Differentiation and derivation of lineage committed chondroprogenitors and chondrogenic cells from human embryonic stem cells for cartilage tissue engineering and regeneration
Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 190 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
190
Dung lượng
4,98 MB
Nội dung
DIFFERENTIATION AND DERIVATION OF LINEAGECOMMITTED CHONDROPROGENITORS AND CHONDROGENIC CELLS FROM HUMAN EMBRYONIC STEM CELLS FOR CARTILAGE TISSUE ENGINEERING AND REGENERATION TOH WEI SEONG (M Sc National University of Singapore, Singapore) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF ORAL AND MAXILLOFACIAL SURGERY NATIONAL UNIVERSITY OF SINGAPORE 2010 ACKNOWLEDGEMENTS I am most grateful to my supervisors: Associate Professor Cao Tong, Vice-Dean (Research), Department of Oral & Maxillofacial Surgery, Faculty of Dentistry, National University of Singapore, and Professor Lee Eng Hin, Director of Graduate Medical Studies, Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore for their countless encouragement, guidance, assistance and patience during my PhD program I would also like to express my heartfelt gratitude to Dr Andre Choo, Senior Research Scientist, Stem Cell Group, Bioprocessing Technology Institute, A*STAR, for his guidance and critical discussion of my work, as well as Dr Guo Xi-min, Research Scientist, Department of Tissue Engineering & Regenerative Medicine, Beijing Institute of Basic Medical Sciences for his help in animal transplantation studies Last but not least, I would also like to express my sincere thanks to Assistant Professor Jerry Chan, Experimental Fetal Medicine Group, Yong Loo Lin School of Medicine, National University of Singapore, for his advice on human chimerism studies and assistance in manuscript preparation Thanks to all my trusted colleagues in Stem Cell Lab, Department of Oral & Maxillofacial Surgery- Liu Hua, Fu Xin, Lu Kai, Li Mingming and Vinoth Kumar S/O Jayaseelan for their support and endless concern throughout the course of my work Not forgetting to mention my colleagues and friends in NUS Tissue Engineering Program- Hossein Nejadnik, Yeow Chen Hua, See Kwee Hua, Angela Tan Hwee San, i Afizah Hassan and Julee Chan Without them, my research would not have been so enjoyable Last but not least, I am grateful to my families, my parents and parent-in-laws, my wife Saw Tzuen Yih for their understanding, patience and great support during the years of my PhD pursuit ii TABLE OF CONTENTS ACKNOWLEDGEMENTS……………………………………………………… i TABLE OF CONTENTS………………………………………………… iii SUMMARY……………………………………………………………………… xi LIST OF TABLES…………………………………………………………………xiv LIST OF FIGURES……………………………………………………………… xv LIST OF ABBREVIATIONS…………………………………………………… xvii CHAPTER 1 INTRODUCTION…………………………………………………………1 1.1 Objectives………………………………………………………………… CHAPTER 2 LITERATURE REVIEW…………………………………………………4 2.1 Articular cartilage and its associated clinical problems…………………… 2.2 Human Embryonic Stem Cells (hESCs)…………………………………… 2.2.1 2.3 Expansion of hESCs……………………………………………… Differentiation of hESCs into chondrogenic lineage……………………… 10 2.3.1 Direct chondrogenic differentiation with EB formation…………… 11 2.3.1.1 Growth factor induction…………………………………………… 12 2.3.1.2 Co-culture………………………………………………………… 13 2.3.1.3 Challenges in the EB differentiation system……………………… 14 iii 2.3.2 Direct chondrogenic differentiation without EB formation……… 15 2.3.2.1 Growth factor induction…………………………………………… 15 2.3.2.2 Genetic manipulation……………………………………………… 15 2.3.2.3 Co-culture and conditioned medium……………………………… 16 2.3.3 Indirect differentiation………………………………………….……18 2.3.3.1 Chondrogenic differentiation of hESC-derived MSCs…………… 18 2.3.3.2 Chondrogenic differentiation of hESC-derived mesenchymal cells 19 2.3.4 Biomaterial-assisted chondrogenic differentiation………………… 21 2.3.4.1 Cartilage tissue engineering using hydrogels……………………… 21 2.3.4.2 Cartilage tissue engineering using polymeric scaffolds…………… 23 2.4 Cartilage formation and regeneration using ESCs………………………… 24 2.4.1 2.4.2 Delivery strategy and biomaterial choice………………………… 26 2.4.3 2.5 Homogeneity and differentiation of ESCs………………………… 25 Site of transplantation and host cell interference………………… 28 Animal models………………………………………………………………31 CHAPTER 3 MATERIALS AND METHODS………………………………………… 33 3.1 Reagents, chemicals, culture media and labware consumables…………… 33 3.2 Experimental design……………………………………………………… 33 3.3 Cell differentiation………………………………………………………… 34 3.3.1 Culture of hESCs………………………………………………… 34 3.3.2 Chondrogenic differentiation via embryoid body outgrowth culture.35 iv 3.3.3 Chondrogenic differentiation via high-density micromass culture… 35 3.3.4 Isolation and expansion of hESC-derived chondrogenic cells…… 37 3.3.4.1 Culture of hESC-derived chondrogenic cells on various ECM substratum 38 3.3.5 3.3.6 3.4 In vitro cartilage-like tissue formation …………………………… 39 Multi-lineage differentiation analysis……………………………….40 Cellular assays and cytogenetics…………………………………………… 41 3.4.1 3.4.2 Cell cycle analysis………………………………………………… 41 3.4.3 Surface marker analysis…………………………………………… 42 3.4.4 3.5 Growth kinetics…………………………………………………… 41 Multi-color fluorescence in situ hybridization (mFISH)………… 43 Molecular biology assays………………………………………………… 43 3.5.1 3.5.2 3.6 Total RNA extraction and cDNA synthesis……………………… 43 RT-PCR and real-time PCR quantitative analysis………………… 44 Biochemical assays………………………………………………………… 46 3.6.1 Sulfated glycosaminoglycan quantification……………………… 46 3.6.2 Collagen quantification…………………………………………… 48 3.6.3 Collagen II quantification………………………………………… 48 3.6.3.1 Sample preparation………………………………………………… 49 3.6.3.2 Collagen II ELISA………………………………………………… 49 3.6.4 3.6.5 3.7 DNA quantification………………………………………………… 50 Alkaline phosphatase (ALP) activity assay……………………… 50 Histochemical and fluorescence staining techniques……………………… 51 v 3.7.1 Staining of cell cultures…………………………………………… 51 3.7.1.1 Alcian blue staining……………………………………………… 51 3.7.1.2 Alkaline phosphatase (ALP) staining……………………………… 51 3.7.1.3 Alizarin red S staining…………………………………………… 52 3.7.1.4 Oil red-O staining………………………………………………… 52 3.7.1.5 Immunofluorescence (IF) staining………………………………… 53 3.7.2 Staining of tissue specimens……………………………………… 54 3.7.2.1 Processing of tissue specimens…………………………………… 54 3.7.2.2 Haematoxylin and eosin staining………………………………… 55 3.7.2.3 Alcian blue staining……………………………………………… 56 3.7.2.4 Safranin-O staining………………………………………………… 56 3.7.2.5 Masson’s trichrome staining……………………………………… 57 3.7.2.6 Immunohistochemical staining…………………………………… 57 3.8 Animal studies…………………………………………………………… 59 3.8.1 3.8.2 Osteochondral defect model……………………………………… 60 3.8.3 3.8.4 Post-operative procedures………………………………………… 61 A Micro-computational tomography (micro-CT)…………………… 62 3.8.5 3.9 In vivo implantation assay………………………………………… 59 Human cell chimerism…………………………………………… 62 Statistical analysis………………………………………………………… 63 CHAPTER 4 RESULTS………………………………………………………………… 65 vi 4.1 PHASE I: MODEL SYSTEM…………………………………………… 65 4.1.1 Pluripotency of human embryonic stem cells……………………… 65 4.1.2 Effects of culture conditions in modulation of chondrogenesis…….66 4.1.3 Effects of culture conditions on hypertrophic development……… 71 4.1.4 Modulation of chondrogenesis in different EB seeding densities… 74 4.1.5 Effects of culture conditions in lineage selection during chondrogenesis…………………………………………………… 75 4.2 PHASE II: GROWTH FACTOR MODULATION……………………… 76 4.2.1 4.2.2 Growth factor modulation of matrix synthesis…………………… 78 4.2.3 Growth factor modulation of chondrogenic commitment………… 81 4.2.4 4.3 Growth factor modulation of chondrogenesis………………………76 TGFβ1 induction of chondrogenic cells…………………………… 83 PHASE III: ISOLATION OF CHONDROGENIC CELLS……………… 86 4.3.1 4.3.2 Expansion of hESC-derived chondrogenic cells……………………88 4.3.3 Differentiation capability of hESC-derived chondrogenic cells…… 88 4.3.4 Characterization of hESC-derived chondrogenic cell line (TC1)… 90 4.3.5 4.4 Derivation of hESC-derived chondrogenic cells………………… 86 ECM modulation of hESC-derived chondrogenic cells…………….96 PHASE IV: FUNCTIONALITY………………………………………… 98 4.4.1 Cartilage tissue engineering using hESC-derived chondrogenic cells………………………………………………………………… 98 4.4.1.1 Optimal growth factor induction for cartilage tissue engineering… 98 vii 4.4.1.2 Effects of 3D HA hydrogel encapsulation in cartilaginous tissue development……………………………………………………… 98 4.4.1.3 Human ESC-derived chondrogenic cell-engineered cartilage (HCCEC)………………………………………………………… 100 4.4.2 Cartilage regeneration in osteochondral defect…………………… 103 4.4.2.1 Comparison of hESC-derived chondrogenic cells and HCCEC in cartilage repair…………………………………………………… 103 4.4.2.2 HCCEC in cartilage regeneration………………………………… 106 4.4.2.3 Human cell chimerism…………………………………………… 116 4.4.3 Phenotypic stability of hESC-derived chondrogenic cells………….119 CHAPTER 5 DISCUSSION…………………………………………………………… 121 5.1 PHASE I: MODEL SYSTEM…………………………………………… 121 5.1.1 Human ESCs as a model system to study chondrogenesis………… 121 5.1.1.1 Chondrogenic differentiation in EB outgrowth…………………… 121 5.1.1.2 Effects of high-density microenvironment on chondrogenic differentiation……………………………………………………… 123 5.1.1.3 Effects of high-density microenvironment on hypertrophic maturation………………………………………………………… 125 5.1.1.4 Effects of higher EB seeding numbers on chondrogenic differentiation……………………………………………………… 126 viii 5.1.1.5 Effects of high-density microenvironment on other lineage differentiation………………………………………………… 127 5.2 PHASE II: GROWTH FACTOR MODULATION……………………… 129 5.2.1 5.2.2 Effects of TGFβ1 on other lineage differentiation………………… 131 5.2.3 5.3 Growth factor modulation of chondrogenesis………………………129 Pluripotency vs chondrogenesis - Role of TGFβ1………………… 131 PHASE III: ISOLATION OF CHONDROGENIC CELLS……………… 133 5.3.1 Human ESC-derived chondrogenic cells………………………… 133 5.3.1.1 Effects of growth factors and ECM on hESC-derived chondrogenic cells………………………………………………………………… 133 5.4 PHASE IV: FUNCTIONALITY 136 5.4.1 Human ESC-derived chondrogenic cells in cartilage tissue engineering………………………………………………………… 136 5.4.1.1 Human ESC-derived chondrogenic cell-engineered cartilage (HCCEC)………………………………………………………… 136 5.4.2 Human ESC-derived chondrogenic cells in cartilage regeneration 138 5.4.2.1 Osteochondral defect model……………………………………… 138 5.4.2.2 Role of HCCEC in cartilage repair………………………………… 139 5.4.2.3 Role of HCCEC in cartilage integration…………………………… 140 5.4.2.4 Orderly remodeling of HCCEC in cartilage regeneration 141 5.4.2.5 Fate of hESC-derived chondrogenic cells in cartilage regeneration 143 5.4.2.6 Phenotypic stability of hESC-derived chondrogenic cells………….145 5.4.2.7 Tumorigenicity of hESC-derived chondrogenic cells………………147 ix Bridgewater LC, Lefebvre V, de Crombrugghe B (1998) Chondrocyte-specific enhancer elements in the Col11a2 gene resemble the Col2a1 tissue-specific enhancer J Biol Chem 273(24):14998-15006 Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation N Engl J Med 331(14): 889-895 Brown AN, Kim BS, Alsberg E, Mooney DJ (2000) Combining chondrocytes and smooth muscle cells to engineer hybrid soft tissue constructs Tissue Eng 6(4): 297-305 Buckwalter JA (2002) Articular cartilage injuries Clin Orthop Relat Res 402:21-37 Review Cancedda R, Descalzi Cancedda F, Castagnola P (1995) Chondrocyte differentiation Int Rev Cytol.159:265-358 Review Caplan AI, Elyaderani M, Mochizuki Y, Wakitani S, Goldberg VM (1997) Principles of cartilage repair and regeneration Clin Orthop Relat Res 342:254-269 Carlberg AL, Pucci B, Rallapalli R, Tuan RS, Hall DJ (2001) Efficient chondrogenic differentiation of mesenchymal cells in micromass culture by retroviral gene transfer of BMP-2 Differentiation 67(4-5):128-138 Carr AJ, Vugler AA, Hikita ST, Lawrence JM, Gias C, Chen LL, Buchholz DE, Ahmado A, Semo M, Smart MJ, Hasan S, da Cruz L, Johnson LV, Clegg DO, Coffey PJ (2009) Protective effects of human iPS-derived retinal pigment epithelium cell transplantation in the retinal dystrophic rat PLoS One 4(12):e8152 Casanova JE, Grabel LB (1988) The role of cell interactions in the differentiation of teratocarcinoma-derived parietal and visceral endoderm Dev Biol 129(1):124-139 Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A (2003) Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells Cell 113(5):643-655 Chang CH, Kuo TF, Lin CC, Chou CH, Chen KH, Lin FH, Liu HC (2006) Tissue engineeringbased cartilage repair with allogenous chondrocytes and gelatin-chondroitin-hyaluronan tricopolymer scaffold: A porcine model assessed at 18, 24, and 36 weeks Biomaterials 27(9):18761888 Chen X, Song XH, Yin Z, Zou XH, Wang LL, Hu H, Cao T, Zheng M, Ouyang HW (2009a) Stepwise differentiation of human embryonic stem cells promotes tendon regeneration by secreting fetal tendon matrix and differentiation factors Stem Cells 27(6):1276-1287 Chen HC, Chang YH, Chuang CK, Lin CY, Sung LY, Wang YH, Hu YC (2009b) The repair of osteochondral defects using baculovirus-mediated gene transfer with de-differentiated chondrocytes in bioreactor culture Biomaterials 30(4):674-681 Cheng L, Hammond H, Ye Z, Zhan X, Dravid G (2003) Human adult marrow cells support prolonged expansion of human embryonic stem cells in culture Stem Cells 21(2):131-142 155 Choo AB, Padmanabhan J, Chin AC, Oh SK (2004) Expansion of pluripotent human embryonic stem cells on human feeders Biotechnol Bioeng 88(3):321-331 Choo A, Ngo AS, Ding V, Oh S, Kiang LS (2008) Autogeneic feeders for the culture of undifferentiated human embryonic stem cells in feeder and feeder-free conditions Methods Cell Biol 86:15-28 Chu CR, Szczodry M, Bruno S Animal models for cartilage regeneration and repair (2010) Tissue Eng Part B Rev 16(1):105-115 Chung C, Burdick JA (2009) Influence of three-dimensional hyaluronic acid microenvironments on mesenchymal stem cell chondrogenesis Tissue Eng Part A 15(2):243-254 Chung C, Burdick JA (2008) Engineering cartilage tissue Adv Drug Deliv Rev 60(2):243-262 Review Clair BL, Johnson AR, Howard T (2009) Cartilage repair: current and emerging options in treatment Foot Ankle Spec 2(4):179-188 Review Conley BJ, Trounson AO, Mollard R (2004) Human embryonic stem cells form embryoid bodies containing visceral endoderm-like derivatives Fetal Diagn Ther 19(3):218-223 Crook JM, Peura TT, Kravets L, Bosman AG, Buzzard JJ, Horne R, Hentze H, Dunn NR, Zweigerdt R, Chua F, Upshall A, Colman A (2007) The Generation of Six Clinical-Grade Human Embryonic Stem Cell Lines Cell Stem Cell 1(5):490-494 Cui L, Wu Y, Cen L, Zhou H, Yin S, Liu G, Liu W, Cao Y (2009) Repair of articular cartilage defect in non-weight bearing areas using adipose derived stem cells loaded polyglycolic acid mesh Biomaterials 30(14):2683-2693 Daadi MM, Maag AL, Steinberg GK (2008) Adherent self-renewable human embryonic stem cell-derived neural stem cell line: functional engraftment in experimental stroke model PLoS One 3(2):e1644 Date T, Doiguchi Y, Nobuta M, Shindo H (2004) Bone morphogenetic protein-2 induces differentiation of multipotent C3H10T1/2 cells into osteoblasts, chondrocytes, and adipocytes in vivo and in vitro J Orthop Sci 9(5):503-508 Deng Y, Hu JC, Athanasiou KA (2007) Isolation and chondroinduction of a dermis-isolated, aggrecan-sensitive subpopulation with high chondrogenic potential Arthritis Rheum 56(1):168176 Denker AE, Haas AR, Nicoll SB, Tuan RS (1999) Chondrogenic differentiation of murine C3H10T1/2 multipotential mesenchymal cells: I Stimulation by bone morphogenetic protein-2 in high-density micromass cultures Differentiation 64: 67-76 Dozin B, Malpeli M, Camardella L, Cancedda R, Pietrangelo A (2002) Response of young, aged and osteoarthritic human articular chondrocytes to inflammatory cytokines: molecular and cellular aspects Matrix Biol 21(5):449-459 156 Draper JS, Pigott C, Thomson JA, Andrews PW (2002) Surface antigens of human embryonic stem cells: changes upon differentiation in culture J Anat 200(Pt 3):249-258 Duprez DM, Coltey M, Amthor H, Brickell PM, Tickle C (1996) Bone morphogenetic protein-2 (BMP-2) inhibits muscle development and promotes cartilage formation in chick limb bud cultures Dev Biol 174(2):448-452 Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos Nature 292:154-156 Fecek C, Yao D, Kaỗorri A, Vasquez A, Iqbal S, Sheikh H, Svinarich DM, Perez-Cruet M, Chaudhry GR (2008) Chondrogenic derivatives of embryonic stem cells seeded into 3D polycaprolactone scaffolds generated cartilage tissue in vivo Tissue Eng Part A 14(8):14031413 Francioli SE, Martin I, Sie CP, Hagg R, Tommasini R, Candrian C, Heberer M, Barbero A (2007) Growth factors for clinical-scale expansion of human articular chondrocytes: relevance for automated bioreactor systems Tissue Eng 13(6):1227-1234 Frenkel SR, Clancy RM, Ricci JL et al (1996) Effects of nitric oxide on chondrocyte migration, adhesion, and cytoskeletal assembly Arthritis Rheum 39: 1905-1912 Fu X, Toh WS, Liu H, Lu K, Li M, Hande MP, Cao T (2009) Autologous Feeder Cells from Embryoid Body Outgrowth Support the Long-Term Growth of Human Embryonic Stem Cells More Effectively than Those from Direct Differentiation Tissue Eng Part C Methods [Epub ahead of print] Ge Z, Hu Y, Heng BC, Yang Z, Ouyang H, Lee EH, Cao T (2006) Osteoarthritis and therapy Arthritis Rheum 55(3):493-500 Review Gelse K, Brem M, Klinger P, Hess A, Swoboda B, Hennig F, Olk A (2009) Paracrine effect of transplanted rib chondrocyte spheroids supports formation of secondary cartilage repair tissue J Orthop Res 27(9):1216-1225 Goldring MB, Tsuchimochi K, Ijiri K (2006) The control of chondrogenesis J Cell Biochem 97(1):33-44 Review Goldring MB, Goldring SR (2007) Osteoarthritis J Cell Physiol 213(3):626-634 Review Hanada K, Solchaga LA, Caplan AI, Hering TM, Goldberg VM, Yoo JU, Johnstone B (2001) BMP-2 induction and TGF-beta modulation of rat periosteal cell chondrogenesis J Cell Biochem 81(2):284-294 Hardingham T, Tew S, Murdoch A (2002) Tissue engineering: chondrocytes and cartilage Arthritis Res 4(suppl 3): S63-S68 Hargus G, Kist R, Kramer J, Gerstel D, Neitz A, Scherer G, Rohwedel J (2008) Loss of Sox9 function results in defective chondrocyte differentiation of mouse embryonic stem cells in vitro Int J Dev Biol 52(4):323-332 157 Hegert C, Kramer J, Hargus G, Muller J, Guan K, Wobus AM, Muller PK, Rohwedel J (2002) Differentiation plasticity of chondrocytes derived from mouse embryonic stem cells J Cell Sci 115: 4617-4628 Heiskanen A, Satomaa T, Tiitinen S, Laitinen A, Mannelin S, Impola U, Mikkola M, Olsson C, Miller-Podraza H, Blomqvist M, Olonen A, Salo H, Lehenkari P, Tuuri T, Otonkoski T, Natunen J, Saarinen J, Laine J (2007) N-glycolylneuraminic acid xenoantigen contamination of human embryonic and mesenchymal stem cells is substantially reversible Stem Cells 25(1):197-202 Heng BC, Cao T, Lee EH (2004) Directing stem cell differentiation into the chondrogenic lineage in vitro Stem Cells 22(7):1152-1167 Review Ho ST, Hutmacher DW, Ekaputra AK, Hitendra D, James HH (2009) The evaluation of a biphasic osteochondral implant coupled with an electrospun membrane in a large animal model Tissue Eng Part A [Epub ahead of print] Hogan BL, Taylor A, Adamson E (1981) Cell interactions modulate embryonal carcinoma cell differentiation into parietal or visceral endoderm Nature 291(5812):235-237 Hwang NS, Varghese S, Zhang Z, Elisseeff J (2006a) Chondrogenic differentiation of human embryonic stem cell-derived cells in arginine-glycine-aspartate-modified hydrogels Tissue Eng 12(9):2695-706 Hwang NS, Kim MS, Sampattavanich S, Baek JH, Zhang Z, Elisseeff J (2006b) The Effects of Three Dimensional Culture and Growth Factors on the Chondrogenic Differentiation of Murine Embryonic Stem Cells Stem Cells 24(2):284-291 Hwang NS, Varghese S, Theprungsirikul P, Canver A, Elisseeff J (2006c) Enhanced chondrogenic differentiation of murine embryonic stem cells in hydrogels with glucosamine Biomaterials 27(36):6015-6023 Hwang NS, Varghese S, Elisseeff J (2008a) Derivation of chondrogenically-committed cells from human embryonic cells for cartilage tissue regeneration PLoS One 3(6):e2498 Hwang NS, Varghese S, Lee HJ, Zhang Z, Ye Z, Bae J, Cheng L, Elisseeff J (2008b) In vivo commitment and functional tissue regeneration using human embryonic stem cell-derived mesenchymal cells Proc Natl Acad Sci U S A 105(52):20641-20646 Hwang NS, Varghese S, Elisseeff J Controlled differentiation of stem cells (2008c) Adv Drug Deliv Rev 60(2):199-214 Review Hwang YS, Polak JM, Mantalaris A (2008d) In vitro direct chondrogenesis of murine embryonic stem cells by bypassing embryoid body formation Stem Cells Dev 17(5):971-978 Hunziker EB, Wagner J, Zapf J (1994) Differential effects of insulin-like growth factor I and growth hormone on developmental stages of rat growth plate chondrocytes in vivo J Clin Invest 93(3):1078-1086 Hunziker EB (2002) Articular cartilage repair: basic science and clinical progress A review of the current status and prospects Osteoarthritis Cartilage 10(6):432-463 Review 158 Indrawattana N, Chen G, Tadokoro M, Shann LH, Ohgushi H, Tateishi T, Tanaka J, Bunyaratvej A (2004) Growth factor combination for chondrogenic induction from human mesenchymal stem cell Biochem Biophys Res Commun 320(3):914-919 Itskovitz-Eldor, J , Schuldiner, M , Karsenti, D , Eden, A , Yanuka, O , Amit, M , Soreq, H & Benvenisty, N (2000) Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers Mol Med 6: 88-95 Itsykson P, Ilouz N, Turetsky T, Goldstein RS, Pera MF, Fishbein I, Segal M, Reubinoff BE.(2005) Derivation of neural precursors from human embryonic stem cells in the presence of noggin Mol Cell Neurosci 30(1):24-36 James D, Levine AJ, Besser D, Hemmati-Brivanlou A (2005) TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells Development 132(6):1273-1282 Jukes JM, Moroni L, van Blitterswijk CA, de Boer J (2008a) Critical Steps toward a tissueengineered cartilage implant using embryonic stem cells Tissue Eng Part A 14(1):135-147 Jukes JM, Both SK, Leusink A, Sterk LM, van Blitterswijk CA, de Boer J (2008b) Endochondral bone tissue engineering using embryonic stem cells Proc Natl Acad Sci U S A 105(19):68406845 Jukes JM, van Blitterswijk CA, de Boer J (2009) Skeletal tissue engineering using embryonic stem cells J Tissue Eng Regen Med [Epub ahead of print] Katopodi T, Tew SR, Clegg PD, Hardingham TE (2009) The influence of donor and hypoxic conditions on the assembly of cartilage matrix by osteoarthritic human articular chondrocytes on Hyalograft matrices Biomaterials 30(4):535-540 Kawaguchi J, Mee PJ, Smith AG (2005) Osteogenic and chondrogenic differentiation of embryonic stem cells in response to specific growth factors Bone 36(5):758-769 Kim JH, Do HJ, Yang HM, Oh JH, Choi SJ, Kim DK, Cha KY, Chung HM (2005a) Overexpression of SOX9 in mouse embryonic stem cells directs the immediate chondrogenic commitment Exp Mol Med 37(4):261-268 Kim MS, Hwang NS, Lee J, Kim TK, Leong K, Shamblott MJ, Gearhart J, Elisseeff J (2005b) Musculoskeletal differentiation of cells derived from human embryonic germ cells Stem Cells 23(1):113-123 Kim YJ, Sah RL, Doong JY, Grodzinsky AJ (1988) Fluorometric assay of DNA in cartilage explants using Hoechst 33258 Anal Biochem; 174(1): 168-176 Kino-Oka M, Yashiki S, Ota Y, Mushiaki Y, Sugawara K, Yamamoto T, Takezawa T, Taya M (2005) Subculture of chondrocytes on a collagen type I-coated substrate with suppressed cellular dedifferentiation Tissue Eng 11(3-4):597-608 Ko JY, Park CH, Koh HC, Cho YH, Kyhm JH, Kim YS, Lee I, Lee YS, Lee SH (2007) Human embryonic stem cell-derived neural precursors as a continuous, stable, and on-demand source for human dopamine neurons J Neurochem 103(4):1417-1429 159 Koay EJ, Hoben GM, Athanasiou KA (2007) Tissue engineering with chondrogenically differentiated human embryonic stem cells Stem Cells 25(9):2183-2190 Kramer J, Hegert C, Guan K, Wobus AM, Muller PK, Rohwedel J (2000) Embryonic stem cellderived chondrogenic differentiation in vitro: activation by BMP-2 and BMP-4 Mech Dev 92(2):193-205 Kulyk WM, Rodgers BJ, Greer K, Kosher RA (1989) Promotion of embryonic chick limb cartilage differentiation by transforming growth factor-beta Dev Biol 135(2):424-430 Laurila JP, Laatikainen L, Castellone MD, Trivedi P, Heikkila J, Hinkkanen A, Hematti P, Laukkanen MO (2009) Human embryonic stem cell-derived mesenchymal stromal cell transplantation in a rat hind limb injury model Cytotherapy 11(6):726-737 Lian Q, Lye E, Suan Yeo K, Khia Way Tan E, Salto-Tellez M, Liu TM, Palanisamy N, El Oakley RM, Lee EH, Lim B, Lim SK (2007) Derivation of clinically compliant MSCs from CD105+, CD24- differentiated human ESCs Stem Cells 25(2):425-436 Lee CR, Grodzinsky AJ, Hsu HP, Spector M (2003) Effects of a cultured autologous chondrocyte-seeded type II collagen scaffold on the healing of a chondral defect in a canine model J Orthop Res 21(2):272-281 Lee EH, Hui JH (2006) The potential of stem cells in orthopaedic surgery J Bone Joint Surg Br 88(7):841-851 Review Lee EJ, Lee HN, Kang HJ, Kim KH, Hur J, Cho HJ, Lee J, Chung HM, Cho J, Cho MY, Oh SK, Moon SY, Park YB, Kim HS (2009a) Novel Embryoid Body-Based Method to Derive Mesenchymal Stem Cells from Human Embryonic Stem Cells Tissue Eng Part A [Epub ahead of print] Lee ES, Chan J, Shuter B, Tan LG, Chong MS, Ramachandra DL, Dawe GS, Ding J, Teoh SH, Beuf O, Briguet A, Tam KC, Choolani M, Wang SC (2009b) Microgel iron oxide nanoparticles for tracking human fetal mesenchymal stem cells through magnetic resonance imaging Stem Cells 27(8):1921-1931 Lee KB, Hui JH, Song IC, Ardany L, Lee EH (2007) Injectable mesenchymal stem cell therapy for large cartilage defects a porcine model Stem Cells 25(11):2964-2971 Lefebvre V, Huang W, Harley VR, Goodfellow PN, de Crombrugghe B (1997) SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1(II) collagen gene Mol Cell Biol 17(4):2336-2346 Lengner CJ, Lepper C, van Wijnen AJ, Stein JL, Stein GS, Lian JB (2004) Primary mouse embryonic fibroblasts: a model of mesenchymal cartilage formation J Cell Physiol 200(3):327333 Levenberg S, Huang NF, Lavik E, Rogers AB, Itskovitz-Eldor J, Langer R (2003) Differentiation of human embryonic stem cells on three-dimensional polymer scaffolds Proc Natl Acad Sci U S A 100(22):12741-12746 160 Liu TM, Martina M, Hutmacher DW, Hui JH, Lee EH, Lim B (2007) Identification of common pathways mediating differentiation of bone marrow- and adipose tissue-derived human mesenchymal stem cells into three mesenchymal lineages Stem Cells 25(3):750-760 Liu Y, Shu XZ, Prestwich GD (2006) Osteochondral defect repair with autologous bone marrowderived mesenchymal stem cells in an injectable, in situ, cross-linked synthetic extracellular matrix Tissue Eng 12(12):3405-3416 Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method Methods 25(4):402-408 Loh YH, Agarwal S, Park IH, Urbach A, Huo H, Heffner GC, Kim K, Miller JD, Ng K, Daley GQ (2009) Generation of induced pluripotent stem cells from human blood Blood 113(22):5476-5479 Luyten, F.P., Yu, Y.M., Yanagishita, M., Vukicevic, S., Hammonds, R.G and Reddi, A.H (1992) Natural bovine osteogenin and recombinant human bone morphogenetic protein-2B are equipotent in the maintenance of proteoglycans in bovine articular cartilage explant cultures J Biol Chem 267: 3691-3695 Lyons KM, Pelton RW, Hogan BL (1990) Organogenesis and pattern formation in the mouse: RNA distribution patterns suggest a role for bone morphogenetic protein-2A (BMP-2A) Development 109(4): 833-844 Mackay AM, Beck SC, Murphy JM, Barry FP, Chichester CO, Pittenger MF (1998) Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow Tissue Eng 4: 415-428 Mackie EJ, Ahmed YA, Tatarczuch L, Chen KS, Mirams M (2008) Endochondral ossification: how cartilage is converted into bone in the developing skeleton Int J Biochem Cell Biol 40(1):46-62 Review Mankin H, Mow V, Buckwalter J (1994) Form and function of articular cartilage In: Simon S, ed Orthopaedic Basic Science Rosemont, IL: American Academy of Orthopaedic Surgeons 443-470 Marlovits S, Hombauer M, Truppe M, Vècsei V, Schlegel W (2004) Changes in the ratio of typeI and type-II collagen expression during monolayer culture of human chondrocytes J Bone Joint Surg Br 86(2):286-295 Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells Proc Natl Acad Sci U S A 78(12):76347638 Martin I, Jakob M, Schafer D, Dick W, Spagnoli G, Heberer M (2001) Quantitative analysis of gene expression in human articular cartilage from normal and osteoarthritic joints Osteoarthritis Cartilage 9(2), 112-118 Martin MJ, Muotri A, Gage F, Varki A (2005) Human embryonic stem cells express an immunogenic nonhuman sialic acid Nat Med 11(2):228-232 161 Mello MA, Tuan RS (1999) High density micromass cultures of embryonic limb bud mesenchymal cells: An in vitro model of endochondral skeletal development In Vitro Cell Dev Biol Anim 35: 262-269 Messana JM, Hwang NS, Coburn J, Elisseeff JH, Zhang Z (2008) Size of the embryoid body influences chondrogenesis of mouse embryonic stem cells J Tissue Eng Regen Med 2(8):499506 Miralles G, Baudoin R, Dumas D, Baptiste D, Hubert P, Stoltz JF, Dellacherie E, Mainard D, Netter P, Payan E (2001) Sodium alginate sponges with or without sodium hyaluronate: in vitro engineering of cartilage J Biomed Mater Res 57(2):268-278 Mitchell N, Shepard N (1976) The resurfacing of adult rabbit articular cartilage by multiple perforations through the subchondral bone J Bone Joint Surg Am 58: 230-233 Miyamoto C, Matsumoto T, Sakimura K, Shindo H (2007) Osteogenic protein-1 with transforming growth factor-beta1: potent inducer of chondrogenesis of synovial mesenchymal stem cells in vitro J Orthop Sci 12(6):555-561 Nakajima M, Wakitani S, Harada Y, Tanigami A, Tomita N (2008) In vivo mechanical condition plays an important role for appearance of cartilage tissue in ES cell transplanted joint J Orthop Res 26(1):10-17 Nakayama N, Duryea D, Manoukian R, Chow G, Han CY (2003) Macroscopic cartilage formation with embryonic stem-cell-derived mesodermal progenitor cells J Cell Sci 116:20152028 Nakagawa T, Lee SY, Reddi AH (2009) Induction of chondrogenesis from human embryonic stem cells without embryoid body formation by bone morphogenetic protein and transforming growth factor beta1 Arthritis Rheum 60(12):3686-3692 Nejadnik H, Hui J, Choong PF, Tai BC, Lee EH (2010) Autologous bone marrow derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study Am J Sports Med [Epub ahead of print] Ng ES, Davis R, Stanley EG, Elefanty AG (2008) A protocol describing the use of a recombinant protein-based, animal product-free medium (APEL) for human embryonic stem cell differentiation as spin embryoid bodies Nat Protoc 3(5):768-776 Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Scholer H, Smith A (1998) Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4 Cell 95(3):379-391 Obradovic B, Martin I, Padera RF, Treppo S, Freed LE, Vunjak-Novakovic G (2001) Integration of engineered cartilage J Orthop Res 19(6):1089-1097 Odorico JS, Kaufman DS, Thomson JA (2001) Multilineage Differentiation from Human Embryonic Stem Cell Lines Stem Cells 19(3):193-204 Review Payne KA, Didiano DM, Chu CR (2010) Donor sex and age influence the chondrogenic potential of human femoral bone marrow stem cells Osteoarthritis Cartilage [Epub ahead of print] 162 Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, Lerou PH, Lensch MW, Daley GQ (2008) Reprogramming of human somatic cells to pluripotency with defined factors Nature 451(7175):141-146 Pelttari K, Winter A, Steck E, Goetzke K, Hennig T, Ochs BG, Aigner T, Richter W (2006) Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice Arthritis Rheum 54(10):3254-3266 Pera MF, Andrade J, Houssami S, Reubinoff B, Trounson A, Stanley EG, Ward-van Oostwaard D, Mummery C (2004) Regulation of human embryonic stem cell differentiation by BMP-2 and its antagonist noggin J Cell Sci 117(Pt 7):1269-1280 Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S and Marshak, D.R (1999) Multilineage potential of adult human mesenchymal stem cells Science 284:143-147 Poole AR, Kojima T, Yasuda T, Mwale F, Kobayashi M, Laverty S (2001) Composition and structure of articular cartilage: a template for tissue repair Clin Orthop Relat Res 391 Suppl:S2633 Review Prokhorova TA, Harkness LM, Frandsen U, Ditzel N, Burns JS, Schroeder HD, Kassem M (2008) Teratoma Formation by Human Embryonic Stem Cells is site-dependent and enhanced by the presence of Matrigel Stem Cells Dev [Epub ahead of print] Quarto R, Thomas D, Liang CT (1995) Bone progenitor cell deficits and the age-associated decline in bone repair capacity Calcif Tissue Int 56(2):123-129 Reddi AH (1992) Regulation of cartilage and bone differentiation by bone morphogenetic proteins Curr Opin Cell Biol 4(5):850-855 Review Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro Nat Biotechnol 18(4):399-404 Richards M, Fong CY, Chan WK, Wong PC, Bongso A (2002) Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells Nat Biotechnol 20(9):933-936 Richards M, Tan S, Fong CY, Biswas A, Chan WK, Bongso A (2003) Comparative evaluation of various human feeders for prolonged undifferentiated growth of human embryonic stem cells Stem Cells 21(5):546-556 Roark EF, Greer K (1994) Transforming growth factor-beta and bone morphogenetic protein-2 act by distinct mechanisms to promote chick limb cartilage differentiation in vitro Dev Dyn 200(2):103-116 Roberts S, Menage J, Sandell LJ, Evans EH, Richardson JB (2009) Immunohistochemical study of collagen types I and II and procollagen IIA in human cartilage repair tissue following autologous chondrocyte implantation Knee 16(5):398-404 163 Sailor LZ, Hewick RM, Morris EA (1996) Recombinant human bone morphogenetic protein-2 maintains the articular chondrocyte phenotype in long-term culture J Orthop Res 14(6):937-945 Schaefer D, Martin I, Jundt G, Seidel J, Heberer M, Grodzinsky A, Bergin I, Vunjak-Novakovic G, Freed LE (2002) Tissue-engineered composites for the repair of large osteochondral defects Arthritis Rheum 46(9):2524-2534 Schnabel M, Marlovits S, Eckhoff G, Fichtel I, Gotzen L, Vécsei V, Schlegel J (2002) Dedifferentiation-associated changes in morphology and gene expression in primary human articular chondrocytes in cell culture Osteoarthritis Cartilage 10(1):62-70 Segawa Y, Muneta T, Makino H, Nimura A, Mochizuki T, Ju YJ, Ezura Y, Umezawa A, Sekiya I (2009) Mesenchymal stem cells derived from synovium, meniscus, anterior cruciate ligament, and articular chondrocytes share similar gene expression profiles J Orthop Res 27(4):435-441 Sekiya I, Tsuji K, Koopman P, Watanabe H, Yamada Y, Shinomiya K, Nifuji A, Noda M (2000) SOX9 enhances aggrecan gene promoter/enhancer activity and is up-regulated by retinoic acid in a cartilage-derived cell line, TC6 J Biol Chem 275(15):10738-10744 Seyedin SM, Thompson AY, Bentz H, Rosen DM, McPherson JM, Conti A, Siegel NR, Galluppi GR, Piez KA (1986) Cartilage-inducing factor-A Apparent identity to transforming growth factor-beta J Biol Chem 261(13):5693-5695 Shea CM, Edgar CM, Einhorn TA, Gerstenfeld LC (2003) BMP treatment of C3H10T1/2 mesenchymal stem cells induces both chondrogenesis and osteogenesis J Cell Biochem 90(6):1112-1127 Shintani N, Hunziker EB (2007) Chondrogenic differentiation of bovine synovium: bone morphogenetic proteins and and transforming growth factor beta1 induce the formation of different types of cartilaginous tissue Arthritis Rheum 56(6):1869-1879 Spector M (2006) Biomaterials-based tissue engineering and regenerative medicine solutions to musculoskeletal problems Swiss Med Wkly 136(19-20):293-301 Review Stenderup K, Justesen J, Clausen C, Kassem M (2003) Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells Bone 33(6):919926 Stojkovic P, Lako M, Stewart R, Przyborski S, Armstrong L, Evans J, Murdoch A, Strachan T, Stojkovic M (2005) An autogeneic feeder cell system that efficiently supports growth of undifferentiated human embryonic stem cells Stem Cells 23(3):306-314 Sui Y, Clarke T, Khillan JS (2003) Limb bud progenitor cells induce differentiation of pluripotent embryonic stem cells into chondrogenic lineage Differentiation 71(9-10):578-585 Szczesny B, Hazra TK, Papaconstantinou J, Mitra S, Boldogh I (2003) Age-dependent deficiency in import of mitochondrial DNA glycosylases required for repair of oxidatively damaged bases Proc Natl Acad Sci U S A 100(19):10670-10675 164 Sze SK, de Kleijn DP, Lai RC, Khia Way Tan E, Zhao H, Yeo KS, Low TY, Lian Q, Lee CN, Mitchell W, El Oakley RM, Lim SK (2007) Elucidating the secretion proteome of human embryonic stem cell-derived mesenchymal stem cells Mol Cell Proteomics 6(10):1680-1689 Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors Cell 131(5):861-872 Tanaka H, Murphy CL, Murphy C, Kimura M, Kawai S, Polak JM (2004) Chondrogenic differentiation of murine embryonic stem cells: effects of culture conditions and dexamethasone J Cell Biochem 93(3):454-462 Thomson, JA., Itskovitz-Eldor, J., Shapiro, SS., Waknitz, MA., Swiergiel, JJ, Marshall VS, Jones JM (1998) Embryonic Stem Cell Lines Derived from Human Blastocysts Science 282: 11451147 Toh WS, Liu H, Heng BC, Rufaihah AJ, Ye CP, Cao T (2005) Combined effects of TGFbeta1 and BMP2 in serum-free chondrogenic differentiation of mesenchymal stem cells induced hyaline-like cartilage formation Growth Factors 23(4):313-321 Toh WS, Yang Z, Liu H, Heng BC, Lee EH, Cao T (2007a) Effects of culture conditions and bone morphogenetic protein on extent of chondrogenesis from human embryonic stem cells Stem Cells 25(4):950-960 Toh WS, Yang Z, Heng BC, Cao T (2007b) Differentiation of human embryonic stem cells toward the chondrogenic lineage Methods Mol Biol 407:333-349 Toh WS, Guo XM, Choo AB, Lu K, Lee EH, Cao T (2009) Differentiation and Enrichment of Expandable Chondrogenic Cells from Human Embryonic Stem Cells in Vitro J Cell Mol Med 13(9b):3570-3590 Toh WS, Lee EH, Richards M, Cao T (2010) In vitro derivation of chondrogenic cells from human embryonic stem cells Methods Mol Biol 584:317-331 Vallier L, Alexander M, Pedersen RA (2005) Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells J Cell Sci 118(Pt 19):4495-4509 Varghese S, Theprungsirikul P, Ferran A, Hwang N, Canver A, Elisseeff J (2006) Chondrogenic differentiation of human embryonic germ cell derived cells in hydrogels Conf Proc IEEE Eng Med Biol Soc 1:2643-2646 Vats A, Bielby RC, Tolley N, Dickinson SC, Boccaccini AR, Hollander AP, Bishop AE, Polak JM (2006) Chondrogenic differentiation of human embryonic stem cells: the effect of the microenvironment Tissue Eng 12(6):1687-1697 Vinatier C, Mrugala D, Jorgensen C, Guicheux J, Noël D (2009) Cartilage engineering: a crucial combination of cells, biomaterials and biofactors Trends Biotechnol 27(5):307-314 Review Vinoth KJ, Heng BC, Poonepalli A, Banerjee B, Balakrishnan L, Lu K, Hande MP, Cao T (2008) Human embryonic stem cells may display higher resistance to genotoxic stress as compared to primary explanted somatic cells Stem Cells Dev 17(3):599-607 165 von der Mark K, Gauss V, von der Mark H, Müller P (1977) Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture Nature 267(5611):531-532 Wakitani S, Goto T, Pineda SJ, Young RG, Mansour JM, Caplan AI, Goldberg VM (1994) Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage J Bone Joint Surg Am 76(4):579-592 Wakitani S, Imoto K, Yamamoto T, Saito M, Murata N, Yoneda M (2002) Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees Osteoarthritis Cartilage 10(3), 199-206 Wakitani S, Takaoka K, Hattori T, Miyazawa N, Iwanaga T, Takeda S, Watanabe TK, Tanigami A (2003) Embryonic stem cells injected into the mouse knee joint form teratomas and subsequently destroy the joint Rheumatology (Oxford) 42(1):162-165 Wakitani S, Aoki H, Harada Y, Sonobe M, Morita Y, Mu Y, Tomita N, Nakamura Y, Takeda S, Watanabe TK, Tanigami A (2004) Embryonic stem cells form articular cartilage, not teratomas, in osteochondral defects of rat joints Cell Transplant 13(4):331-336 Wakitani S, Nawata M, Tensho K, Okabe T, Machida H, Ohgushi H (2007) Repair of articular cartilage defects in the patello-femoral joint with autologous bone marrow mesenchymal cell transplantation: three case reports involving nine defects in five knees J Tissue Eng Regen Med 1(1):74-79 White J, Dalton S Cell cycle control of embryonic stem cells (2005) Stem Cell Rev 1(2):131138 Review Wiles MV, Johansson BM (1999) Embryonic stem cell development in a chemically defined medium Exp Cell Res 247(1):241-248 Xu C, Inokuma MS, Denham J, Golds K, Kundu P, Gold JD, Carpenter MK (2001) Feeder-free growth of undifferentiated human embryonic stem cells Nat Biotechnol 19(10):971-974 Xu C, Rosler E, Jiang J, Lebkowski JS, Gold JD, O'Sullivan C, Delavan-Boorsma K, Mok M, Bronstein A, Carpenter MK (2005) Basic fibroblast growth factor supports undifferentiated human embryonic stem cell growth without conditioned medium Stem Cells 23(3):315-323 Yagami K, Kakuta S, Tachibana H, Kimura Y, Nagumo M (2000) Establishment of a cell line with phenotypes of chondrocyte from a human osteogenic sarcoma of the mandible J Oral Pathol Med 29(7):321-330 Yamashita A, Krawetz R, Rancourt DE (2009) Loss of discordant cells during micro-mass differentiation of embryonic stem cells into the chondrocyte lineage Cell Death Differ 16(2):278-286 Yang Z, Sui L, Toh WS, Lee EH, Cao T (2009) Stage-dependent effect of TGF-beta1 on chondrogenic differentiation of human embryonic stem cells Stem Cells Dev 18(6):929-940 166 Yoo JU, Barthel TS, Nishimura K, Solchaga L, Caplan AI, Goldberg VM, Johnstone B (1998) The chondrogenic potential of human bone-marrow-derived mesenchymal progenitor cells J Bone Joint Surg Am 80(12): 1745-1757 Zhang ZY, Teoh SH, Chong MS, Lee ES, Tan LG, Mattar CN, Fisk NM, Choolani M, Chan J (2010) Neo-vascularization and bone formation mediated by fetal mesenchymal stem cell tissueengineered bone grafts in critical-size femoral defects Biomaterials 31(4):608-620 zur Nieden NI, Kempka G, Rancourt DE, Ahr HJ (2005) Induction of chondro-, osteo- and adipogenesis in embryonic stem cells by bone morphogenetic protein-2: effect of cofactors on differentiating lineages BMC Dev Biol 5: 1-15 167 PUBLICATIONS Some data and protocols of this thesis have been published in original research articles, book chapters, reviews and conferences International Referred Publications Toh WS, Lee EH, Guo XM, Chan JKY, Yeow CH, Choo AB, Cao T (2010) Cartilage repair using hyaluronan hydrogel-encapsulated human embryonic stem cell-derived chondrogenic cells Biomaterials (Accepted in press) Yang Z, Sui L, Toh WS, Lee EH, Cao T (2009) Stage-Dependent Effect of TGFβ1 on Chondrogenic Differentiation of Human Embryonic Stem Cells Stem Cells & Development 18(6) 929-940 Toh WS, Guo XM, Choo AB, Lu K, Lee EH, Cao T (2009) Differentiation and Enrichment of expandable chondrogenic cells from Human Embryonic Stem Cells in Vitro Journal of Cellular and Molecular Medicine 13(9B): 3570-3590 Toh WS, Yang Z, Liu H, Heng BC, Lee EH, Cao T (2007) Effects of BMP2 and culture conditions on the extent of chondrogenesis from human embryonic stem cells Stem Cells 25(4): 950-960 Book Chapters Toh WS, Lee EH, Richards M, Cao T (2010) ‘In Vitro Derivation of Chondrogenic cells from Human Embryonic Stem Cells’ Methods in Molecular Biology, vol 584: Human Embryonic Stem Cell Protocols 2nd Edition pp 317-331 Humana Press Toh WS, Yang Z, Heng BC, Cao T (2007) ‘Differentiation of Human Embryonic Stem Cells towards the Chondrogenic Lineage’ Methods in Molecular Biology, vol 407: Stem Cell Assays pp 333-349 Humana Press Reviews Toh WS, Yang Z, BC Heng, T Cao (2006) New perspectives in chondrogenic differentiation of stem cells for cartilage repair ScientificWorldJournal 6: 361-364 (Invited review) 168 Presentations and Conferences Toh WS, Guo XM, Choo AB, Lu K, Liu H, Lee EH, Cao T Human embryonic stem cell-derived chondrogenic cells: potential for regenerative dentistry 2nd Meeting of IADR Pan Asian Pacific Federation (PAPF) and the 1st Meeting of IADR Asia/Pacific Region (APR) 2009, Wuhan, China Toh WS, Guo XM, Choo AB, Lu K, Liu H, Lee EH, Cao T Efficient generation of expandable chondrogenic cells from human embryonic stem cells for cartilage tissue engineering 7th Annual Meeting of the International Society for Stem cell Research (2009), Barcelona, Spain Toh WS, Lee EH, Choo AB, Cao T Differentiation and derivation of chondrogenic cells from human embryonic stem cells Workshop on Engineering Surfaces for Regulating Cell Behaviour (28th Feb 2008) Discovery Theatrette, Biopolis, Singapore Yang Z, Toh WS, Heng BC, Liu H, Lee EH, Cao T Different culture conditions affect the extent of human embryonic stem cell chondrogenesis 4th Annual Meeting of the International Society for Stem cell Research (2006), Toronto, Ontario, Canada 169 ... plating of hESC-derived chondrogenic cells Fig 17 Chondrogenic differentiation capability of hESC-derived chondrogenic cells Fig 18 Analysis of pluripotency and lineage- restriction of hESC-derived chondrogenic. .. explored for their potential as viable cell sources for cartilage tissue engineering (Chung et al., 2008) Human embryonic stem cells (hESCs) are stem cell lines of embryonic origin, isolated from. .. biomaterial and biophysical stimulations have been employed to harness the chondrogenic potential of hESCs for cartilage regeneration and tissue engineering 2.2.1 Expansion of hESCs Human embryonic stem