1. Trang chủ
  2. » Giáo Dục - Đào Tạo

INVESTIGATING THE HOST IMMUNE RESPONSE TO MYCOBACTERIUM TUBERCULOSIS THE ROLES OF ANNEXIN a1 PROTEIN AND CLEC9A+ DENDRITIC CELLS

196 451 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 196
Dung lượng 7,42 MB

Nội dung

INVESTIGATING THE HOST IMMUNE RESPONSE TO MYCOBACTERIUM TUBERCULOSIS: THE ROLES OF ANNEXIN A1 PROTEIN AND CLEC9A+ DENDRITIC CELLS KOH HUI QI VANESSA NATIONAL UNIVERSITY OF SINGAPORE 2014 INVESTIGATING THE HOST IMMUNE RESPONSE TO MYCOBACTERIUM TUBERCULOSIS: THE ROLES OF ANNEXIN A1 PROTEIN AND CLEC9A+ DENDRITIC CELLS KOH HUI QI VANESSA (B. Sc. (Life Sciences, Hons.), NUS) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF MICROBIOLOGY YONG LOO LIN SCHOOL OF MEDICINE NATIONAL UNIVERSITY OF SINGAPORE 2014 DECLARATION I hereby declare that the thesis is my original work and it has been written by my in its entirety. I have duly acknowledged all the sources of information which have been used in the thesis. This thesis has also not been submitted for any degree in any university previously. _________________________________ Koh Hui Qi Vanessa 30 Dec 2014 Acknowledgements I must express my utmost gratitude to my supervisor, A/P Sylvie Alonso, for her guidance, patience and trust. I feel truly fortunate to have the opportunity to learn as much as I did from you. I am grateful to our collaborators A/P Christiane Ruedl and A/P Lina Lim, and the members of their respective labs, for generously sharing their scientific expertise, as well as my Thesis Advisory Committee members, A/P Veronique Angeli and A/P Herbert Schwarz, for their invaluable advice and insight. I would also like to thank Lay Tin, Li Li, Joe and Siva from DSO National Laboratories for operational support and contributing to my BSL training, Dr. Paul Hutchinson and Guo Hui of the IP Flow Lab for their kind assistance regarding use of the flow cytometers, and Benson from the Kemeny Lab for accommodating my requests for animals. To the members of the Alonso Lab, past and present (and honorary)— Aakanksha, Adrian, Annabelle, Emily, Eshele, Fiona, Grace, Huimin, Issac, Jian Hang, Jie Ling, Jowin, Julia, Li Ching, Michelle, Peixuan, Per, Ran, Regina, Sze Wai, Weixin, Weizhen, Wenwei, Yok Hian and Zarina—thank you for the camaraderie. Our lab may not have windows, but with you all, it was and is always a sunny day indoors. Special thanks to the TB group with whom I shared many long hours in the BSL 3; we had a nice view, but most comforting has been the buddy behind the mask. i To my kindred spirits Weixin and Zarina, Team Omnom and the Gluttons, thank you for the unforgettable adventures and deliciousness. To the Sisterhood—Amanda, Joyce, Mingxian, Valerie and Velda—and Yen Han, thank you for the many, many good years of friendship. To my dear friends Bean, Emily, Kenrick, Marcus, Natascha, Wei Ting, Xiao Xuan and Yi Kang, I am thankful for your constant virtual chatter and for the warmth of your company around (ideally) round tables and on those blue-lit nights. Last but not least, to my family—Mom, Dad, Kenneth and Max—and my fiancé, Alvin, thank you for your unwavering encouragement and unconditional love. ii List of Publications Ang, M. L., Siti, Z. Z., Shui, G., Dianiškova, P., Madacki, J., Lin, W., Koh, V.H., Martínez Gómez, J.M., Sudarkodi, S., Bendt, A., Wenk, M., Mikušova, K., Korduláková, J, Pethe, K., & Alonso, S. (2014). An etha-ethr-deficient Mycobacterium bovis BCG mutant displays increased adherence to mammalian cells and greater persistence in vivo, which correlate with altered mycolic acid composition. Infection and Immunity, 82(5), 1850-9. doi:10.1128/IAI.01332-13 Lin, W., Mathys, V., Ang, E. L., Koh, V. H., Martínez Gómez, J. M., Ang, M. L., Zainul Rahim, S.Z., Tan, M.P., Pethe, K. & Alonso, S. (2012). Urease activity represents an alternative pathway for Mycobacterium tuberculosis nitrogen metabolism. Infection and Immunity, 80(8), 2771-9. doi:10.1128/IAI.06195-11 Martínez Gómez, J. M., Koh, V. H., Yan, B., Lin, W., Ang, M. L., Rahim, S. Z., Pethe K., Schwarz, H. , & Alonso, S. (2014). Role of the CD137 ligand (CD137L) signalling pathway during Mycobacterium tuberculosis infection. Immunobiology, 219(1), 78-86. doi:10.1016/j.imbio.2013.08.009 Tan, K. S., Lee, K. O., Low, K. C., Gamage, A. M., Liu, Y., Tan, G. Y., Koh, H.Q., Alonso, S., & Gan, Y. H. (2012). Glutathione deficiency in type diabetes impairs cytokine responses and control of intracellular bacteria. The Journal of Clinical Investigation, 122(6), 2289-300. doi:10.1172/JCI57817 Vanessa, K. H., Julia, M. G., Wenwei, L., Michelle, A. L., Zarina, Z. R., Lina, L. H., & Sylvie, A. (2014). Absence of annexin A1 impairs host adaptive immunity against Mycobacterium tuberculosis in vivo. Immunobiology. in press. doi:10.1016/j.imbio.2014.12.001 iii Table of Contents CHAPTER 1: GENERAL INTRODUCTION 1.1. Epidemiology of TB .   1.2. Aetiology and transmission of TB   1.2.1. M. tuberculosis is the main cause of TB in humans .   1.2.2. Airborne transmission of TB   1.3. Pathogenesis of TB: the spectrum of active and latent TB   1.3.1. Pathogenesis depends on environmental, host and microbial factors .   1.3.2. Active TB is complex and difficult to diagnose .   1.3.3. Latent TB: a heterogeneous state with diverse clinical outcomes   1.4. Prevention and treatment of TB . 11   1.4.1. Protection by BCG immunisation and vaccines under development 11   1.4.2. Treatment of TB 12   1.4.3. Drug-resistant TB 12   1.5. Initiation of infection and the innate immune response . 14   1.5.1. Macrophages are the first to be infected by M. tuberculosis and fail to restrict an initial phase of exponential bacterial growth 14   1.5.2. Neutrophil accumulation in the lungs is associated with pathology . 16   1.5.3. DCs deliver antigen from the lungs to the LN and initiate T cell responses 17   1.6. Granuloma formation 20   1.6.1. Granulomas are the characteristic pathological feature of TB 20   1.6.2. Macrophages initiate granuloma formation by secreting critical soluble factors 20   iv 1.6.3. Containment of infection through cellular recruitment and remodelling of the site of infection 21   1.6.4. Heterogeneity in granuloma morphology . 23   1.6.5. Collapse of the granuloma 25   1.6.6. Extracellular life of M. tuberculosis within the granuloma 26   1.7. Adaptive immunity to tuberculosis 28   1.7.1. Acquired cellular immunity to TB is T cell-dominated . 28   1.7.1.1. CD4+ Th cells are the predominant protective T cell subset 28   1.7.1.2. CD8+ Th cells may play a role in immune surveillance 28   1.7.1.3. Th2, Th17 and Treg cells . 29   1.7.2. Key cytokines balance the immune response between bacterial eradication and host survival . 30   1.7.2.1. TNF 30   1.7.2.2. IL-12 and IFNγ . 31   1.7.2.3. IL-10 . 32   1.7.3. Possible roles for DCs during chronic infection . 33   1.8. Mouse model of tuberculosis . 34   1.8.1. Infection profile of M. tuberculosis in the mouse . 34   1.8.2. Limitations of the mouse model in recapitulating latency and granuloma formation in humans 35   1.8.3. Advantages of the mouse model in studying host immune factors 35   1.9. General objectives and significance of this Thesis 37   CHAPTER 2: MATERIALS & METHODS 2.1. Microbiology . 38   v 2.1.1. Biosafety . 38   2.1.2. Mycobacterial strains 38   2.1.3. Mycobacterial culture . 39   2.2. Animal Work 40   2.2.1. Bioethics . 40   2.2.2. Mouse strains 40   2.2.3. Infection of live animals . 40   2.2.4. DT treatment . 41   2.2.5. Collection of BALF 41   2.2.6. Processing of organs for quantification of bacterial load in vivo 41   2.2.7. Histology . 42   2.3. Cell Biology . 43   2.3.1. Preparation and culture of BMMΦs 43   2.3.2. Preparation and culture of BMDCs . 43   2.3.3. Isolation and culture of primary splenocytes 44   2.3.4. Infection of BMMΦs for quantification of bacterial load in vitro 44   2.3.5. Infection of BMDCs and splenocytes for quantification of cytokine production in vitro 45   2.4. Immunology 46   2.4.1. Cytokine quantification . 46   2.4.2. Allogeneic mixed lymphocyte reaction 46   2.4.3. Preparation of samples for flow cytometry . 46   2.4.4. T cell re-stimulation 48   2.5. Statistical analysis 50   vi Lutz, M. B., Kukutsch, N., Ogilvie, A. L., Rössner, S., Koch, F., Romani, N., & Schuler, G. (1999). An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. Journal of Immunological Methods, 223(1), 77-92. doi:10037236 Ma, D. Y., & Clark, E. A. (2009). The role of CD40 and CD154/CD40L in dendritic cells. Seminars in Immunology, 21(5), 265-72. doi:10.1016/j.smim.2009.05.010 MacMicking, J. D., Taylor, G. A., & McKinney, J. D. (2003). Immune control of tuberculosis by ifn-gamma-inducible LRG-47. Science (New York, N.Y.), 302(5645), 654-9. doi:10.1126/science.1088063 Maderna, P., Yona, S., Perretti, M., & Godson, C. (2005). Modulation of phagocytosis of apoptotic neutrophils by supernatant from dexamethasonetreated macrophages and annexin-derived peptide ac(2-26). Journal of Immunology (Baltimore, Md. : 1950), 174(6), 3727-33. doi:15749912 Manca, C. 1., Tsenova, L., Barry, C. E., Bergtold, A., Freeman, S., Haslett, P. A., Musser, J. M., Freedman, V. H., & Kaplan, G. (1999). Mycobacterium tuberculosis CDC1551 induces a more vigorous host response in vivo and in vitro, but is not more virulent than other clinical isolates. Journal of Immunology, 162(11), 6740-6. PMID: 10352293 Marquis, J. F., Nantel, A., LaCourse, R., Ryan, L., North, R. J., & Gros, P. (2008). Fibrotic response as a distinguishing feature of resistance and susceptibility to pulmonary infection with mycobacterium tuberculosis in mice. Infection and Immunity, 76(1), 78-88. doi:10.1128/IAI.00369-07 Martinson, N. A., Barnes, G. L., Moulton, L. H., Msandiwa, R., Hausler, H., Ram, M., . . . Chaisson, R. E. (2011). New regimens to prevent tuberculosis in adults with HIV infection. The New England Journal of Medicine, 365(1), 1120. doi:10.1056/NEJMoa1005136 Mayer-Barber, K. D., Andrade, B. B., Barber, D. L., Hieny, S., Feng, C. G., Caspar, P., . . . Sher, A. (2011). Innate and adaptive interferons suppress il-1α and il-1β production by distinct pulmonary myeloid subsets during mycobacterium tuberculosis infection. Immunity, 35(6), 1023-34. doi:10.1016/j.immuni.2011.12.002 McLeod, J. D., Goodall, A., Jelic, P., & Bolton, C. (1995). Changes in the cellular distribution of lipocortin-1 (annexin-1) in C6 glioma cells after exposure to dexamethasone. Biochemical Pharmacology, 50(7), 1103-7. McMurray, D. N. (2001). Disease model: Pulmonary tuberculosis. Trends in Molecular Medicine, 7(3), 135-7. doi:11286786 McNerney, R., Maeurer, M., Abubakar, I., Marais, B., McHugh, T. D., Ford, N., . . . Zumla, A. (2012). Tuberculosis diagnostics and biomarkers: Needs, 154 challenges, recent advances, and opportunities. The Journal of Infectious Diseases, 205 Suppl 2, S147-58. doi:10.1093/infdis/jir860 McShane, H. (2011). Tuberculosis vaccines: Beyond bacille calmette-guerin. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 366(1579), 2782-9. doi:10.1098/rstb.2011.0097 Medina, E., & North, R. J. (1998). Resistance ranking of some common inbred mouse strains to mycobacterium tuberculosis and relationship to major histocompatibility complex haplotype and nramp1 genotype. Immunology, 93(2), 270-4. doi:9616378 Medlar, E. M. (1948). The pathogenesis of minimal pulmonary tuberculosis; a study of 1,225 necropsies in cases of sudden and unexpected death. American Review of Tuberculosis, 58(6), 583-611. doi:18099839 Merad, M., Sathe, P., Helft, J., Miller, J., & Mortha, A. (2013). The dendritic cell lineage: Ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annual Review of Immunology, 31, 563604. doi:10.1146/annurev-immunol-020711-074950 Meredith, M. M., Liu, K., Darrasse-Jeze, G., Kamphorst, A. O., Schreiber, H. A., Guermonprez, P., . . . Nussenzweig, M. C. (2012). Expression of the zinc finger transcription factor zdc (zbtb46, btbd4) defines the classical dendritic cell lineage. The Journal of Experimental Medicine, 209(6), 1153-65. doi:10.1084/jem.20112675 Meyer, J., Harris, S. A., Satti, I., Poulton, I. D., Poyntz, H. C., Tanner, R., . . . McShane, H. (2013). Comparing the safety and immunogenicity of a candidate TB vaccine MVA85A administered by intramuscular and intradermal delivery. Vaccine, 31(7), 1026-33. doi:10.1016/j.vaccine.2012.12.042 Miller, B. H., Fratti, R. A., Poschet, J. F., Timmins, G. S., Master, S. S., Burgos, M., . . . Deretic, V. (2004). Mycobacteria inhibit nitric oxide synthase recruitment to phagosomes during macrophage infection. Infection and Immunity, 72(5), 2872-8. doi:15102799 Mimura, K. K., Tedesco, R. C., Calabrese, K. S., Gil, C. D., & Oliani, S. M. (2012). The involvement of anti-inflammatory protein, annexin A1, in ocular toxoplasmosis. Molecular Vision, 18, 1583-93. doi:22740770 Mischenko, V. V., Kapina, M. A., Eruslanov, E. B., Kondratieva, E. V., Lyadova, I. V., Young, D. B., & Apt, A. S. (2004). Mycobacterial dissemination and cellular responses after 1-lobe restricted tuberculosis infection of genetically susceptible and resistant mice. The Journal of Infectious Diseases, 190(12), 2137-45. doi:10.1086/425909 Mogues, T., Goodrich, M. E., Ryan, L., LaCourse, R., & North, R. J. (2001). The relative importance of T cell subsets in immunity and immunopathology 155 of airborne mycobacterium tuberculosis infection in mice. The Journal of Experimental Medicine, 193(3), 271-80. doi:11157048 Moltedo, B., Li, W., Yount, J. S., Moran, T. M. (2011). Unique Type I Interferon Responses Determine the Functional Fate of Migratory Lung Dendritic Cells during Influenza Virus Infection. PLoS Pathogens, 7(11), e1002345. doi: 10.1371/journal.ppat.1002345 Mulla, A., Leroux, C., Solito, E., & Buckingham, J. C. (2005). Correlation between the antiinflammatory protein annexin (lipocortin 1) and serum cortisol in subjects with normal and dysregulated adrenal function. The Journal of Clinical Endocrinology and Metabolism, 90(1), 557-62. doi:10.1210/jc.2004-1230 Muñoz-Elías, E. J., Timm, J., Botha, T., Chan, W. T., Gomez, J. E., & McKinney, J. D. (2005). Replication dynamics of mycobacterium tuberculosis in chronically infected mice. Infection and Immunity, 73(1), 546-51. doi:10.1128/IAI.73.1.546-551.2005 Nahid, P., Bliven, E. E., Kim, E. Y., Mac Kenzie, W. R., Stout, J. E., Diem, L., . . . Tuberculosis Trials Consortium. (2010). Influence of M. Tuberculosis lineage variability within a clinical trial for pulmonary tuberculosis. PloS One, 5(5), e10753. doi:10.1371/journal.pone.0010753 Nandi, B., & Behar, S. M. (2011). Regulation of neutrophils by interferon-γ limits lung inflammation during tuberculosis infection. The Journal of Experimental Medicine, 208(11), 2251-62. doi:10.1084/jem.20110919 Ng, F. S., Wong, K. Y., Guan, S. P., Mustafa, F. B., Kajiji, T. S., Bist, P., . . . Lim, L. H. (2011). Annexin-1-deficient mice exhibit spontaneous airway hyperresponsiveness and exacerbated allergen-specific antibody responses in a mouse model of asthma. Clinical and Experimental Allergy : Journal of the British Society for Allergy and Clinical Immunology, 41(12), 1793-803. doi:10.1111/j.1365-2222.2011.03855.x Nguyen, L., & Pieters, J. (2005). The trojan horse: Survival tactics of pathogenic mycobacteria in macrophages. Trends in Cell Biology, 15(5), 26976. doi:10.1016/j.tcb.2005.03.009 O'Garra, A., Redford, P. S., McNab, F. W., Bloom, C. I., Wilkinson, R. J., & Berry, M. P. (2013). The immune response in tuberculosis. Annual Review of Immunology, 31, 475-527. doi:10.1146/annurev-immunol-032712-095939 Ohnmacht, C., Pullner, A., King, S. B., Drexler, I., Meier, S., Brocker, T., & Voehringer, D. (2009). Constitutive ablation of dendritic cells breaks selftolerance of CD4 T cells and results in spontaneous fatal autoimmunity. The Journal of Experimental Medicine, 206(3), 549-59. doi:10.1084/jem.20082394 156 O'Leary, S., O'Sullivan, M. P., & Keane, J. (2011). IL-10 blocks phagosome maturation in mycobacterium tuberculosis-infected human macrophages. American Journal of Respiratory Cell and Molecular Biology, 45(1), 172-80. doi:10.1165/rcmb.2010-0319OC Orme, I. M. (1987). The kinetics of emergence and loss of mediator T lymphocytes acquired in response to infection with mycobacterium tuberculosis. Journal of Immunology (Baltimore, Md. : 1950), 138(1), 293-8. doi:3097148 Orme, I. M. (2003). The mouse as a useful model of tuberculosis. Tuberculosis (Edinburgh, Scotland), 83(1-3), 112-5. doi:12758199 Orme, I. M. (2005). Mouse and guinea pig models for testing new tuberculosis vaccines. Tuberculosis (Edinburgh, Scotland), 85(1-2), 13-7. doi:10.1016/j.tube.2004.08.001 Ozeki, Y., Sugawara, I., Udagawa, T., Aoki, T., Osada-Oka, M., Tateishi, Y., . . . Matsumoto, S. (2010). Transient role of CD4+CD25+ regulatory T cells in mycobacterial infection in mice. International Immunology, 22(3), 179-89. doi:10.1093/intimm/dxp126 Panteix, G., Gutierrez, M. C., Boschiroli, M. L., Rouviere, M., Plaidy, A., Pressac, D., . . . Godreuil, S. (2010). Pulmonary tuberculosis due to mycobacterium microti: A study of six recent cases in france. Journal of Medical Microbiology, 59(Pt 8), 984-9. doi:10.1099/jmm.0.019372-0 Parente, L., & Solito, E. (2004). Annexin 1: More than an anti-phospholipase protein. Inflammation Research : Official Journal of the European Histamine Research Society . [et Al.], 53(4), 125-32. doi:10.1007/s00011-003-1235-z Park, I. N., Ryu, J. S., & Shim, T. S. (2008). Evaluation of therapeutic response of tuberculoma using F-18 FDG positron emission tomography. Clinical Nuclear Medicine, 33(1), 1-3. doi:10.1097/RLU.0b013e31815c5128 Pascual, D. W., Wang, X., Kochetkova, I., Callis, G., & Riccardi, C. (2008). The absence of lymphoid CD8+ dendritic cell maturation in l-selectin-/respiratory compartment attenuates antiviral immunity. Journal of Immunology (Baltimore, Md. : 1950), 181(2), 1345-56. doi:18606689 Pawlowski, A., Jansson, M., Sköld, M., Rottenberg, M. E., & Källenius, G. (2012). Tuberculosis and HIV co-infection. PLoS Pathogens, 8(2), e1002464. doi:10.1371/journal.ppat.1002464 Peers, S. H., Smillie, F., Elderfield, A. J., & Flower, R. J. (1993). Glucocorticoid-and non-glucocorticoid induction of lipocortins (annexins) and in rat peritoneal leucocytes in vivo. British Journal of Pharmacology, 108(1), 66-72. 157 Perretti, M., & D'Acquisto, F. (2009). Annexin A1 and glucocorticoids as effectors of the resolution of inflammation. Nature Reviews. Immunology, 9(1), 62-70. doi:10.1038/nri2470 Perretti, M., & Dalli, J. (2009). Exploiting the annexin A1 pathway for the development of novel anti-inflammatory therapeutics. British Journal of Pharmacology, 158(4), 936-46. doi:10.1111/j.1476-5381.2009.00483.x Perretti, M., & Flower, R. J. (2004). Annexin and the biology of the neutrophil. Journal of Leukocyte Biology, 76(1), 25-9. doi:10.1189/jlb.1103552 Perretti, M., Chiang, N., La, M., Fierro, I. M., Marullo, S., Getting, S. J., . . . Serhan, C. N. (2002). Endogenous lipid- and peptide-derived antiinflammatory pathways generated with glucocorticoid and aspirin treatment activate the lipoxin A4 receptor. Nature Medicine, 8(11), 1296-302. doi:10.1038/nm786 Perretti, M., Christian, H., Wheller, S. K., Aiello, I., Mugridge, K. G., Morris, J. F., . . . Goulding, N. J. (2000). Annexin I is stored within gelatinase granules of human neutrophil and mobilized on the cell surface upon adhesion but not phagocytosis. Cell Biology International, 24(3), 163-74. doi:10.1006/cbir.1999.0468 Perretti, M., Getting, S. J., Solito, E., Murphy, P. M., & Gao, J. L. (2001). Involvement of the receptor for formylated peptides in the in vivo antimigratory actions of annexin and its mimetics. The American Journal of Pathology, 158(6), 1969-73. doi:10.1016/S0002-9440(10)64667-6 Perretti, M., Ingegnoli, F., Wheller, S. K., Blades, M. C., Solito, E., & Pitzalis, C. (2002). Annexin modulates monocyte-endothelial cell interaction in vitro and cell migration in vivo in the human SCID mouse transplantation model. Journal of Immunology (Baltimore, Md. : 1950), 169(4), 2085-92. Peters, W., Scott, H. M., Chambers, H. F., Flynn, J. L., Charo, I. F., & Ernst, J. D. (2001). Chemokine receptor serves an early and essential role in resistance to mycobacterium tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 98(14), 7958-63. doi:10.1073/pnas.131207398 Pethe, K., Swenson, D. L., Alonso, S., Anderson, J., Wang, C., & Russell, D. G. (2004). Isolation of mycobacterium tuberculosis mutants defective in the arrest of phagosome maturation. Proceedings of the National Academy of Sciences of the United States of America, 101(37), 13642-7. doi:10.1073/pnas.0401657101 Pfyffer, G. E. (2007). Mycobacterium: General Characteristics, Laboratory Detection, and Staining Procedures. In P. R. Murray (Ed.), Manual of Clinical Microbiology (9th ed., pp. 543-572). Washington, DC: ASM Press. 158 Philips, J. A. (2008). Mycobacterial manipulation of vacuolar sorting. Cellular Microbiology, 10(12), 2408-15. doi:10.1111/j.1462-5822.2008.01239.x Piva, L., Tetlak, P., Claser, C., Karjalainen, K., Renia, L., & Ruedl, C. (2012). Cutting edge: CLEC9A+ dendritic cells mediate the development of experimental cerebral malaria. Journal of Immunology (Baltimore, Md. : 1950), 189(3), 1128-32. doi:10.4049/jimmunol.1201171 Plantinga, M., Guilliams, M., Vanheerswynghels, M., Deswarte, K., BrancoMadeira, F., Toussaint, W., . . . Lambrecht, B. N. (2013). Conventional and monocyte-derived cd11b(+) dendritic cells initiate and maintain T helper cell-mediated immunity to house dust mite allergen. Immunity, 38(2), 322-35. doi:10.1016/j.immuni.2012.10.016 Quinn, K. M., McHugh, R. S., Rich, F. J., Goldsack, L. M., de Lisle, G. W., Buddle, B. M., . . . Kirman, J. R. (2006). Inactivation of CD4+ CD25+ regulatory T cells during early mycobacterial infection increases cytokine production but does not affect pathogen load. Immunology and Cell Biology, 84(5), 467-74. doi:10.1111/j.1440-1711.2006.01460.x Quinn, K. M., Rich, F. J., Goldsack, L. M., de Lisle, G. W., Buddle, B. M., Delahunt, B., & Kirman, J. R. (2008). Accelerating the secondary immune response by inactivating CD4(+)CD25(+) T regulatory cells prior to BCG vaccination does not enhance protection against tuberculosis. European Journal of Immunology, 38(3), 695-705. doi:10.1002/eji.200737888 Ramakrishnan, L. (2012). Revisiting the role of the granuloma in tuberculosis. Nature Reviews. Immunology, 12(5), 352-66. doi:10.1038/nri3211 Redford, P. S., Boonstra, A., Read, S., Pitt, J., Graham, C., Stavropoulos, E., . . . O'Garra, A. (2010). Enhanced protection to mycobacterium tuberculosis infection in il-10-deficient mice is accompanied by early and enhanced th1 responses in the lung. European Journal of Immunology, 40(8), 2200-10. doi:10.1002/eji.201040433 Reizis, B., Bunin, A., Ghosh, H. S., Lewis, K. L., & Sisirak, V. (2011). Plasmacytoid dendritic cells: Recent progress and open questions. Annual Review of Immunology, 29, 163-83. doi:10.1146/annurev-immunol-031210101345 Rescher, U., & Gerke, V. (2004). Annexins--unique membrane binding proteins with diverse functions. Journal of Cell Science, 117(Pt 13), 2631-9. doi:10.1242/jcs.01245 Rhoades, E. R., Frank, A. A., & Orme, I. M. (1997). Progression of chronic pulmonary tuberculosis in mice aerogenically infected with virulent mycobacterium tuberculosis. Tubercle and Lung Disease : The Official Journal of the International Union Against Tuberculosis and Lung Disease, 78(1), 57-66. doi:9666963 159 Roach, D. R., Bean, A. G., Demangel, C., France, M. P., Briscoe, H., & Britton, W. J. (2002). TNF regulates chemokine induction essential for cell recruitment, granuloma formation, and clearance of mycobacterial infection. Journal of Immunology (Baltimore, Md. : 1950), 168(9), 4620-7. doi:11971010 Rodríguez, E., Sánchez, L. P., Pérez, S., Herrera, L., Jiménez, M. S., Samper, S., & Iglesias, M. J. (2009). Human tuberculosis due to mycobacterium bovis and M. Caprae in spain, 2004-2007. The International Journal of Tuberculosis and Lung Disease : The Official Journal of the International Union Against Tuberculosis and Lung Disease, 13(12), 1536-41. doi:19919773 Rohde, K., Yates, R. M., Purdy, G. E., & Russell, D. G. (2007). Mycobacterium tuberculosis and the environment within the phagosome. Immunological Reviews, 219, 37-54. doi:10.1111/j.1600-065X.2007.00547.x Rothfuchs, A. G., Egen, J. G., Feng, C. G., Antonelli, L. R., Bafica, A., Winter, N., . . . Sher, A. (2009). In situ IL-12/23p40 production during mycobacterial infection is sustained by cd11bhigh dendritic cells localized in tissue sites distinct from those harboring bacilli. Journal of Immunology (Baltimore, Md. : 1950), 182(11), 6915-25. doi:10.4049/jimmunol.0900074 Russell, D. G. (2007). Who puts the tubercle in tuberculosis? Nature Reviews. Microbiology, 5(1), 39-47. doi:10.1038/nrmicro1538 Russell, D. G., Cardona, P. J., Kim, M. J., Allain, S., & Altare, F. (2009). Foamy macrophages and the progression of the human tuberculosis granuloma. Nature Immunology, 10(9), 943-8. doi:10.1038/ni.1781 Saini, D., Hopkins, G. W., Seay, S. A., Chen, C. J., Perley, C. C., Click, E. M., & Frothingham, R. (2012). Ultra-low dose of mycobacterium tuberculosis aerosol creates partial infection in mice. Tuberculosis (Edinburgh, Scotland), 92(2), 160-5. doi:10.1016/j.tube.2011.11.007 Saito, M., Iwawaki, T., Taya, C., Yonekawa, H., Noda, M., Inui, Y., . . . Kohno, K. (2001). Diphtheria toxin receptor-mediated conditional and targeted cell ablation in transgenic mice. Nature Biotechnology, 19(8), 746-50. doi:10.1038/90795 Sakula, A. (1982). Robert koch: Centenary of the discovery of the tubercle bacillus, 1882. Thorax, 37(4), 246-51. doi:PMC459292 Sallusto, F., Schaerli, P., Loetscher, P., Schaniel, C., Lenig, D., Mackay, C. R., . . . Lanzavecchia, A. (1998). Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. European Journal of Immunology, 28(9), 2760-9. doi:10.1002/(SICI)15214141(199809)28:09<2760::AID-IMMU2760>3.0.CO;2-N Sancho, D., Mourão-Sá, D., Joffre, O. P., Schulz, O., Rogers, N. C., Pennington, D. J., . . . Reis e Sousa, C. (2008). Tumor therapy in mice via 160 antigen targeting to a novel, dc-restricted c-type lectin. The Journal of Clinical Investigation, 118(6), 2098-110. doi:10.1172/JCI34584 Saraiva, M., & O'Garra, A. (2010). The regulation of IL-10 production by immune cells. Nature Reviews. Immunology, 10(3), 170-81. doi:10.1038/nri2711 Sathe, P., & Shortman, K. (2008). The steady-state development of splenic dendritic cells. Mucosal Immunology, 1(6), 425-31. doi:10.1038/mi.2008.56 Saunders, B. M., & Britton, W. J. (2007). Life and death in the granuloma: Immunopathology of tuberculosis. Immunology and Cell Biology, 85(2), 10311. doi:10.1038/sj.icb.7100027 Saunders, B. M., & Cooper, A. M. (2000). Restraining mycobacteria: Role of granulomas in mycobacterial infections. Immunology and Cell Biology, 78(4), 334-41. doi:10.1046/j.1440-1711.2000.00933.x Saunders, B. M., Frank, A. A., Orme, I. M., & Cooper, A. M. (2002). CD4 is required for the development of a protective granulomatous response to pulmonary tuberculosis. Cellular Immunology, 216(1-2), 65-72. doi:12381351 Sawmynaden, P., & Perretti, M. (2006). Glucocorticoid upregulation of the annexin-a1 receptor in leukocytes. Biochemical and Biophysical Research Communications, 349(4), 1351-5. doi:10.1016/j.bbrc.2006.08.179 Scanga, C. A., Mohan, V. P., Yu, K., Joseph, H., Tanaka, K., Chan, J., & Flynn, J. L. (2000). Depletion of CD4(+) T cells causes reactivation of murine persistent tuberculosis despite continued expression of interferon gamma and nitric oxide synthase 2. The Journal of Experimental Medicine, 192(3), 34758. doi:10934223 Scannell, M., Flanagan, M. B., deStefani, A., Wynne, K. J., Cagney, G., Godson, C., & Maderna, P. (2007). Annexin-1 and peptide derivatives are released by apoptotic cells and stimulate phagocytosis of apoptotic neutrophils by macrophages. Journal of Immunology (Baltimore, Md. : 1950), 178(7), 4595-605. doi:17372018 Schaible, U. E., Winau, F., Sieling, P. A., Fischer, K., Collins, H. L., Hagens, K., . . . Kaufmann, S. H. (2003). Apoptosis facilitates antigen presentation to T lymphocytes through MHC-I and CD1 in tuberculosis. Nature Medicine, 9(8), 1039-46. doi:10.1038/nm906 Schnappinger, D., Ehrt, S., Voskuil, M. I., Liu, Y., Mangan, J. A., Monahan, I. M., . . . Schoolnik, G. K. (2003). Transcriptional adaptation of mycobacterium tuberculosis within macrophages: Insights into the phagosomal environment. The Journal of Experimental Medicine, 198(5), 693-704. doi:10.1084/jem.20030846 161 Schnorrer, P., Behrens, G. M., Wilson, N. S., Pooley, J. L., Smith, C. M., ElSukkari, D., . . . Villadangos, J. A. (2006). The dominant role of CD8+ dendritic cells in cross-presentation is not dictated by antigen capture. Proceedings of the National Academy of Sciences of the United States of America, 103(28), 10729-34. doi:10.1073/pnas.0601956103 Schuler, G., Romani, N., & Steinman, R. M. (1985). A comparison of murine epidermal langerhans cells with spleen dendritic cells. The Journal of Investigative Dermatology, 85(1 Suppl), 99s-106s. doi:3159809 Schulz, O., Edwards, A. D., Schito, M., Aliberti, J., Manickasingham, S., Sher, A., & Reis e Sousa, C. (2000). CD40 triggering of heterodimeric IL-12 p70 production by dendritic cells in vivo requires a microbial priming signal. Immunity, 13(4), 453-62. doi:11070164 Scott, C. L., Aumeunier, A. M., & Mowat, A. M. (2011). Intestinal CD103+ dendritic cells: Master regulators of tolerance? Trends in Immunology, 32(9), 412-9. doi:10.1016/j.it.2011.06.003 Scriba, T. J., Kalsdorf, B., Abrahams, D. A., Isaacs, F., Hofmeister, J., Black, G., . . . Hanekom, W. A. (2008). Distinct, specific IL-17- and il-22-producing CD4+ T cell subsets contribute to the human anti-mycobacterial immune response. Journal of Immunology (Baltimore, Md. : 1950), 180(3), 1962-70. doi:18209095 Segura, E., & Amigorena, S. (2013). Inflammatory dendritic cells in mice and humans. Trends in Immunology, 34(9), 440-5. doi:10.1016/j.it.2013.06.001 Seiler, P., Aichele, P., Bandermann, S., Hauser, A. E., Lu, B., Gerard, N. P., . . . Kaufmann, S. H. (2003). Early granuloma formation after aerosol mycobacterium tuberculosis infection is regulated by neutrophils via cxcr3signaling chemokines. European Journal of Immunology, 33(10), 2676-86. doi:10.1002/eji.200323956 Serbina, N. V., & Flynn, J. L. (1999). Early emergence of CD8(+) T cells primed for production of type cytokines in the lungs of mycobacterium tuberculosis-infected mice. Infection and Immunity, 67(8), 3980-8. doi:10417164 Serbina, N. V., Liu, C. C., Scanga, C. A., & Flynn, J. L. (2000). CD8+ CTL from lungs of mycobacterium tuberculosis-infected mice express perforin in vivo and lyse infected macrophages. Journal of Immunology (Baltimore, Md. : 1950), 165(1), 353-63. doi:10861072 Sérgio, C. A., Bertolini, T. B., Gembre, A. F., de Queiroz Prado, R., & Bonato, V. L. (2014). CD11c+CD103+cells of mycobacterium tuberculosisinfected C57BL/6 but not of BALB/c mice induce a high frequency of ifn-γor il-17-producing CD4+cells. Immunology. doi:10.1111/imm.12411 162 Shin, J. S., Ebersold, M., Pypaert, M., Delamarre, L., Hartley, A., & Mellman, I. (2006). Surface expression of MHC class II in dendritic cells is controlled by regulated ubiquitination. Nature, 444(7115), 115-8. doi:10.1038/nature05261 Shortman, K., & Heath, W. R. (2010). The CD8+ dendritic cell subset. Immunological Reviews, 234(1), 18-31. doi:10.1111/j.01052896.2009.00870.x Shortman, K., & Liu, Y. J. (2002). Mouse and human dendritic cell subtypes. Nature Reviews. Immunology, 2(3), 151-61. doi:10.1038/nri746 Shortman, K., & Naik, S. H. (2007). Steady-state and inflammatory dendriticcell development. Nature Reviews. Immunology, 7(1), 19-30. doi:10.1038/nri1996 Sia, I. G., & Wieland, M. L. (2011). Current concepts in the management of tuberculosis. Mayo Clinic Proceedings. Mayo Clinic, 86(4), 348-61. doi:10.4065/mcp.2010.0820 Simeone, R., Bobard, A., Lippmann, J., Bitter, W., Majlessi, L., Brosch, R., & Enninga, J. (2012). Phagosomal rupture by mycobacterium tuberculosis results in toxicity and host cell death. PLoS Pathogens, 8(2), e1002507. doi:10.1371/journal.ppat.1002507 Singhal, A., Aliouat, E. M., Creusy, C., Kaplan, G., & Bifani, P. J. (2010). Pulmonary tuberculosis in rats. In: Leong, J. F., Dartois, V., Dick, T., editors. A color atlas of comparative pathology of pulmonary tuberculosis. Routledge, Taylor and Francis Inc. 157–173. Sinha, A., Singh, A., Satchidanandam, V., & Natarajan, K. (2006). Impaired generation of reactive oxygen species during differentiation of dendritic cells (dcs) by mycobacterium tuberculosis secretory antigen (MTSA) and subsequent activation of mtsa-dcs by mycobacteria results in increased intracellular survival. Journal of Immunology (Baltimore, Md. : 1950), 177(1), 468-78. doi:16785544 Skouteris, G. G., & Schröder, C. H. (1996). The hepatocyte growth factor receptor kinase-mediated phosphorylation of lipocortin-1 transduces the proliferating signal of the hepatocyte growth factor. The Journal of Biological Chemistry, 271(44), 27266-73. Solito, E., Kamal, A., Russo-Marie, F., Buckingham, J. C., Marullo, S., & Perretti, M. (2003). A novel calcium-dependent proapoptotic effect of annexin on human neutrophils. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 17(11), 1544-6. doi:10.1096/fj.02-0941fje Steingart, K. R., Henry, M., Ng, V., Hopewell, P. C., Ramsay, A., Cunningham, J., . . . Pai, M. (2006). Fluorescence versus conventional sputum 163 smear microscopy for tuberculosis: A systematic review. The Lancet Infectious Diseases, 6(9), 570-581. doi:10.1016/S1473-3099(06)70578-3 Steinman, R. M. (2012). Decisions about dendritic cells: Past, present, and future. Annual Review of Immunology, 30, 1-22. doi:10.1146/annurevimmunol-100311-102839 Steinman, R. M., & Cohn, Z. A. (1973). Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. The Journal of Experimental Medicine, 137(5), 1142-62. doi:4573839 Steinman, R. M., & Cohn, Z. A. (1974). Identification of a novel cell type in peripheral lymphoid organs of mice. II. Functional properties in vitro. The Journal of Experimental Medicine, 139(2), 380-97. doi:4589990 Steinman, R. M., Pack, M., & Inaba, K. (1997). Dendritic cells in the t-cell areas of lymphoid organs. Immunological Reviews, 156, 25-37. doi:9176697 Storla, D. G., Yimer, S., & Bjune, G. A. (2008). A systematic review of delay in the diagnosis and treatment of tuberculosis. BMC Public Health, 8, 15. doi:10.1186/1471-2458-8-15 Sturgill-Koszycki, S., Schlesinger, P. H., Chakraborty, P., Haddix, P. L., Collins, H. L., Fok, A. K., . . . Russell, D. G. (1994). Lack of acidification in mycobacterium phagosomes produced by exclusion of the vesicular protonatpase. Science, 263(5147), 678-81. doi:8303277 Sung, S. S., Fu, S. M., Rose, C. E., Gaskin, F., Ju, S. T., & Beaty, S. R. (2006). A major lung CD103 (alphae)-beta7 integrin-positive epithelial dendritic cell population expressing langerin and tight junction proteins. Journal of Immunology (Baltimore, Md. : 1950), 176(4), 2161-72. doi:16455972 Swiecki, M., Gilfillan, S., Vermi, W., Wang, Y., & Colonna, M. (2010). Plasmacytoid dendritic cell ablation impacts early interferon responses and antiviral NK and CD8(+) T cell accrual. Immunity, 33(6), 955-66. doi:10.1016/j.immuni.2010.11.020 Swiecki, M., Wang, Y., Gilfillan, S., & Colonna, M. (2013). Plasmacytoid dendritic cells contribute to systemic but not local antiviral responses to HSV infections. PLoS Pathogens, 9(10), e1003728. Retrieved from Google Scholar. Sylvius, F. (1679). Opera Medica. Amstelodami: aupd Danielem Elsevirium et Abrahamum Wolfgang Tailleux, L., Neyrolles, O., Honoré-Bouakline, S., Perret, E., Sanchez, F., Abastado, J. P., . . . Herrmann, J. L. (2003a). Constrained intracellular survival of mycobacterium tuberculosis in human dendritic cells. Journal of Immunology (Baltimore, Md. : 1950), 170(4), 1939-48. doi:12574362 164 Tailleux, L., Schwartz, O., Herrmann, J. -L., Pivert, E., Jackson, M., Amara, A., . . . Gluckman, J. C. (2003b). DC-SIGN is the major mycobacterium tuberculosis receptor on human dendritic cells. The Journal of Experimental Medicine, 197(1), 121-127. doi:10.1084/jem.20021468 Takagi, H., Fukaya, T., Eizumi, K., Sato, Y., Sato, K., Shibazaki, A., . . . Sato, K. (2011). Plasmacytoid dendritic cells are crucial for the initiation of inflammation and T cell immunity in vivo. Immunity, 35(6), 958-71. doi:10.1016/j.immuni.2011.10.014 Tameris, M. D., Hatherill, M., Landry, B. S., Scriba, T. J., Snowden, M. A., Lockhart, S., . . . MVA85A 020 Trial Study Team. (2013). Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: A randomised, placebo-controlled phase 2b trial. Lancet, 381(9871), 1021-8. doi:10.1016/S0140-6736(13)60177-4 Thoen, C., Lobue, P., & de Kantor, I. (2006). The importance of mycobacterium bovis as a zoonosis. Veterinary Microbiology, 112(2-4), 33945. doi:10.1016/j.vetmic.2005.11.047 Tian, T., Woodworth, J., Sköld, M., & Behar, S. M. (2005). In vivo depletion of cd11c+ cells delays the CD4+ T cell response to mycobacterium tuberculosis and exacerbates the outcome of infection. Journal of Immunology (Baltimore, Md. : 1950), 175(5), 3268-72. doi:16116218 Tittel, A. P., Heuser, C., Ohliger, C., Llanto, C., Yona, S., Hämmerling, G. J., . . . Kurts, C. (2012). Functionally relevant neutrophilia in cd11c diphtheria toxin receptor transgenic mice. Nature Methods, 9(4), 385-90. doi:10.1038/nmeth.1905 Tsai, M. C., Chakravarty, S., Zhu, G., Xu, J., Tanaka, K., Koch, C., . . . Chan, J. (2006). Characterization of the tuberculous granuloma in murine and human lungs: Cellular composition and relative tissue oxygen tension. Cellular Microbiology, 8(2), 218-32. doi:10.1111/j.1462-5822.2005.00612.x Tsao, T. C., Huang, C. C., Chiou, W. K., Yang, P. Y., Hsieh, M. J., & Tsao, K. C. (2002). Levels of interferon-gamma and interleukin-2 receptor-alpha for bronchoalveolar lavage fluid and serum were correlated with clinical grade and treatment of pulmonary tuberculosis. The International Journal of Tuberculosis and Lung Disease : The Official Journal of the International Union Against Tuberculosis and Lung Disease, 6(8), 720-7. doi:12150485 Tully, G., Kortsik, C., Höhn, H., Zehbe, I., Hitzler, W. E., Neukirch, C., . . . Maeurer, M. J. (2005). Highly focused T cell responses in latent human pulmonary mycobacterium tuberculosis infection. Journal of Immunology (Baltimore, Md. : 1950), 174(4), 2174-84. doi:15699149 Tzelepis, F., Verway, M., Daoud, J., Gillard, J., Hassani-Ardakani, K., Dunn, J., . . . Sanchez, A. M. J. (2014). Annexin1 regulates DC efferocytosis and 165 cross-presentation during< i> mycobacterium tuberculosis infection. The Journal of Clinical Investigation, 125(125 (2)), 0-0. doi:10.1172/JCI77014 Uehira, K., Amakawa, R., Ito, T., Tajima, K., Naitoh, S., Ozaki, Y., . . . Fukuhara, S. (2002). Dendritic cells are decreased in blood and accumulated in granuloma in tuberculosis. Clinical Immunology (Orlando, Fla.), 105(3), 296-303. doi:12498811 Ulrichs, T., Kosmiadi, G. A., Jörg, S., Pradl, L., Titukhina, M., Mishenko, V., . . . Kaufmann, S. H. (2005). Differential organization of the local immune response in patients with active cavitary tuberculosis or with nonprogressive tuberculoma. The Journal of Infectious Diseases, 192(1), 89-97. doi:10.1086/430621 Umemura, M., Yahagi, A., Hamada, S., Begum, M. D., Watanabe, H., Kawakami, K., . . . Matsuzaki, G. (2007). IL-17-mediated regulation of innate and acquired immune response against pulmonary mycobacterium bovis bacille calmette-guerin infection. Journal of Immunology (Baltimore, Md. : 1950), 178(6), 3786-96. doi:17339477 Valway, S. E., Sanchez, M. P., Shinnick, T. F., Orme, I., Agerton, T. Hoy, D., Jones, J. S., Westmoreland, H., & Onorato, I. M. (1998). An outbreak involving extensive transmission of virulent strain of Mycobacterium tuberculosis. New England Journal of Medicine. 338. 633-39. doi: 10.1056/NEJM199803053381001 van Blijswijk, J., & Schraml, B. U. (2013). Advantages and limitations of mouse models to deplete dendritic cells. European Journal of Immunology, 43(1), 22-26. doi:10.1002/eji.201243022 van Crevel, R., Ottenhoff, T. H., & van der Meer, J. W. (2002). Innate immunity to mycobacterium tuberculosis. Clinical Microbiology Reviews, 15(2), 294-309. doi:11932234 van der Wel, N., Hava, D., Houben, D., Fluitsma, D., van Zon, M., Pierson, J., . . . Peters, P. J. (2007). M. Tuberculosis and M. Leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell, 129(7), 1287-98. doi:10.1016/j.cell.2007.05.059 Vankayalapati, R., Wizel, B., Weis, S. E., Klucar, P., Shams, H., Samten, B., & Barnes, P. F. (2003). Serum cytokine concentrations not parallel mycobacterium tuberculosis-induced cytokine production in patients with tuberculosis. Clinical Infectious Diseases : An Official Publication of the Infectious Diseases Society of America, 36(1), 24-8. doi:10.1086/344903 Varticovski, L., Chahwala, S. B., Whitman, M., Cantley, L., Schindler, D., Chow, E. P., . . . Pepinsky, R. B. (1988). Location of sites in human lipocortin I that are phosphorylated by protein tyrosine kinases and protein kinases A and C. Biochemistry, 27(10), 3682-90. 166 Vassalli, P. (1992). The pathophysiology of tumor necrosis factors. Annual Review of Immunology, 10, 411-52. doi:10.1146/annurev.iy.10.040192.002211 Via, L. E., Lin, P. L., Ray, S. M., Carrillo, J., Allen, S. S., Eum, S. Y., . . . Barry, C. E. (2008). Tuberculous granulomas are hypoxic in guinea pigs, rabbits, and nonhuman primates. Infection and Immunity, 76(6), 2333-40. doi:10.1128/IAI.01515-07 Volkman, H. E., Clay, H., Beery, D., Chang, J. C., Sherman, D. R., & Ramakrishnan, L. (2004). Tuberculous granuloma formation is enhanced by a mycobacterium virulence determinant. PLoS Biology, 2(11), e367. doi:10.1371/journal.pbio.0020367 Volkman, H. E., Pozos, T. C., Zheng, J., Davis, J. M., Rawls, J. F., & Ramakrishnan, L. (2010). Tuberculous granuloma induction via interaction of a bacterial secreted protein with host epithelium. Science (New York, N.Y.), 327(5964), 466-9. doi:10.1126/science.1179663 von Reyn, C. F., Mtei, L., Arbeit, R. D., Waddell, R., Cole, B., Mackenzie, T., . . . DarDar Study Group. (2010). Prevention of tuberculosis in bacille calmette-guérin-primed, hiv-infected adults boosted with an inactivated whole-cell mycobacterial vaccine. AIDS (London, England), 24(5), 675-85. doi:10.1097/QAD.0b013e3283350f1b Waithman, J., Zanker, D., Xiao, K., Oveissi, S., Wylie, B., Ng, R., . . . Chen, W. (2013). Resident CD8(+) and migratory CD103(+) dendritic cells control CD8 T cell immunity during acute influenza infection. PloS One, 8(6), e66136. doi:10.1371/journal.pone.0066136 Wallet, M. A., Sen, P., & Tisch, R. (2005). Immunoregulation of dendritic cells. Clinical Medicine & Research, 3(3), 166-75. doi:PMC1237158 Walther, A., Riehemann, K., & Gerke, V. (2000). A novel ligand of the formyl peptide receptor: Annexin I regulates neutrophil extravasation by interacting with the FPR. Molecular Cell, 5(5), 831-40. Wangoo, A., Sparer, T., Brown, I. N., Snewin, V. A., Janssen, R., Thole, J., . . . Young, D. B. (2001). Contribution of th1 and th2 cells to protection and pathology in experimental models of granulomatous lung disease. Journal of Immunology (Baltimore, Md. : 1950), 166(5), 3432-9. doi:11207301 Ward, N. L., Loyd, C. M., Wolfram, J. A., Diaconu, D., Michaels, C. M., & McCormick, T. S. (2011). Depletion of antigen-presenting cells by clodronate liposomes reverses the psoriatic skin phenotype in kc-tie2 mice. The British Journal of Dermatology, 164(4), 750-8. doi:10.1111/j.13652133.2010.10129.x Warren, R. M., Gey van Pittius, N. C., Barnard, M., Hesseling, A., Engelke, E., de Kock, M., . . . van Helden, P. D. (2006). Differentiation of mycobacterium tuberculosis complex by PCR amplification of genomic 167 regions of difference. The International Journal of Tuberculosis and Lung Disease : The Official Journal of the International Union Against Tuberculosis and Lung Disease, 10(7), 818-22. doi:16850559 White, A. D., Sibley, L., Dennis, M. J., Gooch, K., Betts, G., Edwards, N., . . . Sharpe, S. A. (2013). Evaluation of the safety and immunogenicity of a candidate tuberculosis vaccine, MVA85A, delivered by aerosol to the lungs of macaques. Clinical and Vaccine Immunology : CVI, 20(5), 663-72. doi:10.1128/CVI.00690-12 Williams, A., Goonetilleke, N. P., McShane, H., Clark, S. O., Hatch, G., Gilbert, S. C., & Hill, A. V. (2005). Boosting with poxviruses enhances mycobacterium bovis BCG efficacy against tuberculosis in guinea pigs. Infection and Immunity, 73(6), 3814-6. doi:10.1128/IAI.73.6.3814-3816.2005 Williams, G. T., & Williams, W. J. (1983). Granulomatous inflammation--a review. Journal of Clinical Pathology, 36(7), 723-33. doi:6345591 Winau, F., Weber, S., Sad, S., de Diego, J., Hoops, S. L., Breiden, B., . . . Schaible, U. E. (2006). Apoptotic vesicles crossprime CD8 T cells and protect against tuberculosis. Immunity, 24(1), 105-17. doi:10.1016/j.immuni.2005.12.001 Wolf, A. J., Desvignes, L., Linas, B., Banaiee, N., Tamura, T., Takatsu, K., & Ernst, J. D. (2008). Initiation of the adaptive immune response to mycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs. The Journal of Experimental Medicine, 205(1), 105-15. doi:10.1084/jem.20071367 Wolf, A. J., Linas, B., Trevejo-Nuñez, G. J., Kincaid, E., Tamura, T., Takatsu, K., & Ernst, J. D. (2007). Mycobacterium tuberculosis infects dendritic cells with high frequency and impairs their function in vivo. Journal of Immunology (Baltimore, Md. : 1950), 179(4), 2509-19. doi:17675513 Wong, D., Bach, H., Sun, J., Hmama, Z., & Av-Gay, Y. (2011). Mycobacterium tuberculosis protein tyrosine phosphatase (ptpa) excludes host vacuolar-h+-atpase to inhibit phagosome acidification. Proceedings of the National Academy of Sciences of the United States of America, 108(48), 19371-6. doi:10.1073/pnas.1109201108 Woodworth, J. S., & Behar, S. M. (2006). Mycobacterium tuberculosisspecific CD8+ T cells and their role in immunity. Critical Reviews in Immunology, 26(4), 317-52. doi:PMC3134450 World Health Organization (2014). Global Tuberculosis Report 2014. Retrieved from http://www.who.int/tb/publications/global_report/en/ Yang, Y. H., Morand, E. F., Getting, S. J., Paul-Clark, M., Liu, D. L., Yona, S., . . . Flower, R. J. (2004). Modulation of inflammation and response to 168 dexamethasone by annexin in antigen-induced arthritis. Arthritis and Rheumatism, 50(3), 976-84. doi:10.1002/art.20201 Young, D. B., Perkins, M. D., Duncan, K., & Barry, C. E. (2008). Confronting the scientific obstacles to global control of tuberculosis. The Journal of Clinical Investigation, 118(4), 1255-65. doi:10.1172/JCI34614 Zhan, Y., Xu, Y., Seah, S., Brady, J. L., Carrington, E. M., Cheers, C., . . . Lew, A. M. (2010). Resident and monocyte-derived dendritic cells become dominant IL-12 producers under different conditions and signaling pathways. Journal of Immunology (Baltimore, Md. : 1950), 185(4), 2125-33. doi:10.4049/jimmunol.0903793 Zhang, X., Goncalves, R., & Mosser, D. M. (2008). The isolation and characterization of murine macrophages. Current Protocols in Immunology / Edited by John E. Coligan . [et Al.], Chapter 14, Unit 14.1. doi:10.1002/0471142735.im1401s83 Zhang, X., Huang, H., Yuan, J., Sun, D., Hou, W. S., Gordon, J., & Xiang, J. (2005). CD4-8- dendritic cells prime CD4+ T regulatory cells to suppress antitumor immunity. Journal of Immunology (Baltimore, Md. : 1950), 175(5), 2931-7. doi:16116179 Zhang, X., Majlessi, L., Deriaud, E., Leclerc, C., & Lo-Man, R. (2009). Coactivation of syk kinase and myd88 adaptor protein pathways by bacteria promotes regulatory properties of neutrophils. Immunity, 31(5), 761-71. doi:10.1016/j.immuni.2009.09.016 Zhang, X., Munegowda, M. A., Yuan, J., Wei, Y., & Xiang, J. (2010). Optimal TLR9 signal converts tolerogenic CD4-8- dcs into immunogenic ones capable of stimulating antitumor immunity via activating CD4+ th1/th17 and NK cell responses. Journal of Leukocyte Biology, 88(2), 393-403. doi:10.1189/jlb.0909633 Zouki, C., Ouellet, S., & Filep, J. G. (2000). The anti-inflammatory peptides, antiflammins, regulate the expression of adhesion molecules on human leukocytes and prevent neutrophil adhesion to endothelial cells. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 14(3), 572-80. doi:10698973 END 169 [...]... understanding of the immune mechanisms associated with protection against M tuberculosis infection In this Thesis, we report and discuss our experimental findings on two aspects of host immunity to M tuberculosis infection: the role of Annexin A1 (ANXA1), a protein expressed endogenously by a variety of immune cells, and the role of CLEC9A+ dendritic cells (DCs), which includes CD103+ migratory DCs in the. .. 3: THE ROLE OF ANNEXIN A1 3.1 Introduction 51   3.1.1 ANXA1 and its receptor are expressed on immune cells 51   3.1.2 Counter-regulatory role of ANXA1 in the inflammatory response 52   3.1.3 ANXA1 expression is modulated by glucocorticoids and in turn mediates their anti-inflammatory effects 53   3.1.4 Diverse roles for ANXA1 in the regulation of cell proliferation 53   3.1.5 Roles. .. the lung and CD8+ DCs in the lymphoid organs First, using an ANXA1−/− mouse model of pulmonary M tuberculosis infection, we describe how ANXA1 influences the immune response to M tuberculosis infection A link between ANXA1 and TB was first established only recently; virulent M tuberculosis was shown in vitro to inhibit the ANXA1-dependent apoptotic pathway in order to promote dissemination via host necrosis... WT and ANXA1−/− M tuberculosis- infected mice Figure 3.4 Local cytokine profile in the BALF from WT and ANXA1−/− M tuberculosis- infected mice Figure 3.5 T cell populations in the lungs from WT and ANXA1−/− M tuberculosis- infected mice Figure 3.6 Infection profile macrophages Figure 3.7 Cytokine secretion by M tuberculosis- infected ANXA1−/− dendritic cells Figure 3.8 Cytokine secretion by ANXA1−/− splenocytes... Structure and cellular components of the TB granuloma Figure 1.6 Heterogeneity of granuloma morphology Figure 1.7 Typical M tuberculosis infection profile in a mouse model of low-dose aerosol infection Figure 3.1 Model of glucocorticoid modulation of the ANXA1 pathway in immune regulation Figure 3.2 Infection profile in WT and ANXA1−/− mice Figure 3.3 Histological analysis of lungs and spleens from WT and. .. granulomatous inflammation in the lungs 59   3.2.3 M tuberculosis- infected ANXA1−/− mice display reduced TNF and IFNγ production in the lungs during the early chronic phase of infection 61   3.2.4 M tuberculosis- infected ANXA1−/− mice display increased infiltration of activated CD4+ and CD8+ T cells in their lungs 62   3.2.5 Cytokine production, maturation and ability to activate naïve T cells. .. during the late chronic phase in ANXA1−/− mice is associated with higher frequencies of activated CD4 and CD8 T cells 74   3.3.5 ANXA1 is involved in the regulation of DC function in terms of cytokine production, maturation and T cell activation 75   3.4 Future Work 78   CHAPTER 4: THE ROLE OF CLEC9A+ DENDRITIC CELLS 4.1 Introduction 80   4.1.1 Heterogeneity of DCs... distribution of M tuberculosis in the lungs and mediastinal LN Figure 4.5 Effects of DT injection Figure 4.6 Bacterial load in the lungs, mediastinal LN and spleen in control vs CLEC9A+ DC-depleted mice Figure 4.7 Local cytokine responses in the lung Figure 4.8 T cell activation in the lungs and mediastinal LN Figure 4.9 Re-stimulation of T cells in vitro Figure 4.10 Schematic illustrating the proposed role of. .. individual is simply too localised or too weak to be detected systemically (O'Garra et al., 2013; Barry et al., 2009) (Figure 1.3) 9 Chapter 1: General Introduction Figure 1.3 The heterogeneous consequences of M tuberculosis infection The implications of the heterogeneity of the host immune response to M tuberculosis infection are becoming increasingly recognised The active and latent states simplistically... programmes, the worldwide burden of disease remains enormous, and the problem is compounded by the emergence of drug-resistant strains and synergistic coinfection with HIV Efforts to discover novel drugs have largely been focused on targeting the bacterium directly Alternatively, manipulating the host immune response may represent a valuable approach to enhance immunological clearance of the bacilli, . NATIONAL UNIVERSITY OF SINGAPORE 2014 INVESTIGATING THE HOST IMMUNE RESPONSE TO MYCOBACTERIUM TUBERCULOSIS: THE ROLES OF ANNEXIN A1 PROTEIN AND CLEC9A + DENDRITIC CELLS KOH HUI. INVESTIGATING THE HOST IMMUNE RESPONSE TO MYCOBACTERIUM TUBERCULOSIS: THE ROLES OF ANNEXIN A1 PROTEIN AND CLEC9A + DENDRITIC CELLS KOH HUI. and discuss our experimental findings on two aspects of host immunity to M. tuberculosis infection: the role of Annexin A1 (ANXA1), a protein expressed endogenously by a variety of immune cells,

Ngày đăng: 09/09/2015, 08:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN