nitric oxide and hydrogen sulphide Biochem Biophys Res Commun, 343, 303-10 WHO (2006) Heart Disease and Stroke statistics WHO (2004) World Health Report WILDHIRT, S.M., SUZUKI, H., HORSTMAN, D., WEISMULLER, S., DUDEK, R.R., AKIYAMA, K & REICHART, B (1997) Selective modulation of inducible nitric oxide synthase isozyme in myocardial infarction Circulation, 96, 1616-23 WILDHIRT, S.M., WEISMUELLER, S., SCHULZE, C., CONRAD, N., KORNBERG, A & REICHART, B (1999) Inducible nitric oxide synthase activation after ischemia/reperfusion contributes to myocardial dysfunction and extent of infarct size in rabbits: evidence for a late phase of nitric oxide-mediated reperfusion injury Cardiovasc Res, 43, 698-711 154 XU, K.Y., HUSO, D.L., DAWSON, T.M., BREDT, D.S & BECKER, L.C (1999) Nitric oxide synthase in cardiac sarcoplasmic reticulum Proc Natl Acad Sci U S A, 96, 657-62 XU, K.Y., KUPPUSAMY, S.P., WANG, J.Q., LI, H., CUI, H., DAWSON, T.M., HUANG, P.L., BURNETT, A.L., KUPPUSAMY, P & BECKER, L.C (2003) Nitric oxide protects cardiac sarcolemmal membrane enzyme function and ion active transport against ischemia-induced inactivation J Biol Chem, 278, 41798-803 XU, W., CHARLES, I.G., MONCADA, S., GORMAN, P., SHEER, D., LIU, L & EMSON, P (1994) Mapping of the genes encoding human inducible and endothelial nitric oxide synthase (NOS2 and NOS3) to the pericentric region of chromosome 17 and to chromosome 7, respectively Genomics, 21, 419-22 YAMAMOTO, T., COHEN, A.M., KAKAR, N.R., YAMAMOTO, M., JOHNSON, P.E., CHO, Y.K & BING, R.J (1999) Production of prostanoids and nitric oxide by infarcted heart in situ and the effect of aspirin Biochem Biophys Res Commun, 257, 488-93 YANG, G., CAO, K., WU, L & WANG, R (2004) Cystathionine gamma-lyase overexpression inhibits cell proliferation via a H2S-dependent modulation of ERK1/2 phosphorylation and p21Cip/WAK-1 J Biol Chem, 279, 49199-205 YELLON, D.M & BAXTER, G.F (2000) Protecting the ischaemic and reperfused myocardium in acute myocardial infarction: distant dream or near reality? Heart, 83, 381-7 YTREHUS, K (2000) The ischemic heart experimental models Pharmacol Res, 42, 193203 ZAMORA, C.A., BARON, D.A & HEFFNER, J.E (1993) Thromboxane contributes to pulmonary hypertension in ischemia-reperfusion lung injury J Appl Physiol, 74, 224-9 ZANARDO, R.C., BRANCALEONE, V., DISTRUTTI, E., FIORUCCI, S., CIRINO, G & WALLACE, J.L (2006) Hydrogen sulfide is an endogenous modulator of leukocyte-mediated inflammation Faseb J, 20, 2118-20 ZHANG, H., ZHI, L., MOOCHHALA, S., MOORE, P.K & BHATIA, M (2007a) Hydrogen Sulfide Acts as an Inflammatory Mediator in Cecal Ligation and Puncture 155 Induced Sepsis in mice by Up-regulating the Production of Cytokines and Chemokines via NF-{kappa}B Am J Physiol Lung Cell Mol Physiol ZHANG, H., ZHI, L., MOOCHHALA, S.M., MOORE, P.K & BHATIA, M (2007b) Endogenous hydrogen sulfide regulates leukocyte trafficking in cecal ligation and puncture-induced sepsis J Leukoc Biol, 82, 894-905 ZHAO, W., NDISANG, J.F & WANG, R (2003a) Modulation of endogenous production of H2S in rat tissues Can J Physiol Pharmacol, 81, 848-53 ZHAO, W., ZHANG, J., LU, Y & WANG, R (2001) The vasorelaxant effect of H(2)S as a novel endogenous gaseous K(ATP) channel opener Embo J, 20, 6008-16 ZHAO, Z.Q., CORVERA, J.S., HALKOS, M.E., KERENDI, F., WANG, N.P., GUYTON, R.A & VINTEN-JOHANSEN, J (2003b) Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning Am J Physiol Heart Circ Physiol, 285, H579-88 ZHONG, G., CHEN, F., CHENG, Y., TANG, C & DU, J (2003) The role of hydrogen sulfide generation in the pathogenesis of hypertension in rats induced by inhibition of nitric oxide synthase J Hypertens, 21, 1879-85 ZHU, Y.Z., CHONG, C.L., CHUAH, S.C., HUANG, S.H., NAI, H.S., TONG, H.T., WHITEMAN, M & MOORE, P.K (2006) Cardioprotective effects of nitroparacetamol and paracetamol in acute phase of myocardial infarction in experimental rats Am J Physiol Heart Circ Physiol, 290, H517-24 ZHU, Y.Z., WANG, Z.J., HO, P., LOKE, Y.Y., ZHU, Y.C., HUANG, S.H., TAN, C.S., WHITEMAN, M., LU, J & MOORE, P.K (2007) Hydrogen sulfide and its possible roles in myocardial ischemia in experimental rats J Appl Physiol, 102, 261-8 ZHU, Y.Z., ZHU, Y.C., LI, J., SCHAFER, H., SCHMIDT, W., YAO, T & UNGER, T (2000a) Effects of losartan on haemodynamic parameters and angiotensin receptor mRNA levels in rat heart after myocardial infarction J Renin Angiotensin Aldosterone Syst, 1, 257-62 156 ZHU, Y.Z., ZHU, Y.C., STOLL, M & UNGER, T (2000b) Identification of regulated genes in rat heart after myocardial infarction by means of differential mRNA display Jpn Heart J, 41, 59-66 ZWEIER, J.L & TALUKDER, M.A (2006) The role of oxidants and free radicals in reperfusion injury Cardiovasc Res, 70, 181-90 ZWEIER, J.L., WANG, P & KUPPUSAMY, P (1995) Direct measurement of nitric oxide generation in the ischemic heart using electron paramagnetic resonance spectroscopy J Biol Chem, 270, 304-7 157 ... time of myocardial ischemia reperfusion The new information regarding the roles of NO and H2S in myocardial ischemia- reperfusion could deepen our understanding of mechanisms of reperfusion injury.. .THE ROLES OF BIOLOGICALLY ACTIVE GASOTRANSMITTERS (NO AND H2S) IN MYOCARDIAL ISCHEMIA- REPERFUSION FU YILONG (BSc, Beijing Medical University, Beijing, P.R China) A THESIS SUBMITTED FOR THE. .. domain containing a haem prosthetic group, which are linked roughly in the middle of the protein by a calmodulin-binding domain 10 Figure 1.2 The general structure of nitric oxide synthases and the

Ngày đăng: 11/09/2015, 16:07

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN