1. Trang chủ
  2. » Luận Văn - Báo Cáo

Transplantation and improvement of mouse embryo progenitor derived insulin producing cells for type 1 diabetes therapy

159 352 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 159
Dung lượng 4,84 MB

Nội dung

TRANSPLANTATION AND IMPROVEMENT OF MOUSE EMBRYO PROGENITOR-DERIVED INSULIN-PRODUCING CELLS FOR TYPE DIABETES THERAPY SHAO SHIYING NATIONAL UNIVERSITY OF SINGAPORE 2010 TRANSPLANTATION AND IMPROVEMENT OF MOUSE EMBRYO PROGENITOR-DERIVED INSULIN-PRODUCING CELLS FOR TYPE DIABETES THERAPY SHAO SHIYING (M.Sc., TONGJI University) A THESIS SUBMITTED FOR THE DEGREE OF PHILOSOPHY OF DOCTORATE NATIONAL UNIVERISTY OF MEDICAL INSTITUTES DEPARTMENT OF BIOCHEMISTRY NATIONAL UNIVERSITY OF SINGAPORE 2010 ACKNOWLEDGEMENTS First of all, I would like to express my sincere appreciation and thanks to my supervisor A/P Li Guodong for his invaluable guidance, support and encouragement during the course of this research This research would not have been possible without his insightful ideas Many thanks to all my fellow lab-mates, Ruihua, Jiping, Xiefei, Heqing, Michelle, Gao Yun and Xie Bing in NUMI for the useful discussion sessions that helped me throughout the research My appreciation also goes out to my friends, Bai Jie, Zhu Yi, Hanfeng, Tiannan, Shugui, Niandan, Tangmei and Li Xi who helped me tremendously all along and provided me with many useful inspirations Special thanks to my devoted parents and sister Qin, who offered me with never ending supports, encouragements and the very academic foundations that make everything possible Finally, I would like to thank the National University of Singapore for facilities and generous financial support that makes this research project a success i PUBLICATION LIST Full papers: Shiying Shao, Yun Gao, Bing Xie, Fei Xie, Sai Kiang Lim, GuoDong Li (2011) Correction of hyperglycemia in type diabetic models by transplantation of encapsulated insulin-producing cells derived from mouse embryo progenitor J Endocrinol 208:245-255, e-pub http://dx.doi.org/10.1530/JOE-10-0378 Shiying Shao, Yun Gao, Ruihua Luo, Wataru Nishimura, Arun Sharma, GuoDong Li Improvement of insulin-producing cells derived from mouse embryo progenitor by enhancement of MafA expression Manuscript to be submitted Conference papers: Shao S, Gao Y, Xie B, Lim SK, Li GD (2010) Optimization of mouse embryo progenitor-derived insulin-producing cells for diabetes treatment Poster presentation at the 8th ISSCR Annual Meeting, 16-19 June, 2010, San Francisco, USA Shao S, Li GD (2009) Improvement of mouse embryo progenitor-derived insulin-producing cells for type diabetes therapy Poster presentation at 49th Annual Meeting of American Society for Cell Biology, 5-9 December 2009, San Diego, USA Mol Biol Cell 20(suppl.):#116/B63 (online) Shao S, Wu H, Lim SK, Li GD (2009) Fate of encapsulated insulin-producing cells derived from mouse embryonic progenitor cells following transplantation in immune competent diabetic mice In: Friday Poster Session Abstracts Book, p.21 Presented at the 7th ISSCR Annual Meeting, 8-11 July, 2009, Barcelona, Spain Shao S, Xie F, Li GD (2008) Functional characterization in vivo and in vitro of encapsulated insulin-producing cells derived from mouse embryo progenitor Diabetologia 51 (suppl 1):S182 Poster at 44th Annual Meeting of the European Association for the Study of Diabetes (EASD), 7-11 Sep 2008, Rome, Italy Li GD, Shao S, Xie F, Luo R, Wu H (2008) Functional assessment of mouse ESCand progenitor-derived insulin-producing cells following encapsulation and transplantation in type diabetic animals In: Poster Session Abstracts book, p.151 Presented at the 6th ISSCR Annual Meeting, 11-14 June, 2008, Philadelphia, PA, USA Shao S, Xie F, Luo R, Salto-Tellez M, Lim SK, Li GD (2007) Transplantation of encapsulated embryonic progenitor-derived insulin-producing cells reverses hyperglycemia in immune-competent diabetic animals Presented at 67th ADA Annual Scientific Sessions, 21-26 June, 2007, Chicago, IL, USA Diabetes 56(suppl 1): A520 ii TABLE OF CONTENTS ACKNOWLEDGEMENTS i PUBLICATIONS ii TABLE OF CONTENTS iii SUMMARY .vii TABLES AND FIGURES viii ABBREVIATIONS x CHAPTER INTRODUCTION 1.1 General background .2 1.1.1 Diabetes mellitus and traditional therapy…………………………… …2 1.1.2 Islets of Langerhans and -cell function………… …………………….3 1.1.3 Glucose-stimulated insulin secretion ……………………………….… 1.1.4 Insulin secretion regulation…………………………….……………… 1.2 Transplantation therapy for type diabetes…………………….……………9 1.2.1 Human islet transplantation for type diabetes mellitus…………… …9 1.2.2 Substitute -cell therapy for type diabetes mellitus………………….11 1.2.3 Characteristics of mouse embryo progenitor derived insulin-producing cells………………………………………………………… ………………13 1.2.4 Transplantation of MPEI-1 cells in immune-deficient mice………… 14 1.2.5 Microencapsulation techniques……………………………………… 15 1.2.5.1 Ratinale of encapsulation of cells……………………………… 15 1.2.5.2 Principle and application of encapsulation……………………… 16 1.3 Roles of Maf A in -cell development and function.…………………… 19 1.3.1 GSIS-related genes in -cells………………………………………… 19 1.3.2 Transcription factors regulating GSIS-related genes ……… 20 1.3.3 Subtypes of Maf family………………………… ……………………21 1.3.4 Regulatory elements controlling insulin gene transcription …………22 1.3.5 Characters and role of MafA…………………………… ………… 23 1.3.6 Regulation of MafA…………………… …………………………… 25 1.4 Aim and significance of the study……… ……………………………… 25 CHAPTER MATERIALS AND METHODS 2.1 Materials……………………………………………… ………………….30 2.2 Methods for microencapsulation and transplantation…………… …… 33 2.2.1 MEPI-1cell culture and storage……………………………… ………33 2.2.2 Microencapsulation………………………………… ……………… 34 2.2.3 Transplantation and washing-out of capsules………………… …… 35 2.2.4 Measurement of insulin secretion of microcapsules ………… …… 36 2.2.5 Measurement of cell number in microcapsule………………… …… 37 2.2.5.1 DNA content detection 37 iii 2.2.5.2 Insulin content determination 37 2.2.6 Immunohistochemistry……………………… ……………………….37 2.2.6.1 Brdu staining……………………… …………………………… 37 2.2.6.2 Insulin staining……………………………………… ……………38 2.2.6.3 H&E staining……………………………………… …………… 38 2.2.7 Permeability detection of microcapsules………………………… … 39 2.2.8 Determination of plasma insulin……………….………………… ….39 2.2.9 Oral glucose tolerance Test (OGTT)…………………….………… …39 2.2.10 Cytokine measurement…………………………………………… …39 2.3 Methods for experiments on MafA ……………………… …………… 40 2.3.1 Molecular biology……………………… …………………………….40 2.3.1.1 E.Coli transformaotion………………………………… …………40 2.3.1.2 Plasmid DNA preparation……………………………… ……… 40 2.3.1.3 Construction of recombinant lentiviral vectors containing mouse MafA cDNA……………………………………………………… 41 2.3.1.3.1 Hotstar hifidelity PCR…………………………………….……41 2.3.1.3.2 Restriction enzyme digestion…………………………… ……42 2.3.1.3.3 Construction of entry clone PENTR3C-MafA…………………42 2.3.1.3.4 LR recombination………………………………………………43 2.3.1.3.5 pLenti-MafA virus collection and storage……………… ……43 2.3.1.4 Up-regulation of MafA in MEPI-1 cells……… …………… … 44 2.3.1.4.1 Transient up-regulation of MafA in MEPI-1 cells… …… ….44 2.3.1.4.2 Stable up-regulation of MafA in MEPI-1 cells……… ……….44 2.3.2 mRNA assay………………………………………………… ……….45 2.3.2.1 RNA purification……………………………………… …………45 2.3.2.2 Reverse transcription……………………………………… …… 45 2.3.2.3 Polymerase chains reaction…………………………………… ….46 2.3.2.4 Real-time RT-PCR………………………… ………………….…47 2.3.3 Protein assay………………………………… ……………………….47 2.3.3.1 Protein extraction…………………………………… ……………47 2.3.3.2 Measurement of protein concentrations…………………… …… 48 2.3.3.3 Western blotting………………………………………… ……… 48 2.3.4 Measurement of insulin secretion and content in cell monolayer.…… 50 2.3.5 Measurement of membrane potential………………… ………………51 2.3.6 Measurement of intracellular Ca2+ concentration……………… …….52 2.3.7 Glucose metabolism…………………………………………… …… 52 2.3.7.1 Assessment of glucose metabolism by MTS assay…………… ….52 2.3.7.2 Assessment of glucose metabolism by ATP detection……… … 53 2.3.8 Examination of cell growth and death…………………………… … 53 2.3.9 RT2 profiler PCR array…………………………………… ………….55 2.4 Statistical analysis…………………………………… ………………… 56 CHAPTER RESULTS 3.1 Transplantation of microencapsulated MEPI-1 cells in diabetic mice…… 58 3.1.1 Morphology of microcapsules in vitro and in vivo…………………….58 3.1.2 Glucose-stimulated insulin secretion in encapsulated cells.… ………59 3.1.3 Reversing hyperglycemia in diabetic mice by transplantation of encapsulated MEPI-1 cells…………… ………………………… …….… 61 3.1.3.1 Glucose levels after transplantation of MEPI-1 cells without encapsulation………… …………………………………….…………….61 iv 3.1.3.2 Glycemic changes after transplantation of encapsulated MEPI-1 cells……………………………………………………………………… 62 3.1.3.3 Effects of repeated transplantation of encapsulated MEPI-1 cells 65 3.1.3.4 Glycemic changes after washing out of transplanted microcapsules …………………………………………………………… 66 3.1.4 Properties of MEPI-1 cells in microcapsules…………………….…….67 3.1.4.1 Cell growth rate in vivo…………………………… … ……… 67 3.1.4.2 Cell growth rate in vitro……………… ……………… …………68 3.1.4.3 Correlation of cell growth and glycemic level… ……… …….…69 3.1.4.4 Cell population doubling time…………………… ………………72 3.1.5 Plasma insulin level in capsule-transplanted diabetic mice……… ….74 3.1.6 Oral glucose tolerance test in capsule-transplanted diabetic mice… …75 3.1.7 Histology of microcapsules in vivo and in vitro……………… …… 77 3.1.8 Permeability of microcapsules after transplantation in mice………… 79 3.1.9 Cytokine production in mice implanted with encapsulated MEPI-1 cells………………………………………………………………………… 80 3.2 The roles of MafA in MEPI-1 cells………………… …………………….82 3.2.1 Lower expression level of MafA in MEPI-1 cells………………… …82 3.2.1.1 MafA expression in MEPI-1 cells at mRNA and protein level……82 3.2.1.2 MafA expression in MEPI-1 cells by immunofluorescence staining………………………………………………………………… 85 3.2.2 MafA restoration improves MEPI-1 cell functions……………… … 86 3.2.2.1 MafA restoration increases glucose metabolism……………… ….86 3.2.2.2 MafA restoration enhances the depolarization of membrane potential upon glucose stimulation…… ………………………………………… 87 3.2.2.3 MafA restoration augments [Ca2+]i response…… … 89 3.2.2.4 MafA restoration increases insulin content …90 3.2.2.5 MafA restoration improves glucose-stimulated insulin secretion ….91 3.2.2.6 Effects of MafA restoration on ion fluxes and insulin secretion stimulated by non-nutrient secretagogues……………………….…….……92 3.2.4 MafA restoration enhances the expression profile of -cell specific genes…………………………………………………………………….… 95 3.2.5 MafA restoration reduces cell growth rate…………………………… 98 CHAPTER DISCUSSION 4.1 Transplantation of microencapsulated MEPI-1 cells corrects hyperglycemia in diabetic mice……………………………………………………………….101 4.1.1 Characteristics of alginate microcapsules……….……………….….103 4.1.2 Correction of hyperglycemia by repeated the transplantations for months…………… ……….………………….…………………… 105 4.1.3 Scenarios for hyperglycemia relapse after transplantation……………108 4.1.3.1 The optimal site for transplantation……… ……………… ……109 4.1.3.2 The permeability of transplanted microcapsule……………… 110 4.1.3.3 The immune reaction after microcapsule transplantation ………111 4.1.3.4 Behaviors of microencapsulated MEPI-1 cells.…………….……112 4.1.4 Immaturity of encapsulated MEPI-1 cells…….……………………113 4.1.5 Summary of transplantation of microencapsulated MEPI-1 cells…….116 4.2 Restoration of MafA in MEPI-1 cells………………….……….……… 116 4.2.1 Less-physical characteristics of MEPI-1 cells…………….…………117 4.2.2 MafA up-regulation improves GSIS and related signaling events in v MEPI-1 cells…………………………………….…………………….….…118 4.2.3 The role of MafA in cAMP-involved pathway in MEPI-1 cells…… 123 4.2.4 MafA restoration reduces proliferation of MEPI-1cells………… … 123 4.2.5 MafA up-regulation promotes gene expression profile in MEPI-1 cells…………………………………………………………………….……124 4.2.6 Summary of studies of MafA in MEPI-1 cells…….……………….…128 4.3 Conclusions……………………………………………………………….129 4.4 Future work…………………………………………………… …… …130 REFERENCE LIST……………………………… …………… …… …132 vi SUMMARY The application of islet transplantation to cure type diabetics is impeded by shortage of cadaveric pancreata and requirement of life-long immunosuppression In this thesis study, expandable insulin-producing MEPI-1 cells derived from mouse embryonic progenitor were immuno-isolated by microencapsulation After peritoneal transplantation of encapsulated MEPI-1 cells in streptozotocin-induced diabetic mice, normoglycemia or moderate hypoglycemia was achieved for 2.5 months before a relapse of hyperglycemia Importantly, a second transplantation in relapsed mice was as effective in correcting hyperglycemia as in the first one The relapse could be due to necrosis resulting from a slow increase of cell mass by proliferation To improve MEPI-1 cell maturation toward mature primary -cells, the level of MafA, a key transcription factor for promoting -cell maturation but expressed low in MEPI-1 cells, was restored by infection of lentivirus expressing MafA MafA-restored MEPI-1 cells up-regulated expression of genes for many molecules important for -cell function, slowed cell proliferation, enhanced insulin content, lowered basal insulin release but markedly improved glucose-induced insulin secretion These data demonstrated a promising way for the treatment of type diabetics using embryonic stem cells as the -cell source while preventing immunosuppression via immune-isolation of cells vii TABLES AND FIGURES Fig I Schematic diagram of insulin synthesis and release in -cells………… …5 Fig II Scheme of glucose-stimulated insulin release from -cells……………….…7 Fig III Key transcription factors involved in insulin gene transcription………… 24 Fig IV Genes regulated by MafA…………………………………………………24 Fig V Procedure and setup for microencapsulation of cells……………………….35 Fig VI The main implantation sites employed in cell encapsulation technology.110 Table Materials and sources 30 Table Program of Hotstar Hifidelity PCR………………………………………42 Table Programs of RT-PCR and real-time PCR…………………………………46 Table Primers used for SYBR Green based real-time PCR…………………… 46 Table Gel compositions for SDS-PAGE……………………………… ……….50 Table Conditions of critical factors in Western blotting …………………………50 Table Program of RT2 reaction………………………………………………….56 Table Cytokines in peritoneal fluid after transplantation of encapsulated MEPI-1 cells…………………………………………………………………………………81 Fig Barium alginate-made capsules both in vitro and in vivo.…………… .59 Fig Insulin secretion from encapsulated MEPI-1 cells………………………….60 Fig Reversing hyperglycemia in STZ-induced immune-competent diabetic mice by transplantation (Tx) of MEPI-1 cells without encapsulation………………… 62 Fig Reversing hyperglycemia in STZ-induced immune-competent diabetic mice by transplantation (Tx) of encapsulated MEPI-1 cells…………………………… 64 Fig Reversing hyperglycemia in STZ-induced immune-competent diabetic mice by repeated transplantations of encapsulated MEPI-1 cells……………………… 65 Fig Transplantation and wash-out of encapsulated MEPI-1 cells in STZ-induced immune-competent diabetic mice… ………………………………66 Fig Growth of encapsulated MEPI-1 cells after transplantation in STZ-treated diabetic mice……………………………………… ………………………………68 Fig Growth of encapsulated MEPI-1 cells after culture in vitro …………… 69 Fig The relationship of growth of encapsulated MEPI-1 cells and glycemic levels after transplantation in STZ-treated mice…… ……………………………71 Fig 10 Cell population doubling time in capsules………………… ……………73 Fig 11 Plasma insulin in mice at different intervals after transplantation of encapsulated MEPI-1 cells…………………………………………………………74 Fig 12 OGTT in mice at different intervals after transplantation of encapsulated MEPI-1 cells……………………………………………………………………… 76 Fig 13 Histology of encapsulated MEPI-1 cells in vivo and in vitro… …………78 Fig 14 DAPI staining and permeability of washed-out capsules…………………79 Fig 15 MafA expression in MEPI-1 cells at mRNA and protein levels……… 84 Fig 16 Assessment of MafA expression level by immunofluorescence staining 85 Fig 17 Glucose metabolism in MafA-upregulated MEPI-1 cells…………………87 Fig 18 Membrane potential in pLenti-DEST and pLenti-MafA MEPI-1 cells… 88 Fig 19 Responses of [Ca2+]i in pLenti-DEST and pLenti-MafA MEPI-1 cells… 89 Fig 20 Insulin content in pLenti-MafA and pLenti-MafA-m1 MEPI-1 cells…… 90 Fig 21 Glucose-stimulated insulin secretion in MafA-upregulated MEPI-1 cells.92 Fig 22 Membrane potential, [Ca2+]i and insulin secretion in MafA-restored MEPI-1 cells……………………………………………………………………… 94 viii Chapter Discussion 4.4 Future work To date, the reported substitute insulin-producing cells from stem cells failed to fulfil the criteria for replacement therapy of type diabetes In our lab, a dozen of new surrogate -cell lines have been generated One part of my work has been focusing on the assessment of the in vivo function of one such insulin-producing cell line, MEPI-1, in immune competent diabetic mice Another part of my work aimed to improve these cells by up-regulation of a key transcription factor important for -cell maturation and function The issues remained to be further investigated are listed below: Microcapsule is a useful tool which could prevent host immune rejection; nevertheless, the non-biocompatibility of the materials could still stimulate fibrotic growth More biocompatible materials are necessary to be tested or developed to decrease the non-specific inflammation and facilitate the supply of nutrients and oxygen to the cells in capsules Because of immaturity, encapsulated MEPI-1 cells caused hypoglycaemia after transplantation and the relapse of hyperglycemia could not be circumvented MafA up-regulation of MEPI-1 cells could decrease proliferation and improve GSIS in the in vitro studies It would be interesting to transplant MafA-restored MEPI-1 cells in diabetic animals to see if these more mature cells would also exhibit improved function in vivo, i.e less hypoglycemia and longer correction of hyperglycemia MafA-upregulated MEPI-1 cells displayed reduced proliferation rate but the underlying mechanism is unclear Thus the possible effects on the regulators involved in the control of cell cycle need to be investigated In particular, the 130 Chapter Discussion expression level of p27, an inhibitor of CDKs which was recently found to be affected by MafA in -cells (169), should be examined My data show that MafA could regulate the expression of Cbl, Frap 1, CEBP- , Fos and Klf 10 However, it remains unclear whether these genes are involved in improving -cell function Thus it would be interesting to identify the possible relationship of these genes with the GSIS related genes and with -cell maturation 131 References References Zimmet P, Alberti KG, Shaw J 2001 Global and societal implications of the diabetes epidemic Nature 414:782-787 Meetoo D, McGovern P, Safadi R 2007 An epidemiological overview of diabetes across the world Br J Nurs 16:1002-1007 DeFronzo RA 2010 Current issues in the treatment of type diabetes Overview of newer agents: where treatment is going Am J Med 123:S38-S48 Vijan S 2010 Type diabetes Ann Intern Med 152:ITC31-15 Martin BC, Warram JH, Krolewski AS, Bergman RN, Soeldner JS, Kahn CR 1992 Role of glucose and insulin resistance in development of type diabetes mellitus: results of a 25-year follow-up study Lancet 340:925-929 Weyer C, Bogardus C, Mott DM, Pratley RE 1999 The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type diabetes mellitus J Clin Invest 104:787-794 Gero L 2010 [Type diabetes mellitus: pathogenesis, symptoms and therapy] Orv Hetil 151:533-539 Brissova M, Fowler MJ, Nicholson WE, Chu A, Hirshberg B, Harlan DM, Powers AC 2005 Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy J Histochem Cytochem 53:1087-1097 Cabrera O, Berman DM, Kenyon NS, Ricordi C, Berggren PO, Caicedo A 2006 The unique cytoarchitecture of human pancreatic islets has implications for islet cell function Proc Natl Acad Sci U S A 103:2334-2339 10 Hou JC, Min L, Pessin JE 2009 Insulin granule biogenesis, trafficking and exocytosis Vitam Horm 80:473-506 11 Hills CE, Brunskill NJ 2009 Cellular and physiological effects of C-peptide Clin Sci (Lond) 116:565-574 12 Ido Y, Vindigni A, Chang K, Stramm L, Chance R, Heath WF, DiMarchi RD, Di Cera E, Williamson JR 1997 Prevention of vascular and neural dysfunction in diabetic rats by C-peptide Science 277:563-566 13 Moore CX, Cooper GJ 1991 Co-secretion of amylin and insulin from cultured islet beta-cells: modulation by nutrient secretagogues, islet hormones and hypoglycemic agents Biochem Biophys Res Commun 179:1-9 14 Matschinsky FM 1996 Banting Lecture 1995 A lesson in metabolic regulation inspired by the glucokinase glucose sensor paradigm Diabetes 45:223-241 132 References 15 Matschinsky FM, Glaser B, Magnuson MA 1998 Pancreatic beta-cell glucokinase: closing the gap between theoretical concepts and experimental realities Diabetes 47:307-315 16 Efrat S 1997 Making sense of glucose sensing Nat Genet 17:249-250 17 Jensen MV, Joseph JW, Ronnebaum SM, Burgess SC, Sherry AD, Newgard CB 2008 Metabolic cycling in control of glucose-stimulated insulin secretion Am J Physiol Endocrinol Metab 295:E1287-E1297 18 Sivaprasadarao A, Taneja TK, Mankouri J, Smith AJ 2007 Trafficking of ATP-sensitive potassium channels in health and disease Biochem Soc Trans 35:1055-1059 19 Rorsman P, Renstrom E 2003 Insulin granule dynamics in pancreatic beta cells Diabetologia 46:1029-1045 20 Henquin JC 2000 Triggering and amplify pathways of regulation of insulin secretion by glucose Diabetes 49:1751-1760 21 Hedeskov CJ 1980 Mechanism of glucose-induced insulin secretion Physiol Rev 60:442-509 22 Zawalich WS, Yamazaki H, Zawalich KC, Cline G 2004 Comparative effects of amino acids and glucose on insulin secretion from isolated rat or mouse islets J Endocrinol 183:309-319 23 Rutter GA 2001 Nutrient-secretion coupling in the pancreatic islet beta-cell: recent advances Mol Aspects Med 22:247-284 24 Eliasson L, Renstrom E, Ammala C, Berggren PO, Bertorello AM, Bokvist K, Chibalin A, Deeney JT, Flatt PR, Gabel J, Gromada J, Larsson O, Lindstrom P, Rhodes CJ, Rorsman P 1996 PKC-dependent stimulation of exocytosis by sulfonylureas in pancreatic beta cells Science 271:813-815 25 Creutzfeldt W 2005 The [pre-] history of the incretin concept Regul Pept 128:87-91 26 Brown JC, Mutt V, Pederson RA 1970 Further purification of a polypeptide demonstrating enterogastrone activity J Physiol 209:57-64 27 Dupre J, Ross SA, Watson D, Brown JC 1973 Stimulation of insulin secretion by gastric inhibitory polypeptide in man J Clin Endocrinol Metab 37:826-828 28 Holst JJ 2010 Glucagon and glucagon-like peptides and Results Probl Cell Differ 50:121-135 29 Vaidya HB, Goyal RK 2008 Glucagon like peptides-1 modulators as newer target for diabetes Curr Drug Targets 9:911-920 133 References 30 Brubaker PL, Drucker DJ 2004 Minireview: Glucagon-like peptides regulate cell proliferation and apoptosis in the pancreas, gut, and central nervous system Endocrinology 145:2653-2659 31 Lovshin J, Drucker DJ 2000 Synthesis, secretion and biological actions of the glucagon-like peptides Pediatr Diabetes 1:49-57 32 Nauck MA, Homberger E, Siegel EG, Allen RC, Eaton RP, Ebert R, Creutzfeldt W 1986 Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses J Clin Endocrinol Metab 63:492-498 33 Nauck M, Stockmann F, Ebert R, Creutzfeldt W 1986 Reduced incretin effect in type (non-insulin-dependent) diabetes Diabetologia 29:46-52 34 Holst JJ 2007 The physiology of glucagon-like peptide Physiol Rev 87:1409-1439 35 MacDonald PE, El Kholy W, Riedel MJ, Salapatek AM, Light PE, Wheeler MB 2002 The multiple actions of GLP-1 on the process of glucose-stimulated insulin secretion Diabetes 51 Suppl 3:S434-S442 36 Montrose-Rafizadeh C, Yang H, Wang Y, Roth J, Montrose MH, Adams LG 1997 Novel signal transduction and peptide specificity of glucagon-like peptide receptor in 3T3-L1 adipocytes J Cell Physiol 172:275-283 37 Liddle RA, Rushakoff RJ, Morita ET, Beccaria L, Carter JD, Goldfine ID 1988 Physiological role for cholecystokinin in reducing postprandial hyperglycemia in humans J Clin Invest 81:1675-1681 38 Hsu WH, Xiang HD, Rajan AS, Kunze DL, Boyd AE, III 1991 Somatostatin inhibits insulin secretion by a G-protein-mediated decrease in Ca2+ entry through voltage-dependent Ca2+ channels in the beta cell J Biol Chem 266:837-843 39 Kulkarni RN 2004 The islet beta-cell Int J Biochem Cell Biol 36:365-371 40 Ballinger WF, Lacy PE 1972 Transplantation of intact pancreatic islets in rats Surgery 72:175-186 41 Scharp DW, Lacy PE, Santiago JV, McCullough CS, Weide LG, Falqui L, Marchetti P, Gingerich RL, Jaffe AS, Cryer PE, 1990 Insulin independence after islet transplantation into type I diabetic patient Diabetes 39:515-518 42 Alejandro R, Barton FB, Hering BJ, Wease S 2008 2008 Update from the Collaborative Islet Transplant Registry Transplantation 86:1783-1788 43 Close N, Alejandro R, Hering B, Appel M 2007 Second annual analysis of the collaborative islet transplant registry Transplant Proc 39:179-182 44 Ryan EA, Paty BW, Senior PA, Bigam D, Alfadhli E, Kneteman NM, Lakey JR, Shapiro AM 2005 Five-year follow-up after clinical islet transplantation Diabetes 54:2060-2069 134 References 45 Campbell PM, Senior PA, Salam A, Labranche K, Bigam DL, Kneteman NM, Imes S, Halpin A, Ryan EA, Shapiro AM 2007 High risk of sensitization after failed islet transplantation Am J Transplant 7:2311-2317 46 Shapiro AM, Ricordi C, Hering BJ, Auchincloss H, Lindblad R, Robertson RP, Secchi A, Brendel MD, Berney T, Brennan DC, Cagliero E, Alejandro R, Ryan EA, DiMercurio B, Morel P, Polonsky KS, Reems JA, Bretzel RG, Bertuzzi F, Froud T, Kandaswamy R, Sutherland DE, Eisenbarth G, Segal M, Preiksaitis J, Korbutt GS, Barton FB, Viviano L, Seyfert-Margolis V, Bluestone J, Lakey JR 2006 International trial of the Edmonton protocol for islet transplantation N Engl J Med 355:1318-1330 47 Cardona K, Korbutt GS, Milas Z, Lyon J, Cano J, Jiang W, Bello-Laborn H, Hacquoil B, Strobert E, Gangappa S, Weber CJ, Pearson TC, Rajotte RV, Larsen CP 2006 Long-term survival of neonatal porcine islets in nonhuman primates by targeting costimulation pathways Nat Med 12:304-306 48 Rother KI, Harlan DM 2004 Challenges facing islet transplantation for the treatment of type diabetes mellitus J Clin Invest 114:877-883 49 Tseng YL, Kuwaki K, Dor FJ, Shimizu A, Houser S, Hisashi Y, Yamada K, Robson SC, Awwad M, Schuurman HJ, Sachs DH, Cooper DK 2005 alpha1,3-Galactosyltransferase gene-knockout pig heart transplantation in baboons with survival approaching months Transplantation 80:1493-1500 50 Delisle JC, Martignat L, Dubreil L, Sai P, Bach JM, Louzier V, Bosch S 2009 Pdx-1 or Pdx-1-VP16 protein transduction induces beta-cell gene expression in liver-stem WB cells BMC Res Notes 2:3 51 Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA 2008 In vivo reprogramming of adult pancreatic exocrine cells to beta-cells Nature 455:627-632 52 Soria B, Roche E, Berna G, Leon-Quinto T, Reig JA, Martin F 2000 Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice Diabetes 49:157-162 53 Soria B, Skoudy A, Martin F 2001 From stem cells to beta cells: new strategies in cell therapy of diabetes mellitus Diabetologia 44:407-415 54 Mayhew CN, Wells JM 2010 Converting human pluripotent stem cells into beta-cells: recent advances and future challenges Curr Opin Organ Transplant 15:54-60 55 Lester LB, Kuo HC, Andrews L, Nauert B, Wolf DP 2004 Directed differentiation of rhesus monkey ES cells into pancreatic cell phenotypes Reprod Biol Endocrinol 2:42 56 D'Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, Moorman MA, Kroon E, Carpenter MK, Baetge EE 2006 Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells Nat Biotechnol 24:1392-1401 135 References 57 Otonkoski T, Gao R, Lundin K 2005 Stem cells in the treatment of diabetes Ann Med 37:513-520 58 Li G, Luo R, Zhang J, Yeo KS, Xie F, Way Tan EK, Caille D, Que J, Kon OL, Salto-Tellez M, Meda P, Lim SK 2009 Derivation of functional insulin-producing cell lines from primary mouse embryo culture Stem Cell Res 2:29-40 59 Di Gioacchino G, Di Campli C, Zocco MA, Piscaglia AC, Novi M, Santoro M, Santoliquido A, Flore R, Tondi P, Pola P, Gasbarrini G, Gasbarrini A 2005 Transdifferentiation of stem cells in pancreatic cells: state of the art Transplant Proc 37:2662-2663 60 Rossini AA, Mordes JP, Greiner DL, Stoff JS 2001 Islet cell transplantation tolerance Transplantation 72:S43-S46 61 Uludag H, De Vos P, Tresco PA 2000 Technology of mammalian cell encapsulation Adv Drug Deliv Rev 42:29-64 62 de Groot M, Schuurs TA, van Schilfgaarde R 2004 Causes of limited survival of microencapsulated pancreatic islet grafts J Surg Res 121:141-150 63 De Vos P, Van Straaten JF, Nieuwenhuizen AG, de Groot M, Ploeg RJ, De Haan BJ, Van Schilfgaarde R 1999 Why microencapsulated islet grafts fail in the absence of fibrotic overgrowth? Diabetes 48:1381-1388 64 CHANG TM 1964 SEMIPERMEABLE MICROCAPSULES Science 146:524-525 65 Lim F, Sun AM 1980 Microencapsulated islets as bioartificial endocrine pancreas Science 210:908-910 66 Sun AM, O'Shea GM, Goosen MF 1984 Injectable microencapsulated islet cells as a bioartificial pancreas Appl Biochem Biotechnol 10:87-99 67 Calafiore R, Basta G, Luca G, Boselli C, Bufalari A, Bufalari A, Cassarani MP, Giustozzi GM, Brunetti P 1999 Transplantation of pancreatic islets contained in minimal volume microcapsules in diabetic high mammalians Ann N Y Acad Sci 875:219-232 68 Soon-Shiong P, Feldman E, Nelson R, Heintz R, Merideth N, Sandford P, Zheng T, Komtebedde J 1992 Long-term reversal of diabetes in the large animal model by encapsulated islet transplantation Transplant Proc 24:2946-2947 69 Froguel P, Zouali H, Sun F, Velho G, Fukumoto H, Passa P, Cohen D 1991 CA repeat polymorphism in the glucose transporter GLUT gene Nucleic Acids Res 19:3754 70 Kawai S, Mukai T, Mori S, Mikami B, Murata K 2005 Hypothesis: structures, evolution, and ancestor of glucose kinases in the hexokinase family J Biosci Bioeng 99:320-330 136 References 71 Koo BK, Cho YM, Park BL, Cheong HS, Shin HD, Jang HC, Kim SY, Lee HK, Park KS 2007 Polymorphisms of KCNJ11 (Kir6.2 gene) are associated with Type diabetes and hypertension in the Korean population Diabet Med 24:178-186 72 Steiner DF, Oyer PE 1967 THE BIOSYNTHESIS OF INSULIN AND A PROBABLE PRECURSOR OF INSULIN BY A HUMAN ISLET CELL ADENOMA Proc Natl Acad Sci U S A 57:473-480 73 Zhu X, Orci L, Carroll R, Norrbom C, Ravazzola M, Steiner DF 2002 Severe block in processing of proinsulin to insulin accompanied by elevation of des-64,65 proinsulin intermediates in islets of mice lacking prohormone convertase 1/3 Proc Natl Acad Sci U S A 99:10299-10304 74 Kielgast U, Holst JJ, Madsbad S 2009 Treatment of type diabetic patients with glucagon-like peptide-1 (GLP-1) and GLP-1R agonists Curr Diabetes Rev 5:266-275 75 Stoffers DA, Zinkin NT, Stanojevic V, Clarke WL, Habener JF 1997 Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence Nat Genet 15:106-110 76 Sander M, Sussel L, Conners J, Scheel D, Kalamaras J, Dela CF, Schwitzgebel V, Hayes-Jordan A, German M 2000 Homeobox gene Nkx6.1 lies downstream of Nkx2.2 in the major pathway of beta-cell formation in the pancreas Development 127:5533-5540 77 Schisler JC, Fueger PT, Babu DA, Hohmeier HE, Tessem JS, Lu D, Becker TC, Naziruddin B, Levy M, Mirmira RG, Newgard CB 2008 Stimulation of human and rat islet beta-cell proliferation with retention of function by the homeodomain transcription factor Nkx6.1 Mol Cell Biol 28:3465-3476 78 Biggs WH, III, Meisenhelder J, Hunter T, Cavenee WK, Arden KC 1999 Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1 Proc Natl Acad Sci U S A 96:7421-7426 79 Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME 1999 Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor Cell 96:857-868 80 Kitamura T, Nakae J, Kitamura Y, Kido Y, Biggs WH, III, Wright CV, White MF, Arden KC, Accili D 2002 The forkhead transcription factor Foxo1 links insulin signaling to Pdx1 regulation of pancreatic beta cell growth J Clin Invest 110:1839-1847 81 Tang ED, Nunez G, Barr FG, Guan KL 1999 Negative regulation of the forkhead transcription factor FKHR by Akt J Biol Chem 274:16741-16746 82 Matsuoka TA, Zhao L, Artner I, Jarrett HW, Friedman D, Means A, Stein R 2003 Members of the large Maf transcription family regulate insulin gene transcription in islet beta cells Mol Cell Biol 23:6049-6062 137 References 83 Olbrot M, Rud J, Moss LG, Sharma A 2002 Identification of beta-cell-specific insulin gene transcription factor RIPE3b1 as mammalian MafA Proc Natl Acad Sci U S A 99:6737-6742 84 Nishizawa M, Kataoka K, Goto N, Fujiwara KT, Kawai S 1989 v-maf, a viral oncogene that encodes a "leucine zipper" motif Proc Natl Acad Sci U S A 86:7711-7715 85 Fujiwara KT, Kataoka K, Nishizawa M 1993 Two new members of the maf oncogene family, mafK and mafF, encode nuclear b-Zip proteins lacking putative trans-activator domain Oncogene 8:2371-2380 86 Kataoka K, Igarashi K, Itoh K, Fujiwara KT, Noda M, Yamamoto M, Nishizawa M 1995 Small Maf proteins heterodimerize with Fos and may act as competitive repressors of the NF-E2 transcription factor Mol Cell Biol 15:2180-2190 87 Motohashi H, Shavit JA, Igarashi K, Yamamoto M, Engel JD 1997 The world according to Maf Nucleic Acids Res 25:2953-2959 88 Igarashi K, Itoh K, Motohashi H, Hayashi N, Matuzaki Y, Nakauchi H, Nishizawa M, Yamamoto M 1995 Activity and expression of murine small Maf family protein MafK J Biol Chem 270:7615-7624 89 Motohashi H, Katsuoka F, Shavit JA, Engel JD, Yamamoto M 2000 Positive or negative MARE-dependent transcriptional regulation is determined by the abundance of small Maf proteins Cell 103:865-875 90 Nguyen T, Huang HC, Pickett CB 2000 Transcriptional regulation of the antioxidant response element Activation by Nrf2 and repression by MafK J Biol Chem 275:15466-15473 91 Kataoka K, Noda M, Nishizawa M 1996 Transactivation activity of Maf nuclear oncoprotein is modulated by Jun, Fos and small Maf proteins Oncogene 12:53-62 92 Kataoka K, Fujiwara KT, Noda M, Nishizawa M 1994 MafB, a new Maf family transcription activator that can associate with Maf and Fos but not with Jun Mol Cell Biol 14:7581-7591 93 Kataoka K, Shioda S, Ando K, Sakagami K, Handa H, Yasuda K 2004 Differentially expressed Maf family transcription factors, c-Maf and MafA, activate glucagon and insulin gene expression in pancreatic islet alpha- and beta-cells J Mol Endocrinol 32:9-20 94 Artner I, Le Lay J, Hang Y, Elghazi L, Schisler JC, Henderson E, Sosa-Pineda B, Stein R 2006 MafB: an activator of the glucagon gene expressed in developing islet alpha- and beta-cells Diabetes 55:297-304 95 Tsuchiya M, Taniguchi S, Yasuda K, Nitta K, Maeda A, Shigemoto M, Tsuchiya K 2006 Potential roles of large mafs in cell lineages and developing pancreas Pancreas 32:408-416 138 References 96 Kataoka K, Han SI, Shioda S, Hirai M, Nishizawa M, Handa H 2002 MafA is a glucose-regulated and pancreatic beta-cell-specific transcriptional activator for the insulin gene J Biol Chem 277:49903-49910 97 Karlsson O, Edlund T, Moss JB, Rutter WJ, Walker MD 1987 A mutational analysis of the insulin gene transcription control region: expression in beta cells is dependent on two related sequences within the enhancer Proc Natl Acad Sci U S A 84:8819-8823 98 Shieh SY, Tsai MJ 1991 Cell-specific and ubiquitous factors are responsible for the enhancer activity of the rat insulin II gene J Biol Chem 266:16708-16714 99 Whelan J, Poon D, Weil PA, Stein R 1989 Pancreatic beta-cell-type-specific expression of the rat insulin II gene is controlled by positive and negative cellular transcriptional elements Mol Cell Biol 9:3253-3259 100 Crowe DT, Tsai MJ 1989 Mutagenesis of the rat insulin II 5'-flanking region defines sequences important for expression in HIT cells Mol Cell Biol 9:1784-1789 101 Naya FJ, Stellrecht CM, Tsai MJ 1995 Tissue-specific regulation of the insulin gene by a novel basic helix-loop-helix transcription factor Genes Dev 9:1009-1019 102 Naya FJ, Huang HP, Qiu Y, Mutoh H, DeMayo FJ, Leiter AB, Tsai MJ 1997 Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/neuroD-deficient mice Genes Dev 11:2323-2334 103 Ohlsson H, Karlsson K, Edlund T 1993 IPF1, a homeodomain-containing transactivator of the insulin gene EMBO J 12:4251-4259 104 Petersen HV, Serup P, Leonard J, Michelsen BK, Madsen OD 1994 Transcriptional regulation of the human insulin gene is dependent on the homeodomain protein STF1/IPF1 acting through the CT boxes Proc Natl Acad Sci U S A 91:10465-10469 105 Ahlgren U, Jonsson J, Jonsson L, Simu K, Edlund H 1998 beta-cell-specific inactivation of the mouse Ipf1/Pdx1 gene results in loss of the beta-cell phenotype and maturity onset diabetes Genes Dev 12:1763-1768 106 Matsuoka TA, Artner I, Henderson E, Means A, Sander M, Stein R 2004 The MafA transcription factor appears to be responsible for tissue-specific expression of insulin Proc Natl Acad Sci U S A 101:2930-2933 107 Aramata S, Han SI, Yasuda K, Kataoka K 2005 Synergistic activation of the insulin gene promoter by the beta-cell enriched transcription factors MafA, Beta2, and Pdx1 Biochim Biophys Acta 1730:41-46 108 Kaneto H, Matsuoka TA, Nakatani Y, Miyatsuka T, Matsuhisa M, Hori M, Yamasaki Y 2005 A crucial role of MafA as a novel therapeutic target for diabetes J Biol Chem 280:15047-15052 139 References 109 Kaneto H, Matsuoka TA, Kawashima S, Yamamoto K, Kato K, Miyatsuka T, Katakami N, Matsuhisa M 2009 Role of MafA in pancreatic beta-cells Adv Drug Deliv Rev 61:489-496 110 Wang H, Maechler P, Ritz-Laser B, Hagenfeldt KA, Ishihara H, Philippe J, Wollheim CB 2001 Pdx1 level defines pancreatic gene expression pattern and cell lineage differentiation J Biol Chem 276:25279-25286 111 Wang H, Brun T, Kataoka K, Sharma AJ, Wollheim CB 2007 MAFA controls genes implicated in insulin biosynthesis and secretion Diabetologia 50:348-358 112 Wang H, Maechler P, Hagenfeldt KA, Wollheim CB 1998 Dominant-negative suppression of HNF-1alpha function results in defective insulin gene transcription and impaired metabolism-secretion coupling in a pancreatic beta-cell line EMBO J 17:6701-6713 113 Zhang C, Moriguchi T, Kajihara M, Esaki R, Harada A, Shimohata H, Oishi H, Hamada M, Morito N, Hasegawa K, Kudo T, Engel JD, Yamamoto M, Takahashi S 2005 MafA is a key regulator of glucose-stimulated insulin secretion Mol Cell Biol 25:4969-4976 114 Kitamura YI, Kitamura T, Kruse JP, Raum JC, Stein R, Gu W, Accili D 2005 FoxO1 protects against pancreatic beta cell failure through NeuroD and MafA induction Cell Metab 2:153-163 115 Ueki K, Okada T, Hu J, Liew CW, Assmann A, Dahlgren GM, Peters JL, Shackman JG, Zhang M, Artner I, Satin LS, Stein R, Holzenberger M, Kennedy RT, Kahn CR, Kulkarni RN 2006 Total insulin and IGF-I resistance in pancreatic beta cells causes overt diabetes Nat Genet 38:583-588 116 Kajihara M, Sone H, Amemiya M, Katoh Y, Isogai M, Shimano H, Yamada N, Takahashi S 2003 Mouse MafA, homologue of zebrafish somite Maf 1, contributes to the specific transcriptional activity through the insulin promoter Biochem Biophys Res Commun 312:831-842 117 Zhao L, Guo M, Matsuoka TA, Hagman DK, Parazzoli SD, Poitout V, Stein R 2005 The islet beta cell-enriched MafA activator is a key regulator of insulin gene transcription J Biol Chem 280:11887-11894 118 Hagman DK, Hays LB, Parazzoli SD, Poitout V 2005 Palmitate inhibits insulin gene expression by altering PDX-1 nuclear localization and reducing MafA expression in isolated rat islets of Langerhans J Biol Chem 280:32413-32418 119 Oetjen E, Blume R, Cierny I, Schlag C, Kutschenko A, Kratzner R, Stein R, Knepel W 2007 Inhibition of MafA transcriptional activity and human insulin gene transcription by interleukin-1beta and mitogen-activated protein kinase kinase kinase in pancreatic islet beta cells Diabetologia 50:1678-1687 120 Rocques N, Abou ZN, Sii-Felice K, Lecoin L, Felder-Schmittbuhl MP, Eychene A, Pouponnot C 2007 GSK-3-mediated phosphorylation enhances Maf-transforming activity Mol Cell 28:584-597 140 References 121 Li J, Luo R, Kowluru A, Li G 2004 Novel regulation by Rac1 of glucose- and forskolin-induced insulin secretion in INS-1 beta-cells Am J Physiol Endocrinol Metab 286:E818-E827 122 Asfari M, Janjic D, Meda P, Li G, Halban PA, Wollheim CB 1992 Establishment of 2-mercaptoethanol-dependent differentiated insulin-secreting cell lines Endocrinology 130:167-178 123 Fujikawa T, Oh SH, Pi L, Hatch HM, Shupe T, Petersen BE 2005 Teratoma formation leads to failure of treatment for type I diabetes using embryonic stem cell-derived insulin-producing cells Am J Pathol 166:1781-1791 124 Li GD, Luo RH, Metz SA 2000 Effects of inhibitors of guanine nucleotide synthesis on membrane potential and cytosolic free Ca2+ levels in insulin-secreting cells Biochem Pharmacol 59:545-556 125 Huo J, Luo RH, Metz SA, Li G 2002 Activation of caspase-2 mediates the apoptosis induced by GTP-depletion in insulin-secreting (HIT-T15) cells Endocrinology 143:1695-1704 126 Kizilel S, Garfinkel M, Opara E 2005 The bioartificial pancreas: progress and challenges Diabetes Technol Ther 7:968-985 127 Mikos AG, Papadaki MG, Kouvroukoglou S, Ishaug SL, Thomson RC 1994 Mini-review: Islet transplantation to create a bioartificial pancreas Biotechnol Bioeng 43:673-677 128 Efrat S 2002 Cell replacement therapy for type diabetes Trends Mol Med 8:334-339 129 Li G, Luo R, Zhang J, Yeo KS, Lian Q, Xie F, Tan EK, Caille D, Kon OL, Salto-Tellez M, Meda P, Lim SK 2009 Generating mESC-derived insulin-producing cell lines through an intermediate lineage-restricted progenitor line Stem Cell Res 2:41-55 130 Chen TS, Tan SS, Yeo RW, Teh BJ, Luo R, Li G, Lim SK 2010 Delineating Biological Pathways Unique to Embryonic Stem Cell-Derived Insulin-Producing Cell Lines from Their Noninsulin-Producing Progenitor Cell Lines Endocrinology 131 Strand BL, Ryan TL, In't VP, Kulseng B, Rokstad AM, Skjak-Brek G, Espevik T 2001 Poly-L-Lysine induces fibrosis on alginate microcapsules via the induction of cytokines Cell Transplant 10:263-275 132 Lin H, Cai X 2006 [The advance and limitation of microencapsulated grafts transplantation] Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 23:678-683 133 Barrientos R, Baltrusch S, Sigrist S, Legeay G, Belcourt A, Lenzen S 2009 Kinetics of insulin secretion from MIN6 pseudoislets after encapsulation in a prototype device of a bioartificial pancreas Horm Metab Res 41:5-9 141 References 134 Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL, Kneteman NM, Rajotte RV 2000 Islet transplantation in seven patients with type diabetes mellitus using a glucocorticoid-free immunosuppressive regimen N Engl J Med 343:230-238 135 Ricordi C 2003 Islet transplantation: a brave new world Diabetes 52:1595-1603 136 Schneider BL, Aebischer P 2003 Cellular implants: pioneers in xenotransplantation? Xenotransplantation 10:96-97 137 Wang T, Adcock J, Kuhtreiber W, Qiang D, Salleng KJ, Trenary I, Williams P 2008 Successful allotransplantation of encapsulated islets in pancreatectomized canines for diabetic management without the use of immunosuppression Transplantation 85:331-337 138 Teramura Y, Iwata H 2010 Bioartificial pancreas microencapsulation and conformal coating of islet of Langerhans Adv Drug Deliv Rev 62:827-840 139 Okugawa K, Fukuda Y, Sakimoto H, Nishihara M, Tashiro H, Urushihara T, Ikeda M, Iwata H, Dohi K 1996 Intermittent intraperitoneal implantation of islets in rat islet transplantation Cell Transplant 5:S51-S53 140 Avgoustiniatos ES, Colton CK 1997 Effect of external oxygen mass transfer resistances on viability of immunoisolated tissue Ann N Y Acad Sci 831:145-167 141 Dufrane D, Steenberghe M, Goebbels RM, Saliez A, Guiot Y, Gianello P 2006 The influence of implantation site on the biocompatibility and survival of alginate encapsulated pig islets in rats Biomaterials 27:3201-3208 142 Thanos CG, Bintz BE, Emerich DF 2007 Stability of alginate-polyornithine microcapsules is profoundly dependent on the site of transplantation J Biomed Mater Res A 81:1-11 143 Gardemann A, Jungermann K, Grosse V, Cossel L, Wohlrab F, Hahn HJ, Blech W, Hildebrandt W 1995 Reinnervation of pancreatic islets and regulation of insulin secretion by hepatic sympathetic nerves after intraportal transplantation of islets into livers of diabetic rats Exp Clin Endocrinol Diabetes 103 Suppl 2:107-111 144 de Vos P, Hamel AF, Tatarkiewicz K 2002 Considerations for successful transplantation of encapsulated pancreatic islets Diabetologia 45:159-173 145 Calafiore R, Basta G, Luca G, Boselli C, Bufalari A, Giustozzi GM, Moggi L, Brunetti P 1997 Alginate/polyaminoacidic coherent microcapsules for pancreatic islet graft immunoisolation in diabetic recipients Ann N Y Acad Sci 831:313-322 146 Siebers U, Horcher A, Bretzel RG, Federlin K, Zekorn T 1997 Alginate-based microcapsules for immunoprotected islet transplantation Ann N Y Acad Sci 831:304-312 142 References 147 de Groot M, Schuurs TA, Leuvenink HG, van Schilfgaarde R 2003 Macrophage overgrowth affects neighboring nonovergrown encapsulated islets J Surg Res 115:235-241 148 Siebers U, Horcher A, Brandhorst H, Brandhorst D, Hering B, Federlin K, Bretzel RG, Zekorn T 1999 Analysis of the cellular reaction towards microencapsulated xenogeneic islets after intraperitoneal transplantation J Mol Med 77:215-218 149 Gray DW 2001 An overview of the immune system with specific reference to membrane encapsulation and islet transplantation Ann N Y Acad Sci 944:226-239 150 de Vos P, Spasojevic M, Faas MM 2010 Treatment of diabetes with encapsulated islets Adv Exp Med Biol 670:38-53 151 Caton D, Calabrese A, Mas C, Serre-Beinier V, Charollais A, Caille D, Zufferey R, Trono D, Meda P 2003 Lentivirus-mediated transduction of connexin cDNAs shows level- and isoform-specific alterations in insulin secretion of primary pancreatic beta-cells J Cell Sci 116:2285-2294 152 Aguayo-Mazzucato C, Sanchez-Soto C, Godinez-Puig V, Gutierrez-Ospina G, Hiriart M 2006 Restructuring of pancreatic islets and insulin secretion in a postnatal critical window PLoS ONE 1:e35 153 Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, Young H, Richardson M, Smart NG, Cunningham J, Agulnick AD, D'Amour KA, Carpenter MK, Baetge EE 2008 Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo Nat Biotechnol 26:443-452 154 Traub LM, Kornfeld S 1997 The trans-Golgi network: a late secretory sorting station Curr Opin Cell Biol 9:527-533 155 Arvan P, Castle D 1998 Sorting and storage during secretory granule biogenesis: looking backward and looking forward Biochem J 332 ( Pt 3):593-610 156 Arvan P, Castle D 1992 Protein sorting and secretion granule formation in regulated secretory cells Trends Cell Biol 2:327-331 157 Doniach D, Bottazzo GF, Cudworth AG 1983 Etiology of Type I diabetes mellitus: heterogeneity and immunological events leading to clinical onset Annu Rev Med 34:13-20 158 Horwitz DL, Rubenstein AH 1979 Evaluation of insulin secretory capacity in diabetes mellitus Hum Pathol 10:257-266 159 McEwan DG, Brunton VG, Baillie GS, Leslie NR, Houslay MD, Frame MC 2007 Chemoresistant KM12C colon cancer cells are addicted to low cyclic AMP levels in a phosphodiesterase 4-regulated compartment via effects on phosphoinositide 3-kinase Cancer Res 67:5248-5257 143 References 160 Rudnick A, Ling TY, Odagiri H, Rutter WJ, German MS 1994 Pancreatic beta cells express a diverse set of homeobox genes Proc Natl Acad Sci U S A 91:12203-12207 161 Yokoi N 2005 Identification of a major gene responsible for type diabetes in the Komeda diabetes-prone rat Exp Anim 54:111-115 162 Molero JC, Waring SG, Cooper A, Turner N, Laybutt R, Cooney GJ, James DE 2006 Casitas b-lineage lymphoma-deficient mice are protected against high-fat diet-induced obesity and insulin resistance Diabetes 55:708-715 163 Leibowitz G, Cerasi E, Ketzinel-Gilad M 2008 The role of mTOR in the adaptation and failure of beta-cells in type diabetes Diabetes Obes Metab 10 Suppl 4:157-169 164 Mori H, Inoki K, Masutani K, Wakabayashi Y, Komai K, Nakagawa R, Guan KL, Yoshimura A 2009 The mTOR pathway is highly activated in diabetic nephropathy and rapamycin has a strong therapeutic potential Biochem Biophys Res Commun 384:471-475 165 Shields JM, Yang VW 1998 Identification of the DNA sequence that interacts with the gut-enriched Kruppel-like factor Nucleic Acids Res 26:796-802 166 Neve B, Fernandez-Zapico ME, Ashkenazi-Katalan V, Dina C, Hamid YH, Joly E, Vaillant E, Benmezroua Y, Durand E, Bakaher N, Delannoy V, Vaxillaire M, Cook T, Dallinga-Thie GM, Jansen H, Charles MA, Clement K, Galan P, Hercberg S, Helbecque N, Charpentier G, Prentki M, Hansen T, Pedersen O, Urrutia R, Melloul D, Froguel P 2005 Role of transcription factor KLF11 and its diabetes-associated gene variants in pancreatic beta cell function Proc Natl Acad Sci U S A 102:4807-4812 167 Murphy LC, Alkhalaf M, Dotzlaw H, Coutts A, Haddad-Alkhalaf B 1994 Regulation of gene expression in T-47D human breast cancer cells by progestins and antiprogestins Hum Reprod Suppl 1:174-180 168 Pompeiano M, Cirelli C, Arrighi P, Tononi G 1995 c-Fos expression during wakefulness and sleep Neurophysiol Clin 25:329-341 169 Nishimura W, Bonner-Weir S, Sharma A 2009 Expression of MafA in pancreatic progenitors is detrimental for pancreatic development Dev Biol 333:108-120 144 ... microcapsule transplantation ……? ?11 1 4 .1. 3.4 Behaviors of microencapsulated MEPI -1 cells. …………….…? ?11 2 4 .1. 4 Immaturity of encapsulated MEPI -1 cells? ??….…………………? ?11 3 4 .1. 5 Summary of transplantation of microencapsulated... diabetes? ??………………….……………9 1. 2 .1 Human islet transplantation for type diabetes mellitus…………… …9 1. 2.2 Substitute -cell therapy for type diabetes mellitus………………… .11 1. 2.3 Characteristics of mouse embryo progenitor derived. . .TRANSPLANTATION AND IMPROVEMENT OF MOUSE EMBRYO PROGENITOR- DERIVED INSULIN- PRODUCING CELLS FOR TYPE DIABETES THERAPY SHAO SHIYING (M.Sc., TONGJI University) A THESIS SUBMITTED FOR THE

Ngày đăng: 11/09/2015, 09:58

TỪ KHÓA LIÊN QUAN