Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 207 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
207
Dung lượng
6 MB
Nội dung
THE ROLES OF PIN1 IN THE PITUITARY GONADOTROPES Luo Zhuojuan NATIONAL UNIVERSITY OF SINGAPORE 2010 THE ROLES OF PIN1 IN THE PITUITARY GONADOTROPES Luo Zhuojuan (Master of Science, Southeast University) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF BIOLOGICAL SCIENCES NATIONAL UNIVERSITY OF SINGAPORE 2010 ACKNOWLEDGEMENTS I would like to thank many people for their help and support during my doctoral research in National University of Singapore. This thesis could not be completed without them. My foremost and deepest gratitude to my supervisor A/P Philippa Melamed and my co-supervisor Dr. Yih-Cherng Liou for giving me the invaluable guidance and continuous encouragement throughout the study, for giving me generously their time and patience during my time under their supervision. Their support and understanding are deeply appreciated. My sincerest gratitude to my thesis committee, A/P Ge Ruowen and A/P Ng Huck Hui for giving me their comments and advices on this project. I have benefited a lot from their constructive insights. I would also like to extend my best gratitude to all other teaching staff and technical staff in Department of Biological Sciences for the good academic environment created. To my wonderful labmates, especially Andrea, Yingzi, Xia Yun, Qiaoyun, Ye Fan, Xiao Lin, Siew Hoon, Jiajun, Helen, Si Hui, Stefan, Cheng Yu, Jian Yuan, Lora and Jaw-Shin for giving me their great assistance, warm acceptance, as well as the friendship that will be cherished forever. To my husband for giving me endless love and his words of encouragement whenever I am down, for countless times giving me intellectual support that is truly valued. This path without him to walk with would never have been enjoyable. To my parents for always being there for me, for their unconditional support and love since the day I was created. To my parents-in-law for giving me their love and care, for all the moral support they provided. Last but not the least, I would like to thank National University of Singapore for providing me the Research Scholarship. And the work was financially supported by Ministry of Education Academic Research Fund (Singapore) Grant #R-154-000-410-112. i TABLE OF CONTENTS ACKNOWLEDGEMENTS .i TABLE OF CONTENTS ii SUMMARY v LIST OF TABLES vi LIST OF FIGURES .vii LIST OF FIGURES .vii LIST OF ABBREVIATIONS ix CHAPTER INTRODUCTION .1 1.1 Gonadotropins 1.1.1 Pituitary gland and gonadotropes 1.1.2 Gonadotropins and their biological functions .1 1.1.3 Regulation of gonadotropin synthesis and secretion 1.1.4 Immortalized murine gonadotrope cell lines 1.2 Basal and GnRH-induced gonadotropin subunit gene transcription 1.2.1 Transcriptional regulation of the αGSU subunit .7 1.2.2 Transcriptional regulation of the gonadotropin β subunits .10 1.2.3 Phosphorylation of transcription factors by MAPKs 15 1.3 Pin1 17 1.3.1 The identification of Pin1 .19 1.3.2 The uniqueness of Pin1 amongst peptidyl prolyl isomerases .19 1.3.3 The involvement of Pin1 in diverse biological and pathological processes .21 1.3.3.1 Pin1 and oncogenesis .23 1.3.3.2 Pin1 and degenerative disease .25 1.3.3.3 Pin1 and reproduction 26 1.3.4 The regulation of Pin1 activity .26 1.4 SF-1 27 1.4.1 Structure of SF-1 .29 1.4.2 Regulation of SF-1 transcriptional activity .31 1.4.2.1 Binding with cofactors .31 1.4.2.2 Post-translational modification of SF-1 .33 1.5 ATF3 35 1.5.1 Induction of ATF3 by multiple signals .35 1.5.2 Binding partners of ATF3 .37 1.5.3 Alternative splicing isoforms of ATF3 .39 1.5.4 Dichotomous role of ATF3 in oncogenesis 39 1.6 Ubiquitination and SUMOylation pathways 43 1.6.1 Protein regulation by ubiquitination .45 1.6.2 Protein regulation by SUMOylation .47 1.6.3 Crosstalk between ubiquitination and SUMOylation .49 ii 1.7 Hypothesis and aims 51 1.7.1 Hypothesis .51 1.7.2 Aims 51 CHAPTER MATERIALS AND METHODS 53 2.1 Cell culture .53 2.1.1 Growth conditions .53 2.1.2 Storing and recovery of cells 53 2.1.3 Treatment of cells .54 2.1.4 Transient transfection of cells .54 2.2 Plasmid constructs .57 2.2.1 Gonadotropin subunit gene promoter construct for luciferase assays 57 2.2.2 Expression vectors 57 2.2.3 Constructs for the two-hybrid assays 61 2.2.4 Verification by DNA sequencing 61 2.3 Antibodies 63 2.4 RNA-mediated knock-down of Pin1 expression .64 2.5 Reverse transcriptase (RT)-PCR analysis 65 2.5.1 RNA isolation .65 2.5.2 First strand cDNA synthesis .65 2.5.3 PCR and gel electrophoresis .66 2.5.4 Real-time PCR quantification analysis .68 2.6 Luciferase assay .70 2.6.1 Promoter study 70 2.6.2 Mammalian two-hybrid assay .71 2.7 Statistical analysis 71 2.8 Chromatin immunoprecipitation (ChIP) 72 2.9 Immunoprecipitation (IP) .75 2.10 In vivo ubiquitination assay .75 2.11 In vivo SUMOylation assay .76 2.12 Western blot .76 2.13 Fluorescence imaging 78 CHAPTER RESULTS .80 3.1 Pin1 induces gonadotropin β subunit gene transcription .80 3.1.1 Pin1 over-expression increases gonadotropin β subunit gene transcription .80 3.1.2 Pin1 knock-down decreases gonadotropin β subunit gene transcription 85 3.2 Pin1 is both transcriptionally and post-translationally regulated by GnRH 87 3.2.1 GnRH increases Pin1 protein levels .87 3.2.2 GnRH alters phosphorylation status of Pin1 .89 3.3 Pin1 is present on the promoters of the LHβ and FSHβ genes and interacts with various gene-specific transcription factors 93 3.3.1 Pin1 is present on the promoters of the LHβ and FSHβ genes .93 3.3.2 Pin1 interacts with various gene-specific transcription factors 95 iii 3.4 Pin1 increases transcriptional activity of SF-1, Pitx1 and Egr-1 .99 3.5 Effects of Pin1 on the levels of these transcription factors 102 3.6 Regulation of SF-1 ubiquitination .104 3.6.1 Ser 203 is required for SF-1 ubiquitination 104 3.6.2 Pin1 is required for SF-1 ubiquitination .106 3.7 GnRH treatment stimulates SF-1 ubiquitination 108 3.8 SF-1 can be ubiquitinated or SUMOylated at Lys 119 115 3.9 Poly-ubiquitin chains on SF-1 are assembled through either Lys 48 or Lys 63 of ubiquitin .117 3.10 SF-1 ubiquitination, but not SUMOylation, facilitates its interaction with Pitx1 119 3.11 Ubiquitination of SF-1 leads to its nuclear export .122 3.12 Pin1 targets SF-1 to increase its interaction with Pitx1 .124 3.13 Pin1 interacts with ATF3 .129 3.14 Pin1 increases the stability of ATF3 131 3.15 GnRH stimulates ATF3 transcription 133 3.16 Pin1, c-Jun and ATF3 form a complex in gonadotropes .135 3.17 ATF3 is SUMOylated 137 CHAPTER DISCUSSION AND CONCLUSIONS 140 4.1 Reproductive abnormalities in Pin1 knockout mice 140 4.2 Pin1 is involved in gonadotropin synthesis through its action on specific transcription factors .143 4.2.1 Pin1 is present on the promoters of both gonadotropin β subunit genes 145 4.2.2 Effect of Pin1 on the transactivation function of these transcription factors 146 4.2.3 Pin1 promotes ubiquitination of SF-1, which is required for SF-1 cofactor recruitment .147 4.2.4 Effect of Pin1 on protein stability of Pitx1 .152 4.3 Regulation of Pin1 by GnRH .153 4.3.1 Expression of Pin1 is induced by GnRH 154 4.3.2 Phosphorylation of Pin1 is regulated by GnRH 154 4.4 Regulation of SF-1 transcriptional activity by the crosstalk between various post-translational modifications .155 4.5 Interaction between Pin1 and ATF3 157 4.6 The Effect of Pin1 on ATF3 protein level .158 4.7 SUMOylation of ATF3 159 4.8 Conclusions 160 REFERENCES .162 iv SUMMARY Pin1 is a peptidyl-prolyl cis/trans isomerase which catalyzes the isomerization of phosphorylated Ser/Thr-Pro peptide bonds. Pin1 knockout mice have marked abnormalities in their reproductive development and function. However, the molecular mechanisms underlying their reproductive defects are poorly understood. In this study, it has been demonstrated that Pin1 is required for both basal and GnRH-induced gonadotropin β subunit gene transcription through physical and functional interactions with the transcription factors SF-1, Pitx1, and Egr-1. Pin1 activates transcription of the gonadotropin β subunit genes synergistically with these transcription factors, either by modulating their stability or by increasing their protein–protein interactions. Notably, it has been shown that Pin1 is required for the Ser 203 phosphorylation-dependent ubiquitination of SF-1, which facilitates SF-1–Pitx1 interactions and therefore results in an enhancement of SF-1 transcriptional activity. It has also been demonstrated that in gonadotrope cells sufficient levels of activated Pin1 are maintained through transcriptional and post-translational regulation by GnRH-induced signaling cascades. These results suggest that Pin1 functions as a novel player in GnRH-induced signal pathways and is involved in gonadotropin β subunit gene transcription by modulating the activity of various specific transcription factors. In addition, in this study it has been shown that Pin1 can complex with the αGSU gene transcription factors, c-Jun and ATF3, and increase the protein level of ATF3 in gonadotropes. These findings would lay the foundation for investigating whether Pin1 plays a role in transcriptional regulation of αGSU gene. v LIST OF TABLES Table 1.1: Overview of selected SF-1 target genes .28 Table 2.1: Optimized Lipofectamine 2000 (μL) : DNA (μg) 55 Table 2.2: Optimized GenePORTER (μL) : DNA (μg) 55 Table 2.3: Primer sequences for pCS2+ Pin1 and pCS2+ ATF3 constructs .58 Table 2.4: Primer sequences for tagged expression vectors 59 Table 2.5: Primer sequences for site-directed mutations .60 Table 2.6: Primers used for DNA sequencing .62 Table 2.7: Sequencing PCR reaction mixture 62 Table 2.8: Sequencing PCR parameters .63 Table 2.9: First strand cDNA synthesis reaction mixure .66 Table 2.10: Primers used for RT-PCR analysis .67 Table 2.11: PCR reaction mixure .67 Table 2.12: PCR parameters 68 Table 2.13: Primers used for real-time PCR analysis 69 Table 2.14: Real-time PCR reaction mixure 69 Table 2.15: Real-time PCR parameters .70 Table 2.16: Buffers used in ChIP analysis .74 Table 2.17: Primers used for amplification of the mouse LHβ and FSHβ promoters in ChIP .74 Table 2.18: Buffers used in Western blot 78 vi LIST OF FIGURES Fig 1.1: Schematic overview of the reproductive axis in male and female mammals .3 Fig 1.2: Schematic diagram of GnRH-induced signaling cascades .6 Fig 1.3: Schematic model of several elements defining the αGSU expression. Fig 1.4: Schematic models of transcription factors activating rodent gonadotropin β subunit gene expression. 10 Fig 1.5: Schematic model of the action of Pin1 in catalyzing cis-trans isomerization of pSer/Thr-Pro motif .18 Fig 1.6: The involvement of Pin1 in various cellualr processes and functional targets of Pin1 22 Fig 1.7: Schematic model of key structural domains in SF-1 29 Fig 1.8: Overview of SF-1 interaction partners. 32 Fig 1.9: ATF3 is able to function as both a tumour suppressor and oncogenic protein. 40 Fig 1.10: Overview of ubiquitination and SUMOylation conjugation pathway 44 Fig 3.1: Pin1 over-expression increases promoter activity of gonadotropin β subunit genes. .81 Fig 3.2: Pin1 over-expression increases endogenous mRNA levels of gonadotropin β subunit genes 82 Fig 3.3: Wild type Pin1, but not its WW domain and PPIase domain mutants, increases endogenous mRNA levels of gonadotropin β subunit genes. 84 Fig 3.4: Pin1 knock-down decreases endogenous mRNA levels of gonadotropin β subunit genes 86 Fig 3.5: GnRH increases Pin1 protein levels. 88 Fig 3.6: GnRH alters the phosphorylation status of Pin1. .90 Fig 3.7: p-Pin1 is associated with calcineurin catalytic subunit A. .92 Fig 3.8: Pin1 is present on the proximal promoters of the LHβ and FSHβ genes. 94 Fig 3.9: Co-immunoprecipitation of Pin1 and various gonadotropin β subunit gene-specific transcription factors. 96 Fig 3.10: Interaction between Pin1 and various gonadotropin β subunit gene-specific transcription factors shown by mammalian two-hybrid assays. 96 Fig 3.11: Mutagenesis of Ser/Thr-Pro motifs in SF-1 and Pitx1 reduces the interaction between Pin1 and SF-1 or Pitx1 .98 Fig 3.12: Pin1 and SF-1 have a synergistic effect on the LHβ but not on the FSHβ gene promoter. .100 Fig 3.13: Pin1 and Pitx1 have a synergistic effect on the FSHβ but not on the LHβ gene promoter. .100 Fig 3.14: Pin1 and Egr-1 have a synergistic effect on the LHβ gene promoter .101 Fig 3.15: Effects of Pin1 on the levels of these transcription factors. .103 Fig 3.16: Ubiquitination of SF-1 requires Ser 203. .105 Fig 3.17: Ubiquitination of SF-1 requires Pin1. 107 vii Fig 3.18: GnRH treatment increases ubiquitination of SF-1. 108 Fig 3.19: U0126 treatment inhibits GnRH-induced SF-1 ubiquitination. .110 Fig 3.20: Roscovitine (ROS) treatment inhibits SF-1 ubiquitination. .112 Fig 3.21: Dominant negative mutant CDK7 inhibits SF-1 ubiquitination .114 Fig 3.22: SF-1 is ubiquitinated at Lys 119 .115 Fig 3.23: SF-1 is SUMOylated at Lys 119 and Lys 194 116 Fig 3.24: SF-1 is ubiquitinated via Lys 48- and Lys 63-linked poly-ubiquitin chains. 118 Fig 3.25: SF-1 ubiquitination facilitates its interaction with Pitx1 121 Fig 3.27: Interaction between SF-1 and Pitx1 decreases in the absence of Pin1 .125 Fig 3.28: Exogenous Pin1 rescues the interaction between SF-1 and Pitx1 in MEF Pin1 –/– cells 127 Fig 3.29: Mutation of Pin1 binding site in SF-1 reduces its interaction with Pitx1. .128 Fig 3.30: Interaction between Pin1 and ATF3 .130 Fig 3.31: Pin1 stabilizes ATF3. .132 Fig 3.32: GnRH upregulates ATF3 transcriptionally. .134 Fig 3.33: Pin1, c-Jun and ATF3 form a complex in gonadotropes 136 Fig 3.34: ATF3 is SUMOylated in LβT2 cells. .139 Fig 4.1: Model of regulation of gonadotropin β subunit gene transcription by Pin1.161 viii References characterization of phospholipids as ligands for the orphan nuclear receptor steroidogenic factor-1. Mol Cell 17: 491-502. Liang, G., Wolfgang, C. D., Chen, B. P., Chen, T. H., and Hai, T. (1996). ATF3 gene. Genomic organization, promoter, and regulation. J Biol Chem 271: 1695-1701. Lim, S., Luo, M., Koh, M., Yang, M., bin Abdul Kadir, M. N., Tan, J. H., Ye, Z., Wang, W., and Melamed, P. (2007). Distinct mechanisms involving diverse histone deacetylases repress expression of the two gonadotropin β-subunit genes in immature gonadotropes, and their actions are overcome by gonadotropin-releasing hormone. Mol Cell Biol 27: 4105-4120. Lim, S., Pnueli, L., Tan, J. H., Naor, Z., Rajagopal, G., and Melamed, P. (2009). Negative feedback governs gonadotrope frequency-decoding of gonadotropin releasing hormone pulse-frequency. PLoS One 4: e7244. Lin, X., Liang, M., Liang, Y. Y., Brunicardi, F. C., and Feng, X. H. (2003). SUMO-1/Ubc9 promotes nuclear accumulation and metabolic stability of tumor suppressor Smad4. J Biol Chem 278: 31043-31048. Ling, M. T., Wang, X., Zhang, X., and Wong, Y. C. (2006). The multiple roles of Id-1 in cancer progression. Differentiation 74: 481-487. Liou, Y. C., Ryo, A., Huang, H. K., Lu, P. J., Bronson, R., Fujimori, F., Uchida, T., Hunter, T., and Lu, K. P. (2002). Loss of Pin1 function in the mouse causes phenotypes resembling cyclin D1-null phenotypes. Proc Natl Acad Sci USA 99: 1335-1340. Liou, Y. C., Sun, A., Ryo, A., Zhou, X. Z., Yu, Z. X., Huang, H. K., Uchida, T., Bronson, R., Bing, G., Li, X., Hunter, T., and Lu, K. P. (2003). Role of the prolyl isomerase Pin1 in protecting against age-dependent neurodegeneration. Nature 424: 556-561. Lu, D., Chen, J., and Hai, T. (2007). The regulation of ATF3 gene expression by mitogen-activated protein kinases. Biochem J 401: 559-567. Lu, D., Wolfgang, C. D., and Hai, T. (2006). Activating transcription factor 3, a stress-inducible gene, suppresses Ras-stimulated tumorigenesis. J Biol Chem 281: 10473-10481. Liu, F., Austin, D. A., Mellon, P. L., Olefsky, J. M., and Webster, N. J. (2002). GnRH activates ERK1/2 leading to the induction of c-fos and LHβ protein expression in LβT2 cells. Mol Endocrinol 16: 419-434. 176 References Lu, K. P. (2004). Pinning down cell signaling, cancer and Alzheimer’s disease. Trends Biochem Sci 29: 200-209. Lu, K. P., Hanes, S. D., and Hunter, T. (1996). A human peptidylprolyl isomerase essential for regulation of mitosis. Nature 380: 544-547. Lu, K. P., Liou, Y. C., and Zhou, X. Z. (2002). Pinning down proline-directed phosphorylation signaling. Trends Cell Biol 12: 164-172. Lu, K. P., and Zhou, X. Z. (2007). The prolyl isomerase PIN1: a pivotal new twist in phosphorylation signalling and disease. Nat Rev Mol Cell Biol 8: 904-916. Lu, P. J., Wulf, G., Zhou, X. Z., Davies, P., and Lu, K. P. (1999). The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein. Nature 399: 784-788. Lu, P. J., Zhou, X. Z., Liou, Y. C., Noel, J. P., and Lu, K. P. (2002). Critical role of WW domain phosphorylation in regulating phosphoserine binding activity and Pin1 function. J Biol Chem 277: 2381-2384. Luo, M., Koh, M., Feng, J., Wu, Q., and Melamed, P. (2005). Cross talk in hormonally regulated gene transcription through induction of estrogen receptor ubiquitylation. Mol Cell Biol 25: 7386-7398. Luo, X., Ikeda, Y., and Parker, K. L. (1994). A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 77: 481-490. Luo, Z., Wijeweera, A., Oh, Y., Liou, Y. C., and Melamed, P. (2010). Pin1 facilitates the phosphorylation-dependent ubiquitination of SF-1 to regulate gonadotropin β-subunit gene transcription. Mol Cell Biol 30: 745-763. Ma, X., Dong, Y., Matzuk, M. M., and Kumar, T. R. (2004). Targeted disruption of luteinizing hormone beta-subunit leads to hypogonadism, defects in gonadal steroidogenesis, and infertility. Proc Natl Acad Sci USA 101: 17294-17299. Macias, M. J., Wiesner, S., and Sudol, M. (2002). WW and SH3 domains, two different scaffolds to recognize proline-rich ligands. FEBS Lett 513: 30-37. Mahajan, R., Delphin, C., Guan, T., Gerace, L., and Melchior, F. (1997). A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88: 97-107. 177 References Mahajan, R., Gerace, L., and Melchior, F. (1998). Molecular characterization of the SUMO-1 modification of RanGAP1 and its role in nuclear envelope association. J Cell Biol 140: 259-270. Mantovani, F., Piazza, S., Gostissa, M., Strano, S., Zacchi, P., Mantovani, R., Blandino, G., and Del Sal, G. (2004). Pin1 links the activities of c-Abl and p300 in regulating p73 function. Mol Cell 14: 625-636. Mantovani, F., Tocco, F., Girardini, J., Smith, P., Gasco, M., Lu, X., Crook, T., and Del Sal, G. (2007). The prolyl isomerase Pin1 orchestrates p53 acetylation and dissociation from the apoptosis inhibitor iASPP. Nat Struct Mol Biol 14: 912-920. Massague, J. (2000). How cells read TGF-beta signals. Nat Rev Mol Cell Biol 1: 169-178. Matunis, M. J., Wu, J., and Blobel, G. (1998). SUMO-1 modification and its role in targeting the Ran GTPase-activating protein, RanGAP1, to the nuclear pore complex. J Cell Biol 140: 499-509. Matsumoto-Taniura, N., Pirollet, F., Monroe, R., Gerace, L., and Westendorf, J. M. (1996). Identification of novel M phase phosphoprotein by expression cloning. Mol Biol Cell 7: 1455-1469. Maurer, R. A., Kim, K. E., Schoderbek, W. E., Roberson, M. S., and Glenn, D. J. (1999). Regulation of glycoprotein hormone α-subunit gene expression. Recent Prog Horm Res 54: 455-484. Mayer, S. I., Dexheimer, V., Nishida, E., Kitajima, S., and Thiel, G. (2008). Expression of the transcriptional repressor ATF3 in gonadotrophs is regulated by Egr-1, CREB, and ATF2 after gonadotropin-releasing hormone receptor stimulation. Endocrinology 149: 6311-6325. Maytin, E. V., Ubeda, M., Lin, J. C., and Habener, J. F. (2001). Stress-inducible transcription factor CHOP/gadd153 induces apoptosis in mammalian cells via p38 kinase-dependent and -independent mechanisms. Exp Cell Res 267: 193-204. Melamed, P., Koh, M., Preklathan, P., Bei, L., and Hew, C. (2002). Multiple mechanisms for Pitx-1 transactivation of a luteinizing hormone β subunit gene. J Biol Chem 277: 26200-26207. Melamed, P., Abdul Kadir, M. N., Wijeweera, A., and Seah, S. (2006). Transcription of gonadotropin β subunit genes involves cross-talk between the transcription factors and co-regulators that mediate actions of the regulatory hormones. Mol Cell Endocrinol 252: 167-183. 178 References Milanini-Mongiat, J., Pouysségur, J., and Pagès, G. (2002). Identification of two Sp1 phosphorylation sites for p42/p44 mitogen-activated protein kinases: their implication in vascular endothelial growth factor gene transcription. J Biol Chem 277: 20631-20639. Miyashita, H., Mori, S., Motegi, K., Fukumoto, M., and Uchida, T. (2003). Pin1 is overexpressed in oral squamous cell carcinoma and its levels correlate with cyclin D1 overexpression. Oncol Rep 10: 455-461. Monje, P., Hernández-Losa, J., Lyons, R. J., Castellone, M. D., and Gutkind, J. S. (2005). Regulation of transcriptional activity of c-Fos by ERK. A novel role for the prolyl isomerase Pin1. J Biol Chem 280: 35081-35084. Monte, D., DeWitte, F., and Hum, D. W. (1998). Regulation of the human P450scc gene by steroidogenic factor is mediated by CBP/p300. J Biol Chem 273: 4585-4591. Morohashi, K., Honda, S., Inomata, Y., Handa, H., and Omura, T. (1992). A common trans-acting factor, Ad4-binding protein, to the promoters of steroidogenic P-450s. J Biol Chem 267: 17913-17919. Mouillet, J. F., Sonnenberg-Hirche, C., Yan, X., and Sadovsky, Y. (2004). p300 regulates the synergy of steroidogenic factor-1 and early growth response-1 in activating luteinizing hormone-beta subunit gene. J Biol Chem 279: 7832-7839. Mukhopadhyay, D., Ayaydin, F., Kolli, N., Tan, S. H., Anan, T., Kametaka, A., Azuma, Y., Wilkinson, K. D., and Dasso, M. (2006). SUSP1 antagonizes formation of highly SUMO2/3-conjugated species. J Cell Biol 174: 939-949. Muller, S., Ledl, A., and Schmidt, D. (2004). SUMO: a regulator of gene expression and genome integrity. Oncogene 23: 1998-2008. Muratani, M., and Tansey, W. P. (2003). How the ubiquitin-proteasome system controls transcription. Nat Rev Mol Cell Biol 4: 192-201. Murayama, C., Miyazaki, H., Miyamoto, A., and Shimizu, T. (2008). Involvement of Ad4BP/SF-1, DAX-1, and COUP-TFII transcription factor on steroid production and luteinization in ovarian theca cells. Mol Cell Biochem 314: 51-58. Nachtigal, M. W., Hirokawa, Y., Enyeart-VanHouten, D. L., Flanagan, J. N., Hammer, G. D., and Ingraham, H. A. (1998). Wilms’ tumor and Dax-1 modulate the orphan nuclear receptor SF-1 in sex-specific gene expression. Cell 93: 445-454. 179 References Nakagomi, S., Suzuki, Y., Namikawa, K., Kiryu-Seo, S., and Kiyama, H. (2003). Expression of the activating transcription factor prevents c-Jun N-terminal kinase-induced neuronal death by promoting heat shock protein 27 expression and Akt activation. J Neurosci 23: 5187-5196. Nakano, A., Koinuma, D., Miyazawa, K., Uchida, T., Saitoh, M., Kawabata, M., Hanai, J., Akiyama, H., Abe, M., Miyazono, K., Matsumoto, T., and Imamura, T. (2009). Pin1 down-regulates transforming growth factor-β (TGF-β) signaling by inducing degradation of Smad proteins. J Biol Chem 284: 6109-6115. Naor, Z. (2009). Signaling by G-protein-coupled receptor (GPCR): studies on the GnRH receptor. Front Neuroendocrinol 30: 10-29. Newton, K., Matsumoto, M. L., Wertz, I. E., Kirkpatrick, D. S., Lill, J. R., Tan, J., Dugger, D., Gordon, N., Sidhu, S. S., Fellouse, F. A., Komuves, L., French, D. M., Ferrando, R. E., Lam, C., Compaan, D., Yu, C., Bosanac, I., Hymowitz, S. G., Kelley, R. F., and Dixit, V. M. (2008). Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies. Cell 134: 668-678. Ng, H. H., Xu, R. M., Zhang, Y. M., and Struhlm, K. (2002). Ubiquitination of histone H2B by Rad6 is required for efficient Dot1-mediated methylation of histone H3 lysine 79. J Biol Chem 277: 34655-34657. Nussey, S. S., and Whitehead, S. A. (1999). Endocrinology, an integrated approach. BIOS Scientific Publishers Ltd. Oh, Y. K., Lee, H. J., Jeong, M. H., Rhee, M., Mo, J. W., Song, E. H., Lim, J. Y., Choi, K. H., Jo, I., Park, S. I., Gao, B., Kwon, Y., and Kim, W. H. (2008). Role of activating transcription factor on TAp73 stability and apoptosis in paclitaxel-treated cervical cancer cells. Mol Cancer Res 6: 1232-1249. Oh, Y. Z. (2007). Elucidating the role of Pin1 in the gonadotropes. Honours Thesis. National University of Singapore Okamoto, Y., Chaves, A., Chen, J., Kelley, R., Jones, K., Weed, H. G., Gardner, K. L., Gangi, L., Yamaguchi, M., Klomkleaw, W., Nakayama, T., Hamlin, R. L., Carnes, C., Altschuld, R., Bauer, J., and Hai, T. (2001). Transgenic mice with cardiac-specific expression of activating transcription factor 3, a stress-inducible gene, have conduction abnormalities and contractile dysfunction. Am J Pathol 159: 639-650. Osmani, S. A., Pu, R. T., and Morris, N. R. (1988). Mitotic induction and maintenance by overexpression of a G2-specific gene that encodes a potential protein kinase. Cell 53: 237-244. 180 References Ou, Q., Mouillet, J. F., Yan, X., Dorn, C., Crawford, P. A., and Sadovsky, Y. (2001). The DEAD box protein DP103 is a regulator of steroidogenic factor-1. Mol Endocrinol 15: 69-79. Pan, C. Q., Liou, Y. C., and Low, B. C. (2010). Active Mek2 as a regulatory scaffold that promotes Pin1 binding to BPGAP1 to suppress BPGAP1-induced acute Erk activation and cell migration. J Cell Sci 123: 903-916. Pan, Y., Chen, H., Siu, F., and Kilberg, M. S. (2003). Amino acid deprivation and endoplasmic reticulum stress induce expression of multiple activating transcription factor-3 mRNA species that, when overexpressed in HepG2 cells, modulate transcription by the human asparagine synthetase promoter. J Biol Chem 278: 38402-38412. Papouli, E., Chen, S., Davies, A. A., Huttner, D., Krejci, L., Sung, P., and Ulrich, H. D. (2005). Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol Cell 19: 123-133. Parker, K. L., and Schimmer, B. P. (1997). Steroidogenic factor 1: a key determinant of endocrine development and function. Endocr Rev 18: 361-377. Pastorino, L., Sun, A., Lu, P. J., Zhou, X. Z., Balastik, M., Finn, G., Wulf, G., Lim, J., Li, S. H., Li, X., Xia, W., Nicholson, L. K., and Lu, K. P. (2006). The prolyl isomerase Pin1 regulates amyloid precursor protein processing and amyloid-β production. Nature 440: 528-534. Pawson, A. J., and McNeilly, A. S. (2005). The pituitary effects of GnRH. Anim Reprod Sci 88: 75-94. Pelzer, A. E., Bektic, J., Haag, P., Berger, A. P., Pycha, A., Schäfer, G., Rogatsch, H., Horninger, W., Bartsch, G., and Klocker, H. (2006). The expression of transcription factor activating transcription factor in the human prostate and its regulation by androgen in prostate cancer. J Urol 175: 1517-1522. Pfander, B., Moldovan, G. L., Sacher, M., Hoege, C., and Jentsch, S. (2005). SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436: 428-433. Phan, R. T., Saito, M., Kitagawa, Y., Means, A. R., and Dalla-Favera, R. (2007). Genotoxic stress regulates expression of the proto-oncogene Bcl6 in germinal center B cells. Nat Immunol 8: 1132-1139. Pickart, C. M., and Fushman, D. (2004). Polyubiquitin chains: polymeric protein signals. Curr Opin Chem Biol 8: 610-616. 181 References Pierce, J. G., and Parsons, T. F. (1981). Glycoprotein hormones: structure and function. Annu Rev Biochem 50: 465-495. Pinton, P., Rimessi, A., Marchi, S., Orsini, F., Migliaccio, E., Giorgio, M., Contursi, C., Minucci, S., Mantovani, F., Wieckowski, M. R., Del Sal, G., Pelicci, P. G., and Rizzuto, R. (2007). Protein kinase C β and prolyl isomerase regulate mitochondrial effects of the life-span determinant p66Shc. Science 315: 659-663. Pouponnot, C., Sii-Felice, K., Hmitou, I., Rocques, N., Lecoin, L., Druillennec, S., Felder-Schmittbuhl, M. P., and Eychène, A. (2006). Cell context reveals a dual role for Maf in oncogenesis. Oncogene 25: 1299-1310. Quirk, C. C., Lozada, K. L., Keri, R. A., and Nilson, J. H. (2001). A single Pitx1 binding site is essential for activity of the LHβ promoter in transgenic mice. Mol Endocrinol 15: 734-746. Ramayya, M. S., Zhou, J., Kino, T., Segars, J. H., Bondy, C. A., and Chrousos, G. P. (1997). Steroidogenic factor messenger ribonucleic acid expression in steroidogenic and nonsteroidogenic human tissues: Northern blot and in situ hybridization studies. J Clin Endocrinol Metab 82: 1799-1806. Ranganathan, R., Lu, K. P., Hunter, T., and Noel, J. P. (1997). Structural and functional analysis of the mitotic peptidyl-prolyl isomerase Pin1 suggests that substrate recognition is phosphorylation dependent. Cell 89: 875-886. Reid, G., Hübner, M. R., Métivier, R., Brand, H., Denger, S., Manu, D., Beaudouin, J., Ellenberg, J., and Gannon, F. (2003). Cyclic, proteasome-mediated turnover of unliganded and liganded ERalpha on responsive promoters is an integral feature of estrogen signaling. Mol Cell 11: 695-707. Renzi, L., Gersch, M. S., Campbell, M. S., Wu, L., Osmani, S. A., and Gorbsky, G. J. (1997). MPM-2 antibody-reactive phosphorylations can be created in detergent-extracted cells by kinetochore-bound and soluble kinases. J Cell Sci 110: 2013-2025. Roberson, M. S., Ban, M., Zhang, T., and Mulvaney, J. M. (2000). Role of the cyclic AMP response element binding complex and activation of mitogen-activated protein kinases in synergistic activation of the glycoprotein hormone α subunit gene by epidermal growth factor and forskolin. Mol Cell Biol 20: 3331-3344. Roberson, M. S., Misra-Press, A., Laurance, M. E., Stork, P. J., and Maurer, R. A. (1995). A role for mitogen-activated protein kinase in mediating activation of the glycoprotein hormone α subunit promoter by gonadotropin-releasing hormone. Mol Cell Biol 15: 3531-3539. 182 References Roberson, M. S., Schoderbek, W. E., Tremml, G., and Maurer, R. A. (1994). Activation of the glycoprotein hormone α subunit promoter by a LIM-homeodomain transcription factor. Mol Cell Biol 14: 2985-2993. Roberts, A. B., and Wakefield, L. M. (2003). The two faces of transforming growth factor beta in carcinogenesis. Proc Natl Acad Sci USA 100: 8621-8623. Roelen, B. A. J., Cohen, O. S., Raychowdhury, M. K., Chadee, D. N., Zhang, Y., Kyriakis, J. M., Alessandrini A. A., and Lin, H. Y. (2003). Phosphorylation of threonine 276 in Smad4 is involved in transforming growth factor-β-induced nuclear accumulation. Am J Physiol Cell Physiol 285: 823-830. Rodriguez, M. S., Dargemont, C., and Hay, R. T. (2001). SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J Biol Chem 276: 12654-12659. Russell, L. D., Corbin, T. J., Borg, K. E., De Franca, L. R., Grasso, P., and Bartke, A. (1993). Recombinant human follicle-stimulating hormone is capable of exerting a biological effect in the adult hypophysectomized rat by reducing the numbers of degenerating germ cells. Endocrinology 133: 2062-2070. Rustighi, A., Tiberi, L., Soldano, A., Napoli, M., Nuciforo, P., Rosato, A., Kaplan, F., Capobianco, A., Pece, S., Di Fiore, P. P., and Del Sal, G. (2009). The prolyl-isomerase Pin1 is a Notch1 target that enhances Notch1 activation in cancer. Nat Cell Biol 11: 133-142. Ryo, A., Hirai, A., Nishi, M., Liou, Y. C., Perrem, K., Lin, S. C., Hirano, H., Lee, S. W., and Aoki, I. (2007). A suppressive role of the prolyl isomerase Pin1 in cellular apoptosis mediated by the death-associated protein Daxx. J Biol Chem 282: 36671-36681. Ryo, A., Liou, Y. C., Wulf, G., Nakamura, M., Lee, S. W., and Lu, K. P. (2002). PIN1 is an E2F target gene essential for Neu/Ras-induced transformation of mammary epithelial cells. Mol Cell Biol 22: 5281-5295. Ryo, A., Nakamura, M., Wulf, G., Liou, Y. C., and Lu, K. P. (2001). Pin1 regulates turnover and subcellular localization of β-catenin by inhibiting its interaction with APC. Nat Cell Biol 3: 793-801. Ryo, A., Suizu, F., Yoshida, Y., Perrem, K., Liou, Y. C., Wulf, G., Rottapel, R., Yamaoka, S., and Lu, K. P. (2003). Regulation of NF-κB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA. Mol Cell 12: 1413-1426. 183 References Ryo, A., Uemura, H., Ishiguro, H., Saitoh, T., Yamaguchi, A., Perrem, K., Kubota, Y., Lu., K. P., and Aoki, I. (2005). Stable suppression of tumorigenicity by Pin1-targeted RNA interference in prostate cancer. Clin Cancer Res 11: 7523-7531. Saitoh, H., and Hinchey, J. (2000). Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J Biol Chem 275: 6252-6258. Saitoh, T., Tun-Kyi, A., Ryo, A., Yamamoto, M., Finn, G., Fujita, T., Akira, S., Yamamoto, N., Lu, K. P., and Yamaoka, S. (2006). Negative regulation of interferon-regulatory factor 3-dependent innate antiviral response by the prolyl isomerase Pin1. Nat Immunol 7: 598-605. Schoderbek, W. E., Kim, K. E., Ridgway, E. C., Mellon, P. L., and Maurer, R. A. (1992). Analysis of DNA sequences required for pituitary-specific expression of the glycoprotein hormone α subunit gene. Mol Endocrinol 6: 893-903. Schoderbek, W. E., Roberson, M. S., and Maurer, R. A. (1993). Two different DNA elements mediate gonadotropin releasing hormone effects on expression of the glycoprotein hormone α subunit gene. J Biol Chem 268: 3903-3910. Schwartz, D. C., and Hochstrasser, M. (2003). A superfamily of protein tags: ubiquitin, SUMO and related modifiers. Trends Biochem Sci 28: 321-328. Schwarz, S. E., Matuschewski, K., Liakopoulos, D., Scheffner, M., and Jentsch, S. (1998). The ubiquitin-like proteins SMT3 and SUMO-1 are conjugated by the UBC9 E2 enzyme. Proc Natl Acad Sci USA 95: 560-564. Sears, R. C. (2004). The life cycle of C-myc: from synthesis to degradation. Cell Cycle 3: 1133-1137. Shembade, N., Ma, A., and Harhaj, E. W. (2010). Inhibition of NF-kappaB signaling by A20 through disruption of ubiquitin enzyme complexes. Science 327: 1135-1139. Shen, M., Stukenberg, P. T., Kirschner, M. W., and Lu, K. P. (1998). The essential mitotic peptidyl-prolyl isomerase Pin1 binds and regulates mitosis-specific phosphoproteins. Genes Dev 12: 706-720. Shen, W. H., Moore, C. C., Ikeda, Y., Parker, K. L., and Ingraham, H. A. (1994). Nuclear receptor steroidogenic factor regulates the mullerian inhibiting substance gene: a link to the sex determination cascade. Cell 77: 651-661. Sheng, H. Z., Zhadanov, A. B., Mosinger, B. Jr., Fujii, T., Bertuzzi, S., Grinberg, A., Lee, E. J., Huang, S. P., Mahon, K. A., and Westphal, H. (1996). Specification of pituitary cell lineages by the LIM homeobox gene Lhx3. Science 272: 1004-1007. 184 References Shinoda, K., Lei, H., Yoshii, H., Nomura, M., Nagano, M., Shiba, H., Sasaki, H., Osawa, Y., Ninomiya, Y., Niwa, O., Morohashi, K. I., and Li, E. (1995). Developmental defects of the ventromedial hypothalamic nucleus and pituitary gonadotroph in the Ftz-F1 disrupted mice. Dev Dyn 204: 22-29. Shtil, A. A., Mandlekar, S., Yu, R., Walter, R. J., Hagen, K., Tan, T. H., Roninson, I. B., and Kong, A. N. (1999). Differential regulation of mitogen-activated protein kinases by microtubule-binding agents in human breast cancer cells. Oncogene 18: 377-384. Sims, J. J., and Cohen, R. E. (2009). Linkage-specific avidity defines the lysine 63-linked polyubiquitin-binding preference of rap80. Mol Cell 33: 775-783. Stearns, M. E., Kim, G., Garcia, F., and Wang, M. (2004). Interleukin-10 induced activating transcription factor transcriptional suppression of matrix metalloproteinase-2 gene expression in human prostate CPTX-1532 Cells. Mol Cancer Res 2: 403-416. Steffan, J. S., Agrawal, N., Pallos, J., Rockabrand, E., Trotman, L. C., Slepko, N., Illes, K., Lukacsovich, T., Zhu, Y. Z., Cattaneo, E., Pandolfi, P. P., Thompson, L. M., and Marsh, J. L. (2004). SUMO modification of Huntingtin and Huntington's disease pathology. Science 304: 100-104. Steger, D. J., Hecht, J. H., and Mellon, P. L. (1994). GATA-binding proteins regulate the human gonadotropin -subunit gene in the placenta and pituitary gland. Mol Cell Biol 14: 5592-5602. Stelter, P., and Ulrich, H. D. (2003). Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425: 188-191. Strahl, B. D., Huang, H. J., Sebastian, J., Ghosh, B. R., and Miller, W. L. (1998). Transcriptional activation of the ovine follicle-stimulating hormone β subunit gene by gonadotropin-releasing hormone: involvement of two activating protein-1-binding sites and protein kinase C. Endocrinology 139: 4455-4465. Stukenberg, P. T., and Kirschner, M. W. (2001). Pin1 acts catalytically to promote a conformational change in Cdc25. Mol Cell 7: 1071-1083. Sun, H., Leverson, J. D., and Hunter, T. (2007). Conserved function of RNF4 family proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins. EMBO J 26: 4102-4112. Sun, L., and Chen, Z. J. (2004). The novel functions of ubiquitination in signaling. Curr Opin Cell Biol 16: 119-126. 185 References Sun, Z. W., and Allis, C. D. (2002). Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature 418: 104-108. Suszko, M. I., Lo, D. J., Suh, H., Camper, S. A., and Woodruff, T. K. (2003). Regulation of the rat follicle-stimulating hormone β subunit promoter by activin. Mol Endocrinol 17: 318-332. Suzuki, T., Kasahara, M., Yoshioka, H., Morohashi, K., and Umesono, K. (2003). LXXLL related motifs in Dax-1 have target specificity for the orphan nuclear receptors Ad4BP/SF-1 and LRH-1. Mol Cell Biol 23: 238-249. Syed, V., Mukherjee, K., Lyons-Weiler, J., Lau, K. M., Mashima, T., Tsuruo, T., and Ho, S. M. (2005). Identification of ATF-3, caveolin-1, DLC-1, and NM23-H2 as putative antitumorigenic, progesteroneregulated genes for ovarian cancer cells by gene profiling. Oncogene 24: 1774-1787. Tarn, C., Bilodeau, M. L., Hullinger, R. L., and Andrisani, O. M. (1999). Differential immediate early gene expression in conditional hepatitis B virus pX-transforming versus nontransforming hepatocyte cell lines. J Biol Chem 274: 2327-2336. Tatham, M. H., Geoffroy, M. C., Shen, L., Plechanovova, A., Hattersley, N., Jaffray, E. G., Palvimo, J. J., and Hay, R. T. (2008). RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol 10: 538-546. Tatham, M. H., Jaffray, E., Vaughan, O. A., Desterro, J. M., Botting, C. H., Naismith, J. H., and Hay, R. T. (2001). Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J Biol Chem 276: 35368-35374. Thompson, M. R., Xu, D., and Williams, B. R. (2009). ATF3 transcription factor and its emerging roles in immunity and cancer. J Mol Med 87: 1053-1060. Tiefenbach, J., Novac, N., Ducasse, M., Eck, M., Melchior, F., and Heinzel, T. (2006). SUMOylation of the corepressor N-CoR modulates its capacity to repress transcription. Mol Biol Cell 17: 1643-1651. Tremblay, J. J., and Drouin, J. (1999). Egr-1 is a downstream effector of GnRH and synergizes by direct interaction with Ptx1 and SF-1 to enhance luteinizing hormone β gene transcription. Mol Cell Biol 19: 2567-2576. Tremblay, J. J., Lanctot, C., and Drouin, J. (1998). The pan-pituitary activator of transcription, Ptx1 (pituitary homeobox 1), acts in synergy with SF-1 and Pit1 and is an upstream regulator of the Lim-homeodomain gene Lim3/Lhx3. Mol Endocrinol 12: 428-441. 186 References Tremblay, J. J., Marcil, A., Gauthier, Y., and Drouin, J. (1999). Ptx1 regulates SF-1 activity by an interaction that mimics the role of the ligand-binding domain. EMBO J 18: 3431-3441. Tsujino, H., Kondo, E., Fukuoka, T., Dai, Y., Tokunaga, A., Miki, K., Yonenobu, K., Ochi, T., and Noguchi, K. (2000). Activating transcription factor (ATF3) induction by axotomy in sensory and motoneurons: A novel neuronal marker of nerve injury. Mol Cell Neurosci 15: 170-182. Turgeon, J. L., Kimura, Y., Waring, D. W., and Mellon, P. L. (1996). Steroid and pulsatile gonadotropin-releasing hormone (GnRH) regulation of luteinizing hormone and GnRH receptor in a novel gonadotrope cell line. Mol Endocrinol 10: 439-450. Ueda, H., and Hirose, S. (1991). Defining the sequence recognized with BmFTZ-F1, a sequence specific DNA binding factor in the silkworm, Bombyx mori, as revealed by direct sequencing of bound oligonucleotides and gel mobility shift competition analysis. Nucleic Acids Res 19: 3689-3693. Ulrich, H. D. (2005). Mutual interactions between the SUMO and ubiquitin systems: a plea of no contest. Trends Cell Biol 15: 525-532. Ulrich, H. D. (2008). The fast-growing business of SUMO chains. Mol Cell 32: 301-305. Ulrich, H. D., Vogel, S., and Davies, A. A. (2005). SUMO keeps a check on recombination during DNA replication. Cell Cycle 4: 1699-1702. van Drogen, F., Sangfelt, O., Malyukova, A., Matskova, L., Yeh, E., Means, A. R., and Reed, S. I. (2006). Ubiquitylation of cyclin E requires the sequential function of SCF complexes containing distinct hCdc4 isoforms. Mol Cell 23: 37-48. Vasilyev, V. V., Pernasetti, F., Rosenberg, S. B., Barsoum, M. J., Austin, D. A., Webster, N. J., and Mellon, P. L. (2002). Transcriptional activation of the ovine follicle-stimulating hormone β gene by gonadotropin-releasing hormone involves multiple signal transduction pathways. Endocrinology 143: 1651-1659. Verdecia, M. A., Bowman, M. E., Lu, K. P., Hunter, T., and Noel, J. P. (2000). Structural basis for phosphoserine-proline recognition by group IV WW domains. Nat Struct Biol 7: 639-643. Walsh, H. E., and Shupnik, M. A. (2009). Proteasome regulation of dynamic transcription factor occupancy on the GnRH-stimulated luteinizing hormone beta-subunit promoter. Mol Endocrinol 23: 237-250. 187 References Wang, H., Matsuzawa, A., Brown, S. A., Zhou, J., Guy, C. S., Tseng, P. H., Forbes, K., Nicholson, T. P., Sheppard, P. W., Ha¨cker, H., Karin, M., and Vignali, D. A. (2008). Analysis of nondegradative protein ubiquitylation with a monoclonal antibody specific for lysine-63-linked polyubiquitin. Proc Natl Acad Sci USA 105: 20197-20202. Wang, J., Cao, Y., and Steiner, D. F. (2003). Regulation of proglucagon transcription by activated transcription factor (ATF) and a novel isoform, ATF3b, through the cAMP-response element/ATF site of the proglucagon gene promoter. J Biol Chem 278: 32899-32904. Wang, W., Zhang, C., Marimuthu, A., Krupka, H. I., Tabrizizad, M., Shelloe, R., Mehra, U., Eng, K., Nguyen, H., Settachatgul, C., Powell, B., Milburn, M. V., and West, B. L. (2005). The crystal structures of human steroidogenic factor-1 and liver receptor homologue-1. Proc Natl Acad Sci USA 102: 7505-7510. Wang, Z. J., Jeffs, B., Ito, M., Achermann, J. C., Yu, R. N., Hales, D. B., and Jameson, J. L. (2001). Aromatase (Cyp19) expression is up-regulated by targeted disruption of Dax1. Proc Natl Acad Sci USA 98: 7988-7993. Wertz, I. E., O'Rourke, K. M., Zhou, H., Eby, M., Aravind, L., Seshagiri, S., Wu, P., Wiesmann, C., Baker, R., Boone, D. L., Ma, A., Koonin, E. V., and Dixit, V. M. (2004). De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 430: 694-699. West, B. E., Parker, G. E., Savage, J. J., Kiratipranon, P., Toomey, K. S., Beach, L. R., Colvin, S. C., Sloop, K. W., and Rhodes, S. J. (2004). Regulation of the follicle-stimulating hormone β gene by the LHX3 LIM-homeodomain transcription factor. Endocrinology 145: 4866-4879. Westendorf, J. M., Rao, P. N., and Gerace, L. (1994). Cloning of cDNAs for M-phase phosphoproteins recognized by the MPM-2 monoclonal antibody and determination of the phosphorylated epitope. Proc Nat Acad Sci USA 91: 714-718. Wilson, T. E., Fahrner, T. J., and Milbrandt, J. (1993). The orphan receptors NGFI-B and steroidogenic factor establish monomer binding as a third paradigm of nuclear receptor-DNA interaction. Mol Cell Biol 13: 5794-5804. Windecker, H., and Ulrich, H. D. (2008). Architecture and assembly of poly-SUMO chains on PCNA in Saccharomyces cerevisiae. J Mol Biol 376: 221-231. Windle, J. J., Weiner, R. I., and Mellon, P. L. (1990). Cell lines of the pituitary gonadotrope lineage derived by targeted oncogenesis in transgenic mice. Mol Endocrinol 4: 597-603. 188 References Winnay, J. N., and Hammer, G. D. (2006). Adrenocorticotropic hormone-mediated signaling cascades coordinate a cyclic pattern of steroidogenic factor 1-dependent transcriptional activation. Mol Endocrinol 20: 147-166. Winnay, J. N., Xu, J., O’Malley, B. W., and Hammer, G. D. (2006). Steroid receptor coactivator-1 deficient mice exhibit altered hypothalamic-pituitary-adrenal axis function. Endocrinology 147: 1322-1332. Wolfe, M. W., and Call, G. B. (1999). Early growth response protein binds to the luteinizing hormone-beta promoter and mediates gonadotropin-releasing hormone-stimulated gene expression. Mol Endocrinol 13: 752-763. Wolfgang, C. D., Chen, B. P., Martindale, J. L., Holbrook, N. J., and Hai, T. (1997). gadd153/Chop10, a potential target gene of the transcriptional repressor ATF3. Mol Cell Biol 17: 6700-6707. Wolfgang, C. D., Liang, G., Okamoto, Y., Allen, A. E., and Hai, T. (2000). Transcriptional autorepression of the stress-inducible gene ATF3. J Biol Chem 275: 16865-16870. Wu, R. C., Feng, Q., Lonard, D. M., and O'Malley, B. W. (2007). SRC-3 coactivator functional lifetime is regulated by a phospho-dependent ubiquitin time clock. Cell 129: 1125-1140. Wulf, G., Garg, P., Liou, Y. C., Iglehart, D., and Lu, K. P. (2004). Modeling breast cancer in vivo and ex vivo reveals an essential role of Pin1 in tumorigenesis. EMBO J 23: 3397-3407. Wulf, G. M., Liou, Y. C., Ryo, A., Lee, S. W., and Lu, K. P. (2002). Role of Pin1 in the regulation of p53 stability and p21 transactivation, and cell cycle checkpoints in response to DNA damage. J Biol Chem 277: 47976-47979. Wulf, G. M., Ryo, A., Wulf, G. G., Lee, S. W., Niu, T., Petkova, V., and Lu, K. P. (2001). Pin1 is overexpressed in breast cancer and cooperates with Ras signaling in increasing the transcriptional activity of c-Jun towards cyclin D1. EMBO J 20: 3459-3472. Wurmbach, E., Yuen, T., Ebersole, B. J., and Sealfon, S. C. (2001). Gonadotropin-releasing hormone receptor-coupled gene network organization. J Biol Chem 276: 47195-47201. Xie, J., Bliss, S. P., Nett, T. M., Ebersole, B. J., Sealfon, S. C., and Roberson, M. S. (2005). Transcript profiling of immediate early genes reveals a unique role for activating transcription factor in mediating activation of the glycoprotein hormone α 189 References subunit promoter by gonadotropin-releasing hormone. Mol Endocrinol 19: 2624-2638. Xu, K., Shimelis, H., Linn, D. E,, Jiang, R., Yang, X., Sun, F., Guo, Z., Chen, H., Li, W., Chen, H., Kong, X., Melamed, J., Fang, S., Xiao, Z., Veenstra, T. D., and Qiu, Y. (2009). Regulation of androgen receptor transcriptional activity and specificity by RNF6-induced ubiquitination. Cancer Cell 15: 270-282. Yaffe, M. B., Schutkowski, M., Shen, M., Zhou, X. Z., Stukenberg, P. T., Rahfeld, J. U., Xu, J., Kuang, J., Kirschner, M. W., Fischer, G., Cantley, L. C., and Lu, K. P. (1997). Sequence-specific and phosphorylation-dependent proline isomerization: a potential mitotic regulatory mechanism. Science 278: 1957-1960. Yan, C., and Boyd, D. D. (2006). ATF3 regulates the stability of p53: a link to cancer. Cell Cycle 5: 926-929. Yan, C., Lu, D., Hai, T., and Boyd, D. D. (2005). Activating transcription factor 3, a stress sensor, activates p53 by blocking its ubiquitination. EMBO J 24: 2425-2435. Yan, C., Wang, H., and Boyd, D. D. (2002). ATF3 represses 72-kDa type IV collagenase (MMP-2) expression by antagonizing p53-dependent trans-activation of the collagenase promoter. J Biol Chem 277: 10804-10812. Yan, X., Mouillet, J. F., Ou, Q., and Sadovsky, Y. (2003). A novel domain within the DEAD-box protein DP103 is essential for transcriptional repression and helicase activity. Mol Cell Biol 23: 414-423. Yang, S. H., Galanis, A., Witty, J., and Sharrocks, A. D. (2006). An extended consensus motif enhances the specificity of substrate modification by SUMO. EMBO J 25: 5083-5093. Yang, W. H., Heaton, J. H., Brevig, H., Mukherjee, S., Iñiguez-Lluhí, J. A., and Hammer, G. D. (2009). SUMOylation inhibits SF-1 activity by reducing CDK7-mediated serine 203 phosphorylation. Mol Cell Biol 29: 613-625. Yeh, E., Cunningham, M., Arnold, H., Chasse, D., Monteith, T., Ivaldi, G., Hahn, W. C., Stukenberg, P. T., Shenolikar, S., Uchida, T., Counter, C. M., Nevins, J. R., Means, A. R., and Sears R. (2004). A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nat Cell Biol 6: 308-318. Yeh, E. S., Lew, B. O., and Means, A. R. (2006). The loss of PIN1 deregulates cyclin E and sensitizes mouse embryo fibroblasts to genomic instability. J Biol Chem 281: 241-251. 190 References Yeh, E. S., and Means, A. R. (2007). PIN1, the cell cycle and cancer. Nat Rev Cancer 7: 381-388. Yi, P., Wu, R. C., Sandquist, J., Wong, J., Tsai, S. Y., Tsai, M. J., Means, A. R., and O'Malley, B. W. (2005). Peptidyl-prolyl isomerase (Pin1) serves as a coactivator of steroid receptor by regulating the activity of phosphorylated steroid receptor coactivator (SRC-3/AIB1). Mol Cell Biol 25: 8687-9699. Yin, T., Sandhu, G., Wolfgang, C. D., Burrier, A., Webb, R. L., Rigel, D. F., Hai, T., and Whelan, J. (1997). Tissue-specific pattern of stress kinase activation in ischemic/reperfused heart and kidney. J Biol Chem 272: 19943-19950. Yin, X., Dewille, J. W., and Hai, T. (2008). A potential dichotomous role of ATF3, an adaptive-response gene, in cancer development. Oncogene 27: 2118-2127. Yussa, M., Lohr, U., Su, K., and Pick, L. (2001). The nuclear receptor Ftz-F1 and homeodomain protein Ftz interact through evolutionarily conserved protein domains. Mech Dev 107: 39-53. Zacchi, P., Gostissa, M., Uchida, T., Salvagno, C., Avolio, F., Volinia, S., Ronai, Z., Blandino, G., Schneider, C., and Del Sal, G. (2002). The prolyl isomerase Pin1 reveals a mechanism to control p53 functions after genotoxic insults. Nature 419: 853-857. Zakaria, M. M., Jeong, K. H., Lacza, C., and Kaiser, U. B. (2002). Pituitary homeobox activates the rat FSHβ (rFSHβ) gene through both direct and indirect interactions with the rFSHβ gene promoter. Mol Endocrinol 16: 1840-1852. Zheng, H., You, H., Zhou, X. Z., Murray, S. A., Uchida, T., Wulf, G., Gu, L., Tang, X., Lu, K. P., and Xiao, Z. X. (2002). The prolyl isomerase Pin1 is a regulator of p53 in genotoxic response. Nature 419: 849-853. Zheng, Y., Xia, Y., Hawke, D., Halle, M., Tremblay, M. L., Gao, X., Zhou, X. Z., Aldape, K., Cobb, M. H., Xie, K., He, J., and Lu, Z. (2009). FAK phosphorylation by ERK primes ras-induced tyrosine dephosphorylation of FAK mediated by PIN1 and PTP-PEST. Mol Cell 35: 11-25. Zhou, X. Z., Kops, O., Werner, A., Lu, P. J., Shen, M., Stoller, G., Küllertz, G., Stark, M., Fischer, G., and Lu, K. P. (2000). Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and tau proteins. Mol Cell 6: 873-883. Zirkin, B. R., Awoniyi, C., Griswold, M. D., Russell, L. D., and Sharpe, R. (1994). Is FSH required for adult spermatogenesis? J Androl 15: 273-276. 191 [...]... Schematic model of the action of Pin1 in catalyzing cis-trans isomerization of pSer/Thr-Pro motif Reversible phosphorylation of proteins on Ser/Thr-Pro motifs by Pro-directed kinases produces the substrate for Pin1, which alters the conformation of target proteins by catalyzing the trans to cis or the cis to trans isomerization, depending on specific target sites The resulting functional changes of the target... expressed in the gonadotropes and thyrotropes of the pituitary and in the trophoblasts of the placenta Cell or tissue-specific expression of αGSU is determined by distinct sets of cis-acting elements along with their cognate binding factors (Maurer et al., 1999) Cis-elements residing in the promoter that contribute to gonadotrope-specific αGSU gene transcription include the E boxes, Pitx1 binding element,... Transcriptional regulation of the gonadotropin β subunits As synthesis of the β subunit is the rate limiting step in hormone synthesis, regulation of the gonadotropin β subunit genes is crucial in the production of the physiologically active hormone Similar to the αGSU gene, gonadotropin β subunit genes, LHβ and FSHβ, are also regulated by interplay between extrinsic signals and intrinsic regulatory elements... activate the FSHβ promoter include Lhx3 (West et al., 2004) and the Smad family (Suszko et al., 2003) Activin, a member of the transforming growth factor β (TGFβ) superfamily of ligands, induces phosphorylation of several Smad proteins allowing their translocation into the 14 Introduction nucleus and binding to Smad binding elements (SBE) on the FSHβ promoter, where the Smads help recruit other activators... Phosphorylation of transcription factors by MAPKs It has been well accepted that serine/threonine residues preceding a proline (Ser/Thr-Pro) form one of the major regulatory phosphorylation motifs Protein or peptide containing proline is able to form both the cis and trans isomers because the unique five-membered ring structure of the proline side chain has the ability to adopt either the cis or trans state of the. .. Sentrin specific protease Ser/Thr-Pro Serine/threonine residues preceding a proline SF-1 Steroidogenic factor-1 SIL SCL interrupting locus SIM SUMO interaction motif siRNA Small interfering RNA xiii Smad Sma and Mad related protein SMRT Silencing mediator of retinoic acid and thyroid hormone receptor SNIP1 Smad nuclear interacting protein 1 SNURF/RNF4 Small nuclear ring finger protein/ring finger protein... and Arg 69 in the PPIase domain sequester the proline and the peptide bond undergoing cis/trans isomerization in the phosphorylated Ser/Thr-Pro motif, and are involved in the catalysis (Ranganathan et al., 1997) Thus, the N-terminal WW domain and C-terminal PPIase domain together form a double-check mechanism conferring the unique substrate specificity of Pin1, reducing the energy barrier between cis... gonadotropin subunit gene expression GnRH signaling also induces the release of calcium from intracellular stores which activates calmodulin, stimulating downstream calmodulin kinases and the phosphatase calcineuin, which play a crucial role in the derepression of the FSHβ gene (Lim et al., 2007) 5 in the text (Adapted from Naor, 2009 with modification) activated through phosphorylation by these kinases These... in all pituitary cell types and is essential for both anterior pituitary development and the synthesis of most of the pituitary hormones including the gonadotropins and TSH (Tremblay et al., 1998; Melamed et al., 2002) Both the number of gonadotropes and thyrotropes, as well as the levels of αGSU, LHβ, FSHβ and TSHβ transcript and protein within the individual cells, are substantially reduced in Pitx1-null... angle Most of the isomerization occurs in a surface-accessible bend, coil or turn of the target protein, inducing protein conformational change, therefore modulating the stability and/or activity of the protein Conformational change mediated by cis/trans isomerization of proline after phosphorylation of Ser/Thr-Pro motif has been identified as an intrinsic regulatory switch to modulate the stability . decreases in the absence of Pin1 125 Fig 3.28: Exogenous Pin1 rescues the interaction between SF-1 and Pitx1 in MEF Pin1 –/– cells 127 Fig 3.29: Mutation of Pin1 binding site in SF-1 reduces its interaction. THE ROLES OF PIN1 IN THE PITUITARY GONADOTROPES Luo Zhuojuan NATIONAL UNIVERSITY OF SINGAPORE 2010 THE ROLES OF PIN1 IN THE PITUITARY GONADOTROPES. and ATF3, and increase the protein level of ATF3 in gonadotropes. These findings would lay the foundation for investigating whether Pin1 plays a role in transcriptional regulation of αGSU gene.