1. Trang chủ
  2. » Luận Văn - Báo Cáo

WNT signaling in the early development of zebrfish swimbladder and xenopus lung

208 288 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 208
Dung lượng 6,91 MB

Nội dung

WNT SIGNALING IN THE EARLY DEVELOPMENT OF ZEBRAFISH SWIMBLADDER AND XENOPUS LUNG YIN AO NATIONAL UNIVERSITY OF SINGAPORE 2011 WNT SIGNALING IN THE EARLY DEVELOPMENT OF ZEBRAFISH SWIMBLADDER AND XENOPUS LUNG YIN AO B.Sc, Huazhong Agricultural University (HZAU), China M.Sc, Huazhong Agriculural University (HZAU), China A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF BIOLOGICAL SCIENCES NATIONAL UNIVERSITY OF SINGAPORE 2011 Acknowledgements Acknowledgements I want to extend my greatest gratitude to my supervisors: Prof. Zhiyuan Gong (Department of Biological Sciences, NUS) and A/P Vladimir Korzh (Institute of Molecular and Cell Biology), for taking me into the PhD program and for their invaluable guidance and encouragement through all these years. I also wish to give my thanks to my PhD committee members, Dr. Karuna Sampath (Tamasek Lifesciences Laboratory, TLL), A/P Winkler Christoph and A/P Yih-Cherng Liou (Department of Biological Sciences, NUS) for their insightful suggestions. I conducted my research work in both labs in Department of Biological Sciences, NUS and Institute of Molecular and Cell Biology. I want to thank the favors from all the lab mates: Ahn Tuan, Caixia, Choong Yong, Grace, Hendrian, Huiqing, Lili, Li Zhen, Sahar, Siew Hong, Ti Weng, Tina, Vivien, Yan Tie, Zhengyuan, Zhou Li from Dr Gong’s lab; and Catheleen, Dimitri, Hang, Hong Yuan, Igor, Jun Yan, Kar Lai, Melven, Siau Lin, Shu Lan, Steven, William from Dr Korzh’s lab. Special thanks go to Dr. Cecilia Lanny Winata and Dr. Svetlana Korzh for their warmhearted helps and painstaking proofreading of manuscripts as well as invaluable suggestions. In addition, I would like to thank people from the general office of DBS and the fish facility in the DBS and IMCB, and the Xenopus facility from IMCB and Dr. Micheal Jones’ lab for their great assistants. In addition, I would like to thank Ministry of Education and National University of Singapore for providing me the graduate research scholarship. Finally, I am indebted to my dearest parents and family members: father, Yin Baiquan, mother, Sun Xiuzhen, wife, Dr. Wu Jingming and daughter Yin Qian Ying Gracie, whose love and care empowered me to pursue my PhD degree. I Table of contents Acknowledgements I Table of Contents II VIII Summary List of Tables X XI XII XIII XIV List of Figures List of Common Abbreviations Publications XV Chapter I. Introduction 1.1 Evolutionary link between the lung and the swimbladder 1.2 The evolution history of fishes 1.3The evolution of teleost swimbladder 1.4Development of the mammalian lung 1.4.1 Morphogenesis of the lung 1.4.2 Molecular control of lung development 1.5 Xenopus lung development 1.6 Zebrafish as a model system 1.6.1 Zebrafish as an experimental model 1.6.2 Position of zebrafish in the taxonomy of fishes 1.6.3 The zebrafish genome 1.6.4 Zebrafish in developmental biology research 1.6.4.1 Endoderm Development in zebrafish 1.6.4.1.1 Specification of early endodermal progenitors in the zebrafish embryo 1.6.4.1.2 Formation of the gut tube 1.6.5 Development of the zebrafish swimbladder 1.7 The Wnt signaling 1.7.1 The discovery of Wnt signaling 1.7.2 The Wnt gene family 1.7.3 Classification of Wnt signaling and Wnts 1.7.4 Mechanism of Wnt signaling II 7 10 12 13 13 14 14 15 16 17 18 19 20 20 21 22 23 Table of contents 1.7.5 Wnt proteins 1.7.6 Wnt receptors 1.7.7 Non-Wnt agonists of β-catenin/Tcf signaling 1.7.8 Wnt antagonists and inhibitors 1.7.9 Wnt target genes 1.7.10 Wnt signaling in lung and lung development 1.7.11 Wnt signaling in Xenopus lung development 1.7.12 Wnt signaling in Zebrafish 1.8 Objectives of the study Chapter II. Materials and Methods 2.1 DNA applications 2.1.1 DNA preparation and purification 2.1.1.1 Isolation and purification of plasmid DNA 2.1.1.3 Recovery of DNA fragments from agarose gel 2.1.2 Recombinant DNA 2.1.2.1 Restriction endonuclease digestion of DNA 2.1.2.2 DNA electrophoresis 2.1.2.3 Quantification of DNA by spectrophotometry 2.1.2.4 Ligation 2.1.2.5 Transformation 2.1.2.5.1 Preparation of competent cells 2.1.2.5.2 Transformation 2.1.2.6 Colony screening 2.1.3 Polymerase chain reaction (PCR) 2.1.3.1 Standard PCR 2.1.3.2 Reverse transcription PCR (RT-PCR) 2.1.3.3 Quantitative real-time PCR 2.1.3.4 Purification of PCR products 2.1.3.5 PCR product sub-cloning 2.1.4 DNA sequencing reaction 2.1.5 DNA vectors 2.1.5.1 pGEM®-T Easy 2.1.5.2 pEGFP-1 2.2 RNA applications 2.2.1 Isolation of total RNA III 26 27 28 29 29 31 32 33 33 36 37 37 37 38 38 38 38 39 39 39 39 40 40 41 41 41 44 45 45 45 46 46 47 48 48 Table of contents 2.2.1.1 Isolation of total RNA from zebrafish embryos 2.2.1.2 Measurement of RNA concentration 2.2.1.3 RNA gel electrophoresis 2.2.1.4 cDNA synthesis 2.3 Expression Analysis 2.3.1 Zebrafish 2.3.1.1 Fish maintenance 2.3.1.2 Mutant and transgenic lines of zebrafish 2.3.1.3 Heat-shock treatment of zebrafish transgenic embryos 2.3.1.4 Treatment of zebrafish embryos with the small molecule IWR-1 2.3.2 Microinjection 2.3.3 Anti-sense morpholino design 2.3.4 Whole mount in situ hybridization (WISH) on zebrafish embryos 2.3.4.1 Synthesis of labeled RNA probe 2.3.4.1.1 Linearization of plasmid DNA 2.3.4.1.2 Probe incubation and precipitation 2.3.4.1.3 Quantification of labeled probe 2.3.4.2 Preparation of zebrafish embryos 2.3.4.2.1 Embryo collection and fixation 2.3.4.2.2 Use of Anesthetic to View Embryos 2.3.4.2.3 Proteinase K treatment 2.3.4.2.4 Prehybridization 2.3.4.3 Hybridization 2.3.4.4 Post-Hybridization washes 2.3.4.5 Antibody incubation 2.3.4.5.1 Preparation of preabsorbed DIG 2.3.4.5.2 Incubation with preabsorbed antibodies 2.3.4.6 Color development 2.3.5 Immunohistochemical staining 2.3.5.1 Primary antibody incubation 2.3.5.2 Secondary antibody incubation 2.3.5.3 Detection 2.3.6 Cryostat section 2.3.7 Double staining with mRNA probe and immunohistochemical staining 2.3.8 DAPI staining 2.3.9 Mounting and photography IV 48 49 50 50 50 50 50 51 51 52 52 53 54 54 54 55 55 56 56 56 56 57 57 58 58 58 58 59 59 59 60 60 60 61 61 61 Table of contents 2.3.10 Confocal microscopy and imaging of living embryos 2.3.11 Whole mount in situ hybridization (WISH) on Xenopus embryos Chapter III. Wnt signaling in early Xenopus lung development 3.1 Screening for lung-specific genes in X. troplicalis and activation of their promoters in X. laevis and zebrafish 3.1.1 Screening of lung-specific genes in Xenopus troplicalis 3.1.2 Activation of Xenopus tropicalis sftpc promoter in Xenopus laevis and zebrafish 3.2 Expression of components of Wnt and Hedgehog pathways in different tissue layers during early lung development in Xenopus laevis 3.2.1 Early Xenopus lung morphogenesis based on sftpc and nkx2.1 expression 3.2.2 Expression of wnt7b in the epithelium of early Xenopus lung 3.2.3 Expression of wnt5a and wif1 in the mesenchyme of Xenopus lung 3.2.4 Examination of shh and bhh expression in Xenopus lung 3.2.5 Expression of acta2 and anxa5 in early Xenopus lung 3.3 Discussion 3.3.1 Xenopus as a model for developmental study 3.3.2 Gene expression in developing lungs in Xenopus 62 63 65 66 67 70 72 72 76 76 80 80 84 84 85 Chapter IV. Wnt signaling in the early development of the zebrafish swimbladder 89 4.1 Identification of a new set of gene markers for different tissue layers of the zebrafish swimbladder 4.2 Expression of Wnt pathway members in the swimbladder during early development 4.2.1 Screening of Wnt signaling genes expressed in the swimbladder 4.2.2 Expression of Wnt ligands in early developing swimbladder 4.2.3 Expression of Wnt receptors in swimbladder 4.2.4 Expression of Wnt transcription factors in the swimbladder 4.2.5 Expression of Wnt signaling target genes in the swimbladder 4.2.6 Expression of Wnt protein inhibitor gene wif1 in early developing swimbladder 4.3 Conditional Blocking of Wnt signaling by heat-shock reveals its critical roles in early swimbladder development 4.3.1 Inhibition of Wnt signaling by heat-shock of hs:Dkk1-GFP and hs:∆TcfGFP transgenic embryos 4.3.2 Stage-specific inhibition of Wnt signaling impaired swimbladder development in the epithelium 91 V 94 94 96 101 101 101 102 107 107 110 Table of contents 4.3.3 Blocking of Wnt signaling perturbed mesenchyme development and smooth muscle differentiation 4.3.4 Blocking of Wnt signaling disturbed the outer mesothelium development 4.3.5 Wnt signaling was required for cell proliferation 4.3.6 Wnt signaling was required for the inhibition of apoptosis 4.4 Inhibition of Wnt signaling by small molecule chemical IWR-1 4.4.1 Dosage dependent effects of IWR-1 on swimbladder specification 4.4.2 Timing-dependence of IWR-1 treatment for swimbladder specification and growth 113 115 117 117 121 121 121 4.4.3 IWR-1 treatment affected budding of the second swimbladder chamber 4.4.4 IWR-1 treatment affected development of all three tissue layers 4.4.5 IWR-1 treatment did not alter the expression level of sox2 and wif1 in swimbladder 4.5 Functional analysis of Wnt ligands in the early swimbladder development 4.5.1 wnt5b was required for the normal development of the swimbladder 4.5.2 Knockdown of wnt11 alone did not disturb the early swimbladder development 4.5.3 wnt5b and wnt11 might play redundant roles in the specification of mesenchyme cells in the swimbladder 122 123 123 4.5.4 wnt1 knockdown perturbed the programs in all three tissue layers in the swimbladder 4.6 Up-regulation of Wnt signaling by Knockdown of Wnt inhibitor gene wif1 affected the early swimbladder development in zebrafish 4.6.1 Knockdown of wif1 expression by antisense morpholinos 4.6.2 Morpholino validation by p53 dependence analysis and mRNA rescue 4.6.3 wif1 morpholino knockdown affected early development of swimbladder 4.6.4 wif1 morpholinos knockdown disturbed the development of epithelium, mesenchyme, mesothelium and smooth muscle differentiation 4.7 Crosstalk between Wnt and Hh signaling in the swimbladder development 4.7.1 Wnt signaling maintained Hh signaling and is negatively regulated by Hh signaling 4.7.2 Hh signaling might be required to maintain wif1 expression 133 4.8 Crosstalk between Wnt signaling and tbx2a signaling regulated the early swimbladder development 4.8.1 Expression of tbx2a in the early developing swimbladder 4.8.2 tbx2a knockdown mimicked the effects of Wnt signaling suppression in the development of the three tissue layers of the swimbladder 4.8.3 Expression of Tbx2a target gene cx43 in the early swimbladder 4.8.4 Wnt signaling repressed tbx2a expression but enhanced cx43 expression in the swimbladder 4.8.5 Wnt signaling but not wif1 was negatively regulated by tbx2a VI 129 129 129 129 135 135 137 137 140 142 142 142 146 146 146 147 151 151 Table of contents 4.9 Discussion 4.9.1 The conserved and non-conserved expression patterns of genes suggested the conservation and deviation of the fish swimbladder and tetrapod lung 154 154 4.9.2 The genetic strategies for the study of swimbladder development 157 4.9.3 Timing of swimbladder specification and morphogenesis among endoderm organs 4.9.4 Differential efficiency and impacts of blocking Wnt signaling in the two conditional Wnt signaling suppression transgenic lines on swimbladder development 4.9.5 Wnt signaling is required for formation of the anterior chamber bud of the swimbladder 4.9.6 Crosstalk among different tissue layers during the early swimbladder development 4.9.7 Crosstalk of Wnt signaling with Hh signaling and Tbx signaling 4.9.8 Differentiation of mesenchymal cells at early stages and their effects on epithelial cell growth 4.9.9 Possible roles of Wnt2 in the second swimbladder chamber budding 4.9.10 Dosage dependent Wnt signaling for swimbladder development 158 4.10 Conclusions References VII 159 160 161 162 164 164 165 166 172 Summary Summary Comparative study of lung and swimbladder development is not only an important issue in developmental biology, but also an attractive topic in evolutionary biology. However, although the homology between lung and swimbladder is supported by their common morphological origin and blood supply from the 6th branchial artery, molecular evidence remains largely missing. Previously, we demonstrated that many genes important for induction of lung bud and early lung development are also expressed in zebrafish swimbladder development. In particular, Hedgehog signaling pathway, essential for lung development, is also required for proper development of all the three tissue layers of the swimbladder. Although the Wnt signaling pathway has been reported to play a critical role in mammalian lung development, the role of Wnt signaling in zebrafish swimbladder and Xenopus lung development has not been investigated. In the current study, we investigated Wnt signaling in the Xenopus and zebrafish models. The expression of sftpc, nkx2.1, wnt7b, wnt5a, wif1 and shh in different tissue layers of early Xenopus lung were demonstrated. In zebrafish, a number of Wnt component genes expressed in the three tissue layers of swimbladder, including wif1, wnt5b, wnt11, axin1, axin2, tcf3, fz2, fz7a, wif1, were also identified. By employing three different approaches to manipulate Wnt signaling, including using the hs:Dkk1-GFP and hs:∆Tcf-GFP transgenic lines, which are engineered for heat-shock-inducible Wnt inhibition, the chemical inhibitor of Wnt signaling, IWR-1, and upregulation of Wnt signaling by knockdown of the Wnt protein inhibitor wif1, we demonstrate that Wnt signaling plays critical roles in the specification, proliferation, apoptosis inhibition, organization in all three layers and smooth muscle differentiation in the swimbladder. VIII References Dufort, D., Schwartz, L., Harpal, K., Rossant, J. (1998). The transcription factor HNF3beta is required in visceral endoderm for normal primitive streak morphogenesis. Development 125, 3015–3025. Duncker HR. (2004). Vertebrate lung: structure, topography and mechanics. A comparative perspective of the progressive integration of respiratory system, locomotor apparatus and ontogenetic development. Res Physiol Neurobiol 114, 111–124. Ekker, S.C., McGrew, L.L., Lai, C.J., Lee, J.J., von Kessler, D.P., Moon, R.T., and Beachy, P.A. (1995). Distinct expression and shared activities of members of the hedgehog gene family of Xenopus laevis. Development. 121, 2337-2347. Ellwanger, K., Saito, H., Clement-Lacroix, P., Maltry, N., Niedermeyer, J., Lee, W.K., Baron, R., Rawadi, G., Westphal, H., and Niehrs, C. (2008). Targeted disruption of the Wnt regulator Kremen induces limb defects and high bone density. Mol. Cell. Biol. 28, 4875–4882. Fange, R., (1966). Physiology of swimbladder. Physiol. Rev. 46, 299-322. Fange, R., (1983). Gas exchange in fish swimbladder. Rev. Physiol. Biochem. Pharmacol. 97, 111-148. Farber SA, De Rose RA, Olson ES, Halpern ME. (2003). The zebrafish annexin gene family. Genome Res. 13, 1082–1096. Faro A, Boj SF, Ambrosio R, van den Broek O, Korving J, et al. (2009). T-cell factor (tcf7l2) is the main effector of Wnt signaling during zebrafish intestine organogenesis. Zebrafish 6, 59-68. Fekany-Lee K, Gonzalez E, Miller-Bertoglio V, Solnica-Krezel L (2000). The homeobox gene bozozok promotes anterior neuroectoderm formation in zebrafish through negative regulation of BMP2/4 and Wnt pathways. Development 127, 2333-2345. Feldman, B., Gates, M.A., Egan, E.S., Dougan, S.T., Rennebeck, G., Sirotkin, H.I., Schier, A.F., Talbot, W.S. (1998). Zebrafish organizer development and germ-layer formation require nodal-related signals. Nature 395, 181-185. Fernandes B.F., Fernandes L.H., Burnier M.N. Jr. (2006). Choroidal mass as the presenting sign of small cell lung carcinoma. Can J Ophthalmol. 41(5), 605-8. Field, H.A., Ober, E.A., Roeser, T., Stainier, D.Y.R. (2003). Formation of the digestive system in zebrafish. I. Liver morphogenesis. Dev. Biol. 253, 279-290. Fink, S. V., and Fink, W. L. (1996). Interrelationships of ostariophysan fishes. In M. L. J. Stiassny, L. R. Parenti, and G. D. Johnson (eds.). Interrelationships of Fishes. Academic Press, New York, 209–250. Finney JL, Robertson GN, Chantelle ASM, Smith FM, Croll RP. (2006). Structure and autonomic innervation of swimbladder in the zebrafish (Danio rerio). J Comp Neurol 495, 587–606. Fong SH, Emelyanov A, Teh C, Korzh V. (2005). Wnt signalling mediated by Tbx2b regulates cell migration during formation of the neural plate. Development 132, 3587-3596. Force, A., Lynch, M., Pickett, F.B., Amores, A., Yan, Y.-L., and Postlethwait, J.H. (1999). Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151, 1531–1545. Freem, L.J., Escot, S., Tannahill, D., Druckenbrod, N.R., Thapar, N., and Burns, A.J. (2010). The intrinsic innervation of the lung is derived from neural crest cells as shown by optical projection tomography in Wnt1-Cre;YFP reporter mice. J Anat. 217, 651-664. Fukuda, K., Kikuchi, Y. (2005). Endoderm development in vertebrates: fate mapping, induction and regional specification. Dev Growth Differ 47, 343-355. 176 References Fukui T, Kondo M, Ito G. (2005). Transcriptional silencing of secreted frizzled related protein (SFRP 1) by promoter hypermethylation in non-small-cell lung cancer. Oncogene 24, 6323–7. Gaio, U., Schweickert, A., Fischer, A., Garratt, A.N., Muller, T., Ozcelik, C., Lankes, W., Strehle, M., Britsch, S., Blum, M. (1999). A role of the cryptic gene in the correct establishment of the left-right axis. Curr. Biol. 9, 1339-1342. Gargioli C, Slack JM. (2004). Cell lineage tracing during Xenopus tail regeneration. Development 131, 2669–79. Garriock R. J., Warkman A.S., Meadows S.M., Agostino S.D., Krieg P.A. (2007). Census of Vertebrate Wnt genes: Isolation and Developmental Expression of Xenopus Wnt2, Wnt3, Wnt9a, Wnt9b, Wnt10a, and Wnt16. Dev. Dyn. 236, 1249–1258. Gaspar, C., and Fodde, R. (2004). APC dosage effects in tumorigenesis and stem cell differentiation. Int J Dev Biol. 48, 377-386. Gebb, S. A. and Shannon, J. M. (2000). Tissue interactions mediate early events in pulmonary vasculogenesis. Dev. Dyn. 217, 159-169. Georgijevic S, Subramanian Y, Rollins EL, Starovic-Subota O, Tang ACY, Childs SJ. (2007). Spatiotemporal expression of smooth muscle markers in developing zebrafish gut. Dev Dyn 236, 1623–1632. Glasser, S.W., Korfhagen, T.R., Bruno, M.D., Dey, C., and Whitsett, J.A. (1990). Structure and expression of the pulmonary surfactant protein SP-C gene in the mouse. J Biol Chem. 265, 21986-21991. Gnügge, L., Meyer, D., Driever, W. (2004). Pancreas development in zebrafish. The Zebrafish: Cellular and Developmental Biology, 2nd Ed. Methods Cell Biol. 76, 531-551. Goessling W, North TE, Lord AM, Ceol C, Lee S. (2008). APC mutant zebrafish uncover a changing temporal requirement for wnt signaling in liver development. Dev Biol 320, 161174. Golling G., Amsterdam, A., Sun, Z., Antonelli, M., Maldonado, E., Chen, W., Burgess, S., Haldi, M., Artzt, K., Farrington, S., Lin, S.Y., Nissen, R.M., Hopkins, N. (2002). Insertional mutagenesis in zebrafish rapidly identifies genes essential for early vertebrate development. Nat. Genet. 31, 125-126. Gong, Z., Ju, B., Wang, X., He, J., Wan, H., Sudha, P.M., Yan, T. (2002). Green fluorescent protein expression in germ-line transmitted transgenic zebrafish under a stratified epithelial promoter from keratin8. Dev Dyn. 223(2), 204-15. Goss AM, Tian Y, Tsukiyama T, Cohen ED, Zhou D, Lu MM, Yamaguchi TP, Morrisey EE. (2009). Wnt2/2b and β-catenin Signaling Are Necessary and Sufficient to Specify Lung Progenitors in the Foregut. Dev Cell 17, 290-298. Graham, J.B. (1997). Air-breathing Fishes. Academic Press, San Diego. Greco, T.L., Sussman, D.J., and Camper, S.A. (1996). Dishevelled-2 maps to human chromosome 17 and distal to Wnt3a and vestigial tail (vt) on mouse chromosome 11. Mamm Genome. 7, 475-476. Guger, K.A., and Gumbiner, B.M. (1995). Beta-Catenin has Wnt-like activity and mimics the Nieuwkoop signaling center in Xenopus dorsal- ventral patterning. Dev. Biol. 172, 115–125. Hammerschmid, M. (1997). The world according to hedgehog. Trends Genetics 13, 14-21. Harder, W. (1975). Anatomy of Fishes, Part I: Text. E. Schweizerbartsche Verlagsbuchhandlung, Stuttgart. 177 References Hassler C, Cruciat CM, Huang YL, Kuriyama S, Mayor R, Niehrs C. (2007). Kremen is required for neural crest induction in Xenopus and promotes LRP6-mediated Wnt signaling. Development 134(23), 4255-63. Hausmann, G., Banziger, C., and Basler, K. (2007). Helping Wingless take flight: how WNT proteins are secreted. Nat. Rev. Mol. Cell Biol. 8, 331–336. He B, You L, Uematsu K. 2004. A monoclonal antibody against Wnt-1 induces apoptosis in human cancer cells. Neoplasia 6, 7–14. He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW (1998) Identification of c-MYC as a target of the APC pathway. Science 281(5382), 1509–1512 He, X., Saint-Jeannet, J.P., Wang, Y., Nathans, J., Dawid, I., and Varmus, H. (1997). A member of the Frizzled protein family mediating axis induction by Wnt-5A. Science 275, 1652–1654. He, X., Saint-Jeannet, J.P., Woodgett, J.R., Varmus, H.E., and Dawid, I.B. (1995). Glycogen synthase kinase-3 and dorsoventral patterning in Xenopus embryos. Nature 374, 617–622. Heisenberg, C.P., Tada, M., Rauch, G.J., Saude, L., Concha, M.L., Geisler, R., Stemple, D.L., Smith, J.C., and Wilson, S.W. (2000). Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature. 405, 76-81. Heymach JV, Nilsson M, Blumenschein G, Papadimitrakopoulou V, Herbst R. (2006). Epidermal growth factor receptor inhibitors in development for the treatment of non-small cell lung cancer. Clin Cancer Res. 12(14 Pt 2), 4441s-4445s. Hippenstiel S, Opitz B, Schmeck B, Suttorp N. (2006). Lung epithelium as a sentinel and effector system in pneumonia--molecular mechanisms of pathogen recognition and signal transduction. Respir Res. 7, 97. Hogan BL. (1999). Morphogenesis. Cell 96, 225–233. Hong, S. K. and Dawid, I. B. (2008). Alpha2 macroglobulin-like is essential for liver development in zebrafish. PLoS One 3, e3736. Hoppler, S., and Kavanagh, C.L. (2007). Wnt signalling: variety at the core. J. Cell Sci. 120, 385–393. Horb ME, Slack JM. (2002). Expression of amylase and other pancreatic genes in Xenopus. Mech Dev 113, 153–7. Horne-Badovinac, S., Lin, D., Waldron, S., Schwarz, M., Mbamalu, G., Pawson, T., Jan.\, Y., Stainier, D.Y., Abdelilah-Seyfried, S. (2001). Positional cloning of heart and soul reveals multiple roles for PKC lambda in zebrafish organogenesis. Curr Biol. 11(19), 1492-502. Howell J.E., McAnulty R.J. (2006). TGF-beta: its role in asthma and therapeutic potential. Curr Drug Targets. 7(5), 547-65. Hsieh JC, Kodjabachian L, Rebbert ML, Rattner A, Smallwood PM, Samosk CH, Nussek R, Dawid IB and Nathans J (1999) Anewsecreted protein that binds to Wnt proteins and inhibits their activites NATURE 398, 431-436. Hsieh, J.C., Lee, L., Zhang, L., Wefer, S., Brown, K., DeRossi, C., Wines, M.E., Rosenquist, T., and Holdener, B.C. (2003). Mesd encodes an LRP5/6 chaperone essential for specification of mouse embryonic polarity. Cell 112, 355–367. Hu, Y.A., Gu, X., Liu, J., Yang, Y., Yan, Y., and Zhao, C. (2008). Expression pattern of Wnt inhibitor factor1 (Wif1) during the development in mouse CAN. Gene Expr Patterns. 8, 515522. Hyatt B. A., Resnik E. R., D. N. Cornfield (2007). Lung specific developmental expression of the Xenopus laevis surfactant protein C and B genes. Gene Exp. Patt. 7, 8–14. 178 References Isogai, S., Horiguchi, M., Weinstein, B.M. (2001). The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development. Dev. Biol. 230, 278-301. Itasaki, N., Jones, C.M., Mercurio, S., Rowe, A., Domingos, P.M., Smith, J.C., and Krumlauf, R. (2003). Wise, a context-dependent activator and inhibitor of Wnt signaling. Development 130, 4295–4305. Itoh, N., Konishi, M. (2007). The zebrafish FGF family. Zebrafish. 4(3), 179-186. Iwao, K., Watanabe, T., Fujiwara, Y., Takami, K., Kodama, K., Higashiyama, M., Yokouchi, H., Ozaki, K., Monden, M., and Tanigami, A. (2001). Isolation of a novel human lung-specific gene, LUNX, a potential molecular marker for detection of micrometastasis in non-small-cell lung cancer. Int J Cancer. 91, 433-437. Jacobs, J.J., Keblusek, P., Robanus-Maandag, E., Kristel, P., Lingbeek, M., Nederlof, P.M., van Welsem, T., van de Vijver, M.J., Koh, E.Y., Daley, G.Q., et al. (2000). Senescence bypass screen identifies TBX2, which represses Cdkn2a (p19(ARF)) and is amplified in a subset of human breast cancers. Nat Genet. 26, 291-299. Jerome LA, Papaioannou VE. (2001). DiGeorge syndrome phenotype in mice mutant for the Tbox gene, Tbx1. Nat Genet 27, 286-291. Jho, E.H., Zhang, T., Domon, C., Joo, C.K., Freund, J.N., and Costantini, F. (2002). Wnt/betacatenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol. Cell. Biol. 22, 1172–1183. Jia, L., Miao, C., Cao, Y. and Duan, E. K. (2008). Effects of Wnt proteins on cell proliferation and apoptosis in HEK293 cells. Cell Biol Int 32, 807-13. Jones EA. (2005). Xenopus: a prince among models for pronephric kidney development. J Am Soc Nephrol 16, 313–21. Jordan, B.K., Mohammed, M., Ching, S.T., Delot, E., Chen, X.N., Dewing, P., Swain, A., Rao, P.N., Elejalde, B.R., and Vilain, E. (2001). Up-regulation of WNT-4 signaling and dosage sensitive sex reversal in humans. Am J Hum Genet. 68, 1102-1109. Katanaev, V.L., Solis, G.P., Hausmann, G., Buestorf, S., Katanayeva, N., Schrock, Y., Stuermer, C.A., and Basler, K. (2008). Reggie-1/flotillin-2 promotes secretion of the long-range signalling forms of Wingless and Hedgehog in Drosophila. EMBO J. 27, 509–521. Katoh, M. (2005). WNT/PCP signaling pathway and human cancer (review). Oncol. Rep. 14, 1583–1588. Kazanskaya, O., Glinka, A., del Barco Barrantes, I., Stannek, P., Niehrs, C., and Wu, W. (2004). R-Spondin2 is a secreted activator of Wnt/ beta-catenin signaling and is required for Xenopus myogenesis. Dev. Cell 7, 525–534. Kelly OG, Melton DA. (2000). Development of the pancreas in Xenopus laevis. Dev Dyn 218, 615–27. Kelly, S. E., Bachurski, C. J., Burhans, M. S. and Glasser, S. W. (1996). Transcription of the lung-specific surfactant protein C gene is mediated by thyroid transcription factor 1. J. Biol. Chem. 271, 6881-6888. Khan, Z., Vijayakumar, S., de la Torre, T.V., Rotolo, S., and Bafico, A. (2007). Analysis of endogenous LRP6 function reveals a novel feedback mechanism by which Wnt negatively regulates its receptor. Mol. Cell. Biol. 27, 7291–7301. Khoor, A., Stahlman, M.T., Gray, M.E., and Whitsett, J.A. (1994). Temporal-spatial distribution of SP-B and SP-C proteins and mRNAs in developing respiratory epithelium of human lung. J Histochem Cytochem. 42, 1187-1199. 179 References Kielman, M.F., Rindapaa, M., Gaspar, C., van Poppel, N., Breukel, C., van Leeuwen, S., Taketo, M.M., Roberts, S., Smits, R., and Fodde, R. (2002). Apc modulates embryonic stem-cell differentiation by controlling the dosage of beta-catenin signaling. Nat Genet. 32, 594-605. Kikuchi Y, Trinh LA, Reiter JF, Alexander J, Yelon D, Stainier DY. (2000). The zebrafish bonnie and clyde gene encodes a Mix family homeodomain protein that regulates the generation of endodermal precursors. Genes Dev 14, 1279–1289. Kikuchi Y, Verkade H, Reiter JF, Kim CH, Chitnis AB, Kuroiwa A, Stainier DY. (2004). Notch signaling can regulate endoderm formation in zebrafish. Dev Dyn 229 (4), 756–762. Kikuchi, Y., Agathon, A., Alexander, J., Thisse, C., Waldron, S., Yelon, D., Thisse, B., Stainier, D.Y. (2001). casanova encodes a novel Sox-related protein necessary and sufficient for early endoderm formation in zebrafish. Genes Dev. 15, 1493–1505. Kim HJ, Schleiffarth JR, Jessurun J, Sumanas S, Petryk A. (2005) Wnt5 signaling in vertebrate pancreas development. BMC Biol 3, 23. Kim JD, Chun HS, Kim SH, Kim HS, Kim YS. (2009) Normal forebrain development may require continual Wnt antagonism until mid-somitogenesis in zebrafish. Biochem Biophys Res Commun 381, 717-721. Kim, K.A., Kakitani, M., Zhao, J., Oshima, T., Tang, T., Binnerts, M., Liu, Y., Boyle, B., Park, E., Emtage, P. (2005). Mitogenic influence of human R-spondin1 on the intestinal epithelium. Science 309, 1256–1259. Kimmel C.B., Ballard W.W., Kimmel S.R., Ullmann B., Schilling T.F. (1995). Stages of embryonic development of the zebrafish. Dev Dyn. 203(3), 253-310. Kimmel, C.B. (1989). Genetics and early development of zebrafish. Trends Genet. 5, 283-288. Kimmel, C.B., Warga, R.M., Schilling, T.F. (1990). Origin and organization of the zebrafish fate map. Development. 108(4), 581-94. Kimura, S., Hara, Y., Pineau, T., Fernandez-Salguero, P., Fox, C.H., Ward, J.M. and Gonzalez, F.J. (1996). The T/ebp null mouse: thyroid-specific enhancerbindingprotein is essential for the organogenesis of the thyroid, lung, ventralforebrain, and pituitary. Genes Dev. 10, 60-69. Kinzler, K.W., Nilbert, M.C., Su, L.K., Vogelstein, B., Bryan, T.M., Levy, D.B., Smith, K.J., Preisinger, A.C., Hedge, P., McKechnie, D. (1991). Identification of FAP locus genes from chromosome 5q21. Science 253, 661–665. Kohn, A.D., and Moon, R.T. (2005). Wnt and calcium signaling: β-catenin-independent pathways. Cell Calcium 38, 439–446. Korzh S, Emelyanov A, Korzh V. (2001). Developmental analysis of ceruloplasmin gene and liver formation in zebrafish. Mech Dev 103, 137–139. Korzh S, Pan X, Garcia-Lecea M, Winata CL, Pan X,Wohland T, Korzh V, Gong Z. (2008). Requirement of vasculogenesis and blood circulation in late stages of liver growth in zebrafish. BMC Dev Biol 8, 84. Korzh V, Sleptsova-Friedrich I, Liao J, He J, Gong Z. (1998). Expression of zebrafish bHLH genes ngn1 and nrD define distinct stages of neural differentiation. Dev Dyn 213, 92–104. Korzh V. (2007). Transposons as tools for enhancer-trap screens in vertebrates. Genome Biology, (Suppl. 1), S8. Korzh, S., Pan, X., Garcia-Lecea, M., Winata, C.L., Pan, X., Wohland, T., Korzh, V., Gong, Z. (2008). Requirement of vasculogenesis and blood circulation in late stages of liver growth in zebrafish. BMC Dev. Biol. 8, 84. 180 References Kusserow, A., Pang, K., Sturm, C., Hrouda, M., Lentferm, J., Schmidt, H.A., Technau, U., von Haeseler, A., Hobmayer, B., Martindale, M.Q., and Holstein, T.W. (2005). Unexpected complexity of the Wnt gene family in a sea anemone. Nature 433, 156–160. Lako M, Strachan T, Bullen P, Wilson DI, Robson SC, Lindsay S. (1998). Isolation, characterisation and embryonic expression of WNT11, a gene which maps to 11q13.5 and has possible roles in the development of skeleton, kidney and lung. Gene 219, 101-110. Lauder, G.V. and K.F. Liem (1983) The evolution and interrelationships of the actinopterygian fishes. Bull Mus. Comp. Zool. 150, 95-197. Lebeche, D., Malpel, S., Cardoso, W.V. (1999). Fibroblast growth factor interactions in the developing lung. Mech. Dev. 86, 125-136. Lemaigre F, Zaret KS. (2004). Liver development update: new embryo models, cell lineage control, and morphogenesis. Curr Opin Genet Dev 14, 582–90. Lemjabbar-Alaoui H, Dasari V, Sidhu SS, Mengistab A, Finkbeiner W. (2006) Wnt and Hedgehog are critical mediators of cigarette smoke-induced lung cancer. PLoS One 1, e93. Leone F, Lambert-Gardini S, Sartori C, Scapin S. (1976). Ultrastructural analysis of some functional aspects of Xenopus laevis pancreas during development and metamorphosis. J Embryol Exp Morphol 36, 711–24. Lewis JL, Bonner J, Modrell M, Ragland JW, Moon RT, Dorsky RI, Raible DW. (2004). Reiterated Wnt signaling during zebrafish neural crest development. Development 131 (6), 1299-1308. Li C, Xiao J, Hormi K, Borok Z, Minoo P. (2002). Wnt5a participates in distal lung morphogenesis. Dev Biol 248, 68-81. Lieschke GJ, Currie PD. (2007). Animal models of human disease: zebrafish swim into view. Nat Rev Genet. 8(5), 353-67. Lin, X. (2004). Functions of heparan sulfate proteoglycans in cell signaling during development. Development 131, 6009–6021. Litingtung, Y., Lei, L., Westphal, H., and Chiang, C. (1998). Sonic hedgehog is essential to foregut development. Nat Genet. 20, 58-61. Liu, W. S. (1993). Development of the respiratory swimbladder of Pangasius sutchi. J. Fish Biol. 42, 159-167. Logan, C.Y., and Nusse, R. (2004). The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol. 20, 781–810. Lohr JL, Yost HJ. (2000). Vertebrate model systems in the study of early heart development: Xenopus and zebrafish. Am J Med Genet 97, 248–57. Lu, W., Yamamoto, V., Ortega, B., and Baltimore, D. (2004). Mammalian Ryk is a Wnt coreceptor required for stimulation of neurite outgrowth. Cell 119, 97–108. MacDonald, B. T., Tamai, K. and He, X. (2009). Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17, 9-26. Mansukhani, A., Ambrosetti, D., Holmes, G., Cornivelli, L., and Basilico, C. (2005). Sox2 induction by FGF and FGFR2 activating mutations inhibits Wnt signaling and osteoblast differentiation. J Cell Biol. 168, 1065-1076. Mao, B., Wu, W., Davidson, G., Marhold, J., Li, M., Mechler, B.M., Delius, H., Hoppe, D., Stannek, P., Walter, C. (2002). Kremen proteins are Dickkopf receptors that regulate Wnt/beta-catenin signaling. Nature 417, 664–667. 181 References Maurus D, Héligon C, Bürger-Schwärzler A, Brändli AW, Kühl M. (2005). Noncanonical Wnt-4 signaling and EAF2 are required for eye development in Xenopus laevis. EMBO J. 24(6), 1181-91. Mavropoulos, A., Devos, N., Biemar, F., Zecchin, E., Argenton, F., Edlund, H., Motte, P., Martial, J.A., Peers, B. (2005). sox4b is a key player of pancreatic alpha cell differentiation in zebrafish. Dev. Biol. 285, 211-23. Mazieres J, He B, You L. (2004). Wnt inhibitory factor-1 is silenced by promoter hypermethylation in human lung cancer. Cancer Res 64, 4717–20. McCune, A.R., Carlson R.L. (2004). Twenty ways to lose your bladder: common natural mutants in zebrafish and widespread convergence of swimbladder loss among teleost fishes. Evol. Dev. 6(4), 246-259. McFarland KA, Topczewska JM, Weidinger G, Dorsky RI, Appel B. (2008). Hh and Wnt signaling regulate formation of olig2+ neurons in the zebrafish cerebellum. Dev Biol 318, 162-171. McLaughlin KA, Rones MS, Mercola M. (2000). Notch regulates cell fate in the developing pronephros. Dev Biol 227, 567–80. McMahon, A.P., and Moon, R.T. (1989). Ectopic expression of the proto-oncogene int-1 in Xenopus embryos leads to duplication of the embryonic axis. Cell 58, 1075–1084. Meban, C. (1973). The pneumonocytes in the lung of Xenopus laevis. J. Anat. 114, 235–244. Mercader N, Fischer S, Neumann CJ. (2006). Prdm1 acts downstream of a sequential RA, Wnt and Fgf signaling cascade during zebrafish forelimb induction. Development 133, 2805-2815. Meyer, A. and Schartl, M. (1999). Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Curr. Opin. in Cell Biol. 11, 699–704. Mikels, A.J., and Nusse, R. (2006). Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol. 4, e115 10.1371 journal.pbio.0040115. Miller JR. (2002). The Wnts. Genome Biol 3, REVIEWS3001. Minoo, P., Su, G., Drum, H., Bringas, P. and Kimura, S. (1999). Defects in tracheoesophageal and lung morphogenesis in Nkx2.1(–/–) mouse embryos. Dev. Biol. 209, 60-71. Mishra, A., Weaver, T.E., Beck, D.C., and Rothenberg, M.E. (2001). Interleukin-5-mediated allergic airway inflammation inhibits the human surfactant protein C promoter in transgenic mice. J Biol Chem. 276, 8453-8459. Miyagawa, S., Moon, A., Haraguchi, R., Inoue, C., Harada, M., Nakahara, C., Suzuki, K., Matsumaru, D., Kaneko, T., Matsuo, I., et al. (2009). Dosage-dependent hedgehog signals integrated with Wnt/beta-catenin signaling regulate external genitalia formation as an appendicular program. Development. 136, 3969-3978. Mizoguchi, T., Izawa, T., Kuroiwa, A., Kikuchi, Y. (2006). Fgf signaling negatively regulates Nodal-dependent endoderm induction in zebrafish. Dev. Biol. 300, 612-622. Mlodzik M. (2002). Planar cell polarization: the same mechanisms regulate Drosophila tissue polarity and vertebrate gastrulation? Trends Genet 18, 564–571 Mohun TJ, Leong LM, Weninger WJ, Sparrow DB. (2000). The morphology of heart development in Xenopus laevis. Dev Biol 218, 74–88. Molenaar M, van de Wetering M, Oosterwegel M, Peterson-Maduro J, Godsave S, Korinek V, Roose J, Destree O, Clevers H. (1996) XTcf-3 transcription factor mediates beta-catenininduced axis formation in Xenopus embryos. Cell 86(3), 391–399 182 References Moore, K.L., Dalley, A.F. (2005). Clinically Oriented Anatomy. Lippincott Williams and Wilkins. Motoyama, J., Liu, J., Mo, R., Ding, Q., Post, M., Hui, C.C. (1998). Essential function of Gli2 and Gli3 in the formation of lung, trachea and oesophagus. Nat. Genet. 20, 54-57. Mucenski ML, Wert SE, Nation JM, Loudy DE, Huelsken J, Birchmeier W, Morrisey EE, Whitsett JA. (2003). β-Catenin is required for specification of proximal/distal cell fate during lung morphogenesis. J Biol Chem 278, 40231–40238. Mudumana, S.P., Wan, H., Singh, M., Korzh, V., Gong, Z. (2004). Expression analyses of zebrafish transferrin, ifabp, and elastaseB mRNAs as differentiation markers for the three major endodermal organs: liver, intestine, and exocrine pancreas. Dev. Dyn. 230, 165-73. Muller, II, Knapik, E. W. and Hatzopoulos, A. K. (2006). Expression of the protein related to Dan and Cerberus gene--prdc--During eye, pharyngeal arch, somite, and swimbladder development in zebrafish. Dev Dyn 235, 2881-2888. Nam, J.S., Turcotte, T.J., Smith, P.F., Choi, S., and Yoon, J.K. (2006). Mouse Cristin/R- spondin family proteins are novel ligands for the frizzled and LRP6 receptors and activate betacatenin-dependent gene expression. J. Biol. Chem. 281, 13247–13257. Nambiar RM, Henion PD. (2004). Sequential antagonism of early and late Wnt-signaling by zebrafish colgate promotes dorsal and anterior fates. Dev Biol 267, 165-180. Naruse, K., Fukamachi, S. Mitani, H., Kondo, M., Matsuoka, T., Kondo, S., Hanamura, N., Morita, Y., Hasegawa, K., Nishigaki, R. (2000). A detailed linkage map of medaka, Oryzias latipes: comparative genomics and genome evolution. Genetics 154, 1773– 1784. Nasevicius, A. and Ekker, S.C. (2000). Effective targeted gene “knockdown” in zebrafish. Nat. Genet. 26, 216-220. Nelson, J.S. (2006). Fishes of the World. John Wiley & Sons. Neumayer, L. (1930). Die Entwicklung des Darms von Acipenser. Acta Zool. 11, 39-50. Ng, A.N., de Jong-Curtain, T.A., Mawdsley, D.J., White, S.J., Shin, J., Appel, B., Dong, P.D., Stainier, D.Y., Heath, J.K. (2005). Formation of the digestive system in zebrafish: III. Intestinal epithelium morphogenesis. Dev Biol. 286, 114-135. Niehrs C. (2006). Function and biological roles of the Dickkopf family of Wnt modulators. Oncogene 25, 7469–7481. Nieuwkoop PD, Faber J. (1994). Normal table of Xenopus laevis (Daudin). Reprinted Garland:1967. Nieuwkoop, P.D., Faber, J. (1975). Normal Table of Xenopus laevis. North Holland, Daudin, Amsterdam. Nishinakamura R, Matsumoto Y, Nakao K, Nakamura K, Sato A, Copeland NG. (2001). Murine homolog of SALL1 is essential for ureteric bud invasion in kidney development. Development 128, 3105–15. Nishisho, I., Nakamura, Y., Miyoshi, Y., Miki, Y., Ando, H., Horii, A., Koyama, K., Utsunomiya, J., Baba, S., and Hedge, P. (1991). Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 253, 665–669. Noordermeer, J., Klingensmith, J., Perrimon, N., and Nusse, R. (1994). Dishevelled and armadillo act in the wingless signaling pathway in Drosophila. Nature 367, 80–83. Nusse R, Varmus HE. (1992). Wnt genes. Cell 69, 1073-1087. Nusse R. (2005). Wnt signaling in disease and development. Cell Res. 15(1), 28-32 Nusse, R., and Varmus, H.E. (1982). Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31, 99–109. 183 References Nüsslein-Volhard, C., and Wieschaus, E. (1980). Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801. Ober, E.A., Verkade, H., Field, H.A., Stainier, D.Y. (2006). Mesodermal Wnt2b signalling positively regulates liver specification. Nature 442, 688-691. Ober, E.A., Field, H.A., Stainier, D.Y. (2003). From endoderm formation to liver and pancreas development in zebrafish. Mech Dev. 120, 5-18. O'Connell-Rodwell, C.E., Mackanos, M.A., Simanovskii, D., Cao, Y.A., Bachmann, M.H., Schwettman, H.A., and Contag, C.H. (2008). In vivo analysis of heat-shock-protein-70 induction following pulsed laser irradiation in a transgenic reporter mouse. J Biomed Opt. 13, 030501. Oishi I, Suzuki H, Onishi N. (2003). The receptor tyrosine kinase Ror2 is involved in noncanonical Wnt5a/JNK signalling pathway. Genes Cells 8, 645–54. Okada, Y., Ishiko, S., Daido, S., Kim, J., Ikeda, S. (1962). Comparative morphology of the lung with special reference to the alveolar epithelial cells. I. Lung of the amphibia. Acta Tuberc. Jpn. 11, 63–72. Osafune K, Nishinakamura R, Komazaki S, Asashima M. (2002). In vitro induction of the pronephric duct in Xenopus explants. Dev Growth Differ 44, 161–7. PA. (2005). Myocardin is sufficient and necessary for cardiac gene expression in Xenopus. Development 132, 987–97. Panakova, D., Sprong, H., Marois, E., Thiele, C., and Eaton, S. (2005). Lipoprotein particles are required for Hedgehog and Wingless signaling. Nature 435, 58–65. Pandur P, Lasche M, Eisenberg LM, Kuhl M. (2002). Wnt-11 activation of a non-canonical Wnt signalling pathway is required for cardiogenesis. Nature 418, 636–41. Papaioannou VE. (2001). T-box genes in development: from hydra to humans. Int Rev Cytol 207, 1-70. Park, W.Y., Miranda, B., Lebeche, D., Hashimoto, G. and Cardoso, W.V. (1998). FGF-10 is a chemotactic factor for distal epithelial buds during lung development. Dev. Biol. 201, 125134. Parviz M, Lingyan H et al. (2008). SMAD3 prevents binding of NKX2.1 and FOXA1 to the SpB promoter through its MH1 and MH2 domains. Nucleic Acids Research, 36(1), 179–188. Parviz M. et al. (1999) Defects in Tracheoesophageal and Lung Morphogenesis in Nkx2.1(-/-) Mouse Embryos. Dev. Biol. 209, 60-71. Pattle, R.E., Hopkinson, D.A. (1963). Lung lining in bird, reptile, and amphibian. Nature 200, 894–898. Pauling, M.H. and Vu, T.H. (2004). Mechanisms and regulation of lung vascular development. Curr. Top. Dev. Biol. 64, 73-99. Peifer, M., Sweeton, D., Casey, M., and Wieschaus, E. (1994). Wingless signal and Zeste-white kinase trigger opposing changes in the intracellular distribution of Armadillo. Development 120, 369–380. Pelster, B. (2004). pH regulation and swimbladder function in fish. Respir. Physiol. Neurobiol. 144, 179-190. Pepicelli, C.V., Lewis, P.M., McMahon, A.P. (1998). Sonic hedgehog regulates branching morphogenesis in the mammalian lung. Curr. Biol. 8, 1083-1086. Perl A. K. T., Whitsett J. A. (1999). Molecular mechanisms controlling lung morphogenesis. Clinical Genetics 1999, 14-27. 184 References Perry SF, Wilson RJ, Straus C, Harris MB, Remmers JE. (2001). Which came first, the lung or the breath? Comp Biochem Physiol A Mol Integr Physiol129, 37–47. Perry, S.F., Sander, M. (2004). Reconstructing the evolution of the respiratory apparatus in tetrapods. Resp. Physiol. Neurobiol. 144, 125-139. Peterkin T, Gibson A, Patient R. (2003). GATA-6 maintains BMP-4 and Nkx2 expression during cardiomyocyte precursor maturation. EMBO J 22, 4260–73. Piccolo, S., Agius, E., Leyns, L., Bhattacharyya, S., Grunz, H., Bouwmeester, T., and De Robertis, E.M. (1999). The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature 397, 707–710. Pinson, K.I., Brennan, J., Monkley, S., Avery, B.J., and Skarnes, W.C. (2000). An LDLreceptor-related protein mediates Wnt signaling in mice. Nature 407, 535–538. Postlethwait, J.H., Woods, I.G., Ngo-Hazelett, P., Yan, Y.L., Kelly, P.D., Chu, F., Huang, H., Hill-Force, A., Talbot, W.S. (2000). Zebrafish comparative genomics and the origins of vertebrate chromosomes. Genome Res. 10, 1890-1902. Power, J.H., Doyle, I.R., Davidson, K., and Nicholas, T.E. (1999). Ultrastructural and protein analysis of surfactant in the Australian lungfish Neoceratodus forsteri: evidence for conservation of composition for 300 million years. J Exp Biol. 202, 2543-2550. Prem C, Salvenmoser W, Pelster B. (2000). Swimbladder gas gland cells produce surfactant: in vivo and in culture. Am J Physiol Regul Integr Comp Physiol. 279(6), R2336-43. Rajagopal J., Carroll T.J., Guseh, J.S., Bores, S.A., Blank, L.J,, Anderson, W.J., Yu, J., Zhou, Q., McMahon, A.P., Melton, D.A. (2008). Wnt7b stimulates embryonic lung growth by coordinately increasing the replication of epithelium and mesenchyme. Development 135, 1625-1634. Ramalho-Santos, M., Melton, D.A., McMahon, A.P. (2000). Hedgehog signals regulate multiple aspects of gastrointestinal development. Development 127, 2763-1772. Reguart N, He B, Taron M, You L, Jablons DM, Rosell R. (2005). The role of Wnt signaling in cancer and stem cells. Future Oncol 1, 787–97. Reiter, J.F., Kikuchi, Y., Stainier, D.Y. (2001). Multiple roles for Gata5 in zebrafish endoderm formation. Development. 128, 125-35. Reya, T., and Clevers, H. (2005). Wnt signaling in stem cells and cancer. Nature 434, 843–850. Ribeiro, I., Kawakami, Y., Buscher, D., Raya, A., Rodriguez-Leon, J., Morita, M., Rodriguez Esteban, C., and Izpisua Belmonte, J.C. (2007). Tbx2 and Tbx3 regulate the dynamics of cell proliferation during heart remodeling. PLoS One. 2, e398. Rijsewijk, F., Schuermann, M., Wagenaar, E., Parren, P., Weigel, D., and Nusse, R. (1987). The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell 50, 649–657. Rio-Tsonis K, Tsonis PA. (2003). Eye regeneration at the molecular age. Dev Dyn 226, 211–24. Robertson, G.N., McGee, C.A.S., Dumbarton, T.C., Croll, R.P., Smith, F.M. (2007). Development of swimbladder and its innervation in the zebrafish, Danio rerio. J. Morphol. 268, 967-985. Robu, M.E., Larson, J.D., Nasevicius, A., Beiraghi, S., Brenner, C., Farber, S.A., Ekker, S.C. (2007). p53 activation by knockdown technologies. PLOS Genetics 3, e78. Roy, S., Qiao, T., Wolff, C. and Ingham, P. W. (2001). Hedgehog signaling pathway is essential for pancreas specification in the zebrafish embryo. Curr Biol 11, 1358-63. 185 References Rubinfeld, B., Souza, B., Albert, I., Muller, O., Chamberlain, S.H., Masiarz, F.R., Munemitsu, S., and Polakis, P. (1993). Association of the APC gene product with beta-catenin. Science 262, 1731–1734. Rubio, S., Chailley-Heu, B., Ducroc, R., and Bourbon, J.R. (1996). Antibody against pulmonary surfactant protein A recognizes proteins in intestine and swimbladder of the freshwater fish, carp. Biochem Biophys Res Commun. 225, 901-906. Rupik, W., Stawierej, A., Stolarczyk, I. and Widlak, W. (2006). Promoter of the heat-shock testis-specific Hsp70.2/Hst70 gene is active in nervous system during embryonic development of mice. Anat Embryol (Berl) 211, 631-8. Sagemehl, M. (1885). Beitrag zur vergleichenden Anatomie der Fische. III. Das Cranium der Characiniden nebst allgemeinen Bemerkungen ¨uber die mit einem Weber’schen Apparat versehenen physostomen Familien. Morphol. Jahrb. 101-119. Saito, A., Ozaki, K., Fujiwara, T., Nakamura, Y., and Tanigami, A. (1999). Isolation and mapping of a human lung-specific gene, TSA1902, encoding a novel chitinase family member. Gene. 239, 325-331. Saulnier DM, Ghanbari H, Brandli AW. (2002). Essential function of Wnt- for tubulogenesis in the Xenopus pronephric kidney. Dev Biol 248, 13–28. Scheid, P., Pelster, B., Kobayashi, H. (1990). Gas exchange in the fish swimbladder. Adv. Exp. Med. Biol. 277, 735-742. Schier, A.F., Neuhauss, S.C., Helde, K.A., Talbot, W.S., Driever, W. (1997). The one-eyed pinhead gene functions in mesoderm and endoderm formation in zebrafish and interacts with no tail. Development. 124, 327-42. Schneider VA. Mercola M. (2001). Wnt antagonism initiates cardiogenesis in Xenopus laevis. Genes Dev. 15, 304-315. Schorpp M, Kugler W, Wagner U, Ryffel GU. (1988). Hepatocyte-specific promoter element HP1 of the Xenopus albumin gene interacts with transcriptional factors of mammalian hepatocytes. J Mol Biol 202, 307–20. Schroeder, H.W.J., Forbes, S., Mack, L., Davis, S. & Norwood, T.H. (1986). Recombination aneusomy of chromosome associated with multiple severe congenital malformations. Clin. Genet. 30, 285-292. Semenov, M., Tamai, K., and He, X. (2005). SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor. J. Biol. Chem. 280, 26770– 26775. Serls, A.E., Doherty, S., Parvatiyar, P., Wells, J.M. and Deutsch, G.H. (2005). Different thresholds of fibroblast growth factors pattern the ventral foregut into liver and lung. Development 132, 35-47. Shackel N. (2007). Zebrafish and the understanding of liver development: the emerging role of the Wnt pathway in liver biology. Hepatology 45, 540-541. Shannon, J.M., Hyatt, B.A. (2004). Epithelial–mesenchymal interactions in the developing lung. Annu. Rev. Physiol. 66, 625–645. Sheldahl LC, Park M, Malbon CC, Moon RT. (1999). Protein kinase C is differentially stimulated by Wnt and Frizzled homologs in a G-protein-dependent manner. Curr Biol 9(13), 695–698. Shi YB, Brown DD. (1990). Developmental and thyroid hormone-dependent regulation of pancreatic genes in Xenopus laevis. Genes Dev 4, 1107–1113. 186 References Shikata, Y., Okada, T., Hashimoto, M., Ellis, T., Matsumaru, D., Shiroishi, T., Ogawa, M., Wainwright, B., and Motoyama, J. (2010). Ptch1-mediated dosage-dependent action of Shh signaling regulates neural progenitor development at late gestational stages. Dev Biol.epub. Shivdasani, R.A. (2002). Molecular regulation of vertebrate early endoderm development. Dev Biol. 249, 191-203. Shu W, Guttentag S, Wang Z, Andl T, Ballard P, Lu MM, Piccolo S, Birchmeier W, Whitsett JA, Millar SE. (2005). Wnt/beta-catenin signaling acts upstream of N-myc, BMP4, and FGF signaling to regulate proximal-distal patterning in the lung. Dev Biol 283, 226-239. Shu W, Jiang YQ, Lu MM, Morrisey EE. (2002). Wnt7b regulates mesenchymal proliferation and vascular development in the lung. Development 129, 4831-4842. Siegfried, E., Chou, T.B., and Perrimon, N. (1992). Wingless signaling acts through zeste-white 3, the Drosophila homolog of glycogen synthase kinase-3, to regulate engrailed and establish cell fate. Cell 71, 1167–1179. Silver, J. C., Brunt, S. A., Kyriakopoulou, G., Borkar, M. and Nazarian-Armavil, V. (1993). Regulation of two different hsp70 transcript populations in steroid hormone-induced fungal development. Dev Genet 14, 6-14. Small EM, Warkman AS, Wang DZ, Sutherland LB, Olson EN, Krieg P.A. (2005). Myocardin is sufficient and necessary for cardiac gene expression in Xenopus. Development. 132, 987-997. Small, E.M., Vokes, S.A., Garriock, R.J., Li, D., Krieg, P.A., (2000). Developmental expression of the Xenopus Nkx2-1 and Nkx2-4 genes. Mech. Dev. 96, 259–262. Smith, S., Metcalfe, J.A., and Elgar, G. (2000). Identification and analysis of two snail genes in the pufferfish (Fugu rubripes) and mapping of human SNA to 20q. Gene 247, 119–128. Souil, E., Capon, A., Mordon, S., Dinh-Xuan, A.T., Polla, B.S., and Bachelet, M. (2001). Treatment with 815-nm diode laser induces long-lasting expression of 72-kDa heat-shock protein in normal rat skin. Br J Dermatol. 144, 260-266. Sparks AB, Morin PJ, Vogelstein B, Kinzler KW. (1998). Mutational analysis of the APC/beta catenin/Tcf pathway in colorectal cancer. Cancer Res 58, 1130–4. Spooner, B.S., Wessels, N.K. (1970). Mammalian lung development: interactions in primordium formation and bronchial morphogenesis. J. Exp. Zool. 175, 445-454. Stafford, D., Prince, V.E. (2002). Retinoic acid signaling is required for a critical early step in zebrafish pancreatic development. Curr. Biol. 12, 1215-20. Stainier, D.Y. (2002). A glimpse into the molecular entrails of endoderm formation. Genes Dev. 16(8), 893-907. Sternlicht, M.D., Kouros-Mehr, H., Lu, P., Werb, A. (2006). Hormonal and local control of mammary branching morphogenesis. Differentiation 74, 365–381. Stoick-Cooper, C. L., Weidinger, G., Riehle, K. J., Hubbert, C., Major, M. B., Fausto, N. and Moon, R. T. (2007). Distinct Wnt signaling pathways have opposing roles in appendage regeneration. Development 134, 479-489. Strahle, U., Blader, P., Henrique, D. and Ingham, P. W. (1993). Axial, a zebrafish gene expressed along the developing body axis, shows altered expression in cyclops mutant embryos. Genes Dev 7, 1436-46. Strähle, U., Blader, P., Ingham, P.W. (1996). Expression of axial and sonic hedgehog in wildtype and midline defective zebrafish embryos. Int J Dev Biol. 40, 929-40. Stripp, B.R., Sawaya, P.L., Luse, D.S., Wikenheiser, K.A., Wert, S.E., Huffman, J.A., Lattier, D.L., Singh, G., Katyal, S.L., and Whitsett, J.A. (1992). cis-acting elements that confer lung epithelial cell expression of the CC10 gene. J Biol Chem. 267, 14703-14712. 187 References Su, L.K., Vogelstein, B., and Kinzler, K.W. (1993). Association of the APC tumor suppressor protein with catenins. Science 262, 1734– 1737. Sugiura T, Tazaki A, Ueno N, Watanabe K, Mochii M. (2009). Xenopus Wnt-5a induces an ectopic larval tail at injured site, suggesting a crucial role for noncanonical Wnt signal in tail regeneration. Mech Dev. 126(1-2), 56-67. Taderera, J.T., 1967. Control of lung differentiation in vitro. Dev. Biol. 16,489–512. Takada R, Satomi Y, Kurata T. (2006). Monounsaturated fatty acid modification of Wnt protein: its role in Wnt secretion. Dev Cell 11, 791-801. Takashima S, Mkrtchyan M, Younossi-Hartenstein A, Merriam JR, Hartenstein V. (2008) The behaviour of Drosophila adult hindgut stem cells is controlled by Wnt and Hh signalling. Nature 454, 651-655. Takemoto, T., Uchikawa, M., Kamachi, Y., and Kondoh, H. (2006). Convergence of Wnt and FGF signals in the genesis of posterior neural plate through activation of the Sox2 enhancer N-1. Development. 133, 297-306. Tamai, K., Semenov, M., Kato, Y., Spokony, R., Liu, C., Katsuyama, Y., Hess, F., Saint-Jeannet, J.P., and He, X. (2000). LDL-receptor-related proteins in Wnt signal transduction. Nature 407, 530–535. Tang, Y., Simoneau, A.R., Liao, W.X., Yi, G., Hope, C., Liu, F., Li, S., Xie, J., Holcombe, R.F., Jurnak, F.A., et al. (2009). WIF1, a Wnt pathway inhibitor, regulates SKP2 and c-myc expression leading to G1 arrest and growth inhibition of human invasive urinary bladder cancer cells. Mol Cancer Ther. 8, 458-468. Tao, Q., Yokota, C., Puck, H., Kofron, M., Birsoy, B., Yan, D., Asashima, M., Wylie, C.C., Lin, X., and Heasman, J. (2005). Maternal wnt11 activates the canonical wnt signaling pathway required for axis formation in Xenopus embryos. Cell 120, 857–871. Tassava RA. (2004). Forelimb spike regeneration in Xenopus laevis: Testing for adaptiveness. J Exp Zoolog A Comp Exp Biol 301, 150–9. Tebar, M., Destree, O., de Vree, W.J., and Ten Have-Opbroek, A.A. (2001). Expression of Tcf/Lef and sFrp and localization of beta-catenin in the developing mouse lung. Mech Dev. 109, 437-440. Teh, C., Chong, S.W., and Korzh, V. (2003). DNA delivery into anterior neural tube of zebrafish embryos by electroporation. Biotechniques. 35, 950-954. Ten Have-Opbroek, A.A.W. (1991). Lung development in the mouse embryo. Exp. Lung Research 17, 111-130. Teoh, P. H., Shu-Chien, A. C. and Chan, W. K. (2010). Pbx1 is essential for growth of zebrafish swimbladder. Dev Dyn 239, 865-74. Tetsu O, McCormick F. (1999). Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398(6726), 422–426 Theisen H, Purcell J, Bennett M, Kansagara D, Syed A, Marsh JL. (1994). Dishevelled is required during wingless signaling to establish both cell polarity and cell identity. Development 120, 347-360 Theodosiou NA and Tabin CJ. (2003). Wnt signaling during development of the gastrointestinal tract. Dev. Biol. 259, 258-271 Thisse, B., Heyer, V., Lux, A., Alunni, V., Degrave, A., Seiliez, I., Kirchner, J., Parkhill, J. P. and Thisse, C. (2004). Spatial and temporal expression of the zebrafish genome by large-scale in situ hybridization screening. Methods Cell Biol 77, 505-19. 188 References Thomson, A.A., Marker, P.C. (2006). Branching morphogenesis in the prostate gland and seminal vesicles. Differentiation 74, 382–392. Thorpe CJ, Weidinger G, Moon RT. (2005). Wnt/beta-catenin regulation of the Sp1-related transcription factor sp5l promotes tail development in zebrafish. Development 132, 17631772. Topol L, Jiang X, Choi H, Garrett-Beal L, Carolan PJ, Yang Y. (2003). Wnt-5a inhibits the canonical Wnt pathway by promoting GSK-3-independent β-catenin degradation. J Cell Biol 162, 899–908. Uematsu K, He B, You L, Xu Z, McCormick F, Jablons DM. (2003). Activation of the Wnt pathway in non small cell lung cancer: evidence of dishevelled overexpression. Oncogene 22, 7218–21. Ueno S, Weidinger G, Osugi T, Kohn AD, Golob JL, et al. (2007). Biphasic role for Wnt/betacatenin signaling in cardiac specification in zebrafish and embryonic stem cells. Proc Natl Acad Sci USA 104, 9685-9690. van de Water S, van de Wetering M, Joore J, Esseling J, Bink R, et al. (2001). Ectopic Wnt signal determines the eyeless phenotype of zebrafish masterblind mutant. Development 128, 3877-3888. Varnat F, Siegl-Cachedenier I, Malerba M, Gervaz P, Ruiz IAA. (2010). Loss of WNT-TCF addiction and enhancement of HH-GLI1 signalling define the metastatic transition of human colon carcinomas. EMBO Mol Med. 2, 440-457. Varnat, F., Zacchetti, G., and Ruiz i Altaba, A. Hedgehog pathway activity is required for the lethality and intestinal phenotypes of mice with hyperactive Wnt signaling. Mech Dev. 127, 73-81. Verloes, A., Narcy, F. & Fallet-Bianco, C. (1995). Syndromal hypothalamic hamartoblastoma with holoprosencephaly sequence, microphthalmia, pulmonary malformations, radial hypoplasia and mullerian regression: further delineation of a new syndrome? Clin. Dysmorphol. 4, 33-37. Verzi MP, Shivdasani RA. (2008). Wnt signaling in gut organogenesis. Organogenesis 4, 87-91. Vlad, A., Rohrs, S., Klein-Hitpass, L., and Muller, O. (2008). The first five years of the Wnt targetome. Cell. Signal. 20, 795–802. Vuga, L.J., Ben-Yehudah, A., Kovkarova-Naumovski, E., Oriss, T., Gibson, K.F., FeghaliBostwick, C., and Kaminski, N. (2009). WNT5A is a regulator of fibroblast proliferation and resistance to apoptosis. Am J Respir Cell Mol Biol. 41, 583-589. Walker, S.M. (2002). Fossil Fish Found Alive: Discovering the Coelacanth. Carolrhoda Books. Wallace KN, Pack M. (2003). Unique and conserved aspects of gut development in zebrafish. Dev Biol 255, 12-29. Wan H, Korzh S, Li Z, Mudumana SP, Korzh V, Jiang YJ, Lin S, Gong Z. (2006). Analyses of pancreas development by generation of gfp transgenic zebrafish using an exocrine pancreasspecific elastaseA gene promoter. Exp Cell Res 312, 1526–1539. Wan, H., Dingle, S., Xu, Y., Besnard, V., Kaestner, K.H., Ang, S.L., Wert, S., Stahlman, M.T., Whitsett, J.A. (2005). Compensatory roles of Foxa1 and Foxa2 during lung morphogenesis. J. Biol. Chem. 280, 13809-13816. Wang, Y., and Nathans, J. (2007). Tissue/planar cell polarity in vertebrates: new insights and new questions. Development 134, 647–658. Warga, R.M., Nusslein-Volhard, C. (1999). Origin and development of the zebrafish endoderm. Development. 126, 827-838. 189 References Warga, R.M., Stainier, D.Y. (2002). The guts of endoderm formation. Results Probl Cell Differ. 40, 28-47. Wassnetzov, W. (1932). U¨ber die Morphologie der Schwimmblase. Zool. Jb. Abt. Ont. Tiere 56, 1-36. Weaver, M., Batts, L., Hogan, B.L.M. (2003). Tissue interactions pattern the mesenchyme of the embryonic mouse lung. Dev. Biol. 258, 169-184. Weaver, M., Dunn, N.R., Hogan, B.L.M. (2000). BMP4 and FGF10 play opposing roles during lung bud morphogenesis. Development 127, 2695-2704. Weaver, T.E. (1991). Surfactant proteins and SP-D. Am J Respir Cell Mol Biol. 5, 4-5. Wehrli, M., Dougan, S.T., Caldwell, K., O’Keefe, L., Schwartz, S., Vaizel- Ohayon, D., Schejter, E., Tomlinson, A., and DiNardo, S. (2000). Arrow encodes an LDL-receptor-related protein essential for Wingless signaling. Nature 407, 527–530. Wells, J.M., Melton, D.A. (1999). Vertebrate endoderm development. Annu. Rev. Cell. Dev. Biol. 15, 393-410. Wendik, B., Maier, E., Meyer, D. (2004). Zebrafish mnx genes in endocrine and exocrine pancreas formation. Developmental Biology 268, 372-383. Wert, S. E., Glasser, S. W., Korfhagen, T. R. and Whitsett, J. A. (1993). Transcriptional elements from the human SP-C gene direct expression in the primordial respiratory epithelium of transgenic mice. Dev. Biol. 156, 426-443. Westerfield, M., Eisen, J.S. (1988). Neuromuscular specificity: pathfiding by identified motor growth cones in a vertebrate embryo. Trends Neurosci. 11(1), 18-22. White, A.C., Xu, J., Yin, Y., Smith, C., Schmid, G., Ornitz, D.M. (2006). FGF9 and SHH signaling coordinate lung growth and development through regulation of distinct mesenchymal domains. Development 133, 1507-1517. Whitsett, J.A., Wert, S.E., Trapnell, B.C. (2004). Genetic disorders influencing lung formation and function at birth. Hum. Mol. Genet. 2, R207-15. Widelitz R. (2005). Wnt signaling through canonical and non-canonical pathways: recent progress. Growth Factors 23, 111–116. Wild W, Pogge VS, Nastos A, Senkel S, Lingott-Frieg A, Bulman M. (2000). The mutated human gene encoding hepatocyte nuclear factor 1beta inhibits kidney formation in developing Xenopus embryos. Proc Natl Acad Sci USA 97, 4695–700. Willert, K., Brown, J.D., Danenberg, E., Duncan, A.W., Weissman, I.L., Reya, T., Yates, J.R., 3rd, and Nusse, R. (2003). Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423, 448–452. Williams MC. (2003). Alveolar type I cells: molecular phenotype and development. Annu Rev Physiol 65, 669-695. Winata C. L., Korzh S., Kondrychyn I., Korzh V., Gong Z. (2010). The role of vasculature and blood circulation in zebrafish swimbladder development. BMC Developmental Biology 2010, 10, 3. Winata C. L., Korzh S., Kondrychyn I., Zheng W., Korzh V., Gong Z. (2009). Development of zebrafish swimbladder: The requirement of Hedgehog signaling in specification and organization of the three tissue layers. Dev Biol 331, 222-236. Winn RA, Marek L, Han SY. (2005). Restoration of Wnt-7a expression reverses non-small cell lung cancer cellular transformation through frizzled-9-mediated growth inhibition and promotion of cell differentiation. J Biol Chem 280, 19625–19634. 190 References Wissmann, C., Wild, P.J., Kaiser, S., Roepcke, S., Stoehr, R., Woenckhaus, M., Kristiansen, G., Hsieh, J.C., Hofstaedter, F., Hartmann, A., et al. (2003). WIF1, a component of the Wnt pathway, is down-regulated in prostate, breast, lung, and bladder cancer. J Pathol. 201, 204212. Wittbrodt, J., Meyer, A., and Schartl, M. (1998). More genes in fish? BioEssays 20, 511-515. Wolfe AD, Crimmins G, Cameron JA, Henry JJ. (2004). Early regeneration genes: Building a molecular profile for shared expression in cornealens transdifferentiation and hindlimb regeneration in Xenopus laevis. Dev Dyn 230, 615–29. Woods, I.G., Kelly, P.D., Chu, F., Ngo-Hazelett, P., Yan, Y., Huang, H., Postlethwait, J.H., Talbot, W.S. (2000). A comparative map of the zebrafish genome. Genome Res. 10, 19031914. Xu, Q., Wang, Y., Dabdoub, A., Smallwood, P.M., Williams, J., Woods, C., Kelley, M.W., Jiang, L., Tasman, W., Zhang, K., and Nathans, J. (2004). Vascular development in the retina and inner ear: control by Norrin and Frizzled-4, a high-affinity ligand-receptor pair. Cell 116, 883–895. Yamamoto, A., Nagano, T., Takehara, S., Hibi, M., and Aizawa, S. (2005). Shisa promotes head formation through the inhibition of receptor protein maturation for the caudalizing factors, Wnt and FGF. Cell 120, 223–235. Yee, N.S., Lorent, K., Pack, M. (2005). Exocrine pancreas development in zebrafish. Dev Biol. 284, 84-101. Yin A, Winata CL, Korzh S, Korzh V, Gong Z (2010) Expression of components of Wnt and Hedgehog pathways in different tissue layers during lung development in Xenopus laevis. Gene Expr Patterns 10: 338-344. Yin Y, White AC, Huh SH, Hilton MJ, Kanazawa H, et al. (2008) An FGF-WNT gene regulatory network controls lung mesenchyme development. Dev Biol 319, 426-436. Yokoyama H, Ide H, Tamura K. (2001). FGF-10 stimulates limb regeneration ability in Xenopus laevis. Dev Biol 233, 72–9. Yoshikawa, S., McKinnon, R.D., Kokel, M., and Thomas, J.B. (2003). Wnt-mediated axon guidance via the Drosophila Derailed receptor. Nature 422, 583–588. You, L., He, B., Xu, Z., Uematsu, K., Mazieres, J., Mikami, I., Reguart, N., Moody, T.W., Kitajewski, J., McCormick, F., et al. (2004). Inhibition of Wnt-2-mediated signaling induces programmed cell death in non-small-cell lung cancer cells. Oncogene. 23, 6170-6174. Zapp D, Bartkowski S, Holewa B, Zoidl C, Klein-Hitpass L, Ryffel GU. (1993). Elements and factors involved in tissue-specific and embryonic expression of the liver transcription factor LFB1 in Xenopus laevis. Mol Cell Biol 13, 6416–26. Zerlin M., Julius M.A. Kitajewski J. (2008).Wnt/Frizzled signaling in angiogenesis. Angiogenesis 11, 63–69 Zhai, L., Chaturvedi, D., and Cumberledge, S. (2004). Drosophila wnt- undergoes a hydrophobic modification and is targeted to lipid rafts, a process that requires porcupine. J. Biol. Chem. 279, 33220–33227. Zhu, W., Shiojima, I., Ito, Y., Li, Z., Ikeda, H., Yoshida, M., Naito, A.T., Nishi, J., Ueno, H., Umezawa, A., (2008). IGFBP-4 is an inhibitor of canonical Wnt signalling required for cardiogenesis. Nature 454, 345–349. Zon LI, Peterson RT. (2005). In vivo drug discovery in the zebrafish. Nat Rev Drug Discov. 4(1), 35-44. Zorn AM, Mason J. (2001). Gene expression in embryonic Xenopus liver. Mech Dev 103, 153-7. 191 [...]... Expression of Wnt receptors and transcription factors in the swimbladder 100 Expression of axin1 and axin2 in the early development of zebrafish swimbladder Expression of wif1 in the early developing swimbladder Induction of GFP-fusion proteins and inhibition of Wnt signaling in the hs:Dkk1-GFP and hs:∆Tcf-GFP transgenic embryos by heat-shock treatment Effects of temporal inhibition of wnt signaling on the. .. Test of the X tropicalis sftpc promoter in X laevis and zebrafish Expression of sftpc (spC) in early lung development of Xenopus laevis 71 74 Fig.3-4 Expression of Nkx2.1 in early development of Xenopus lung epithelium 75 Fig.3-5 Expression of wnt7 b in the lung epithelium 78 Fig.3-6 Expression of wnt5 a and wif1 in the mesenchyme of Xenopus lung 79 Fig.3-7 Expression of shh and bhh in early Xenopus lung. ..Summary Furthermore, we investigated the roles of Wnt ligand genes wnt1 , wnt5 b and wnt1 1 in the early development of the zebrafish swimbladder and revealed the synergetic roles of wnt5 b and wnt1 1 for the specification of mesenchymal cells in swimbladder More importantly, we demonstrate that Wnt signaling is required for the budding of a second swimbladder bud Proper development of swimbladder requires... 131 Fig 4-22 Design and validation of wif1 morpholinos 136 Fig 4-23 Validation and rescue of wif1 morpholinos 139 Fig 4-24 Effects of wif1 morpholino knockdown on the development of three tissue layers of the swimbladder Crosstalk of Wnt and Hh signaling in swimbladder development 141 Requirement of Hh signaling for wif1 expression Expression of tbx2a in the early development of the swimbladder 145 149... mimics inhibition of Wnt signaling in early swimbladder development Expression of cx43 in the early development of the swimbladder Fig 4-30 Wnt signaling inhibited tbx2a expression but promoted cx43 expression 152 Fig 4-31 tbx2a negatively regulated Wnt but not wif1 expression Schematic depiction of crosstalk between Wnt, Hh and Tbx2a signaling 153 Schematic representation of Wnt signaling requirement in. .. swimbladder requires a proper level of Wnt signals In addition, the cross-talks between Wnt signaling and Hedgehog signaling as well as tbx2a signaling were investigated In conclusion, our study demonstrates that the roles of Wnt signaling are conserved between the early development of the zebrafish swimbladder and tetrapod lung IX List of tables List of Tables Table 2-1 Primers Used in X tropicalis promoter... I and type II), which line the inner surface of the developing lung and trachea The three distinct layers of the mammalian lung have been well characterized histoligically (Hogan, 1999) The lung is the main respiratory organ in terrestrial vertebrates Air goes through the respiratory tract, which includes the nasal cavity, pharynx, and trachea; and finally travels into the bronchi and bronchioles into... early Xenopus lung development 82 Fig.3-8 Expression of acta2 and anxa5 in early Xenopus lung development 83 Fig 4-1 94 Fig 4-2 Fig 4-1 Expression of new maker genes in different tissue layers of the zebrafish swimbladder as assayed by WISH Expression of wnt5 b and wnt1 1 in the early developmental swimbladder Fig 4-3 Examination of wnt2 expression pattern 99 Fig 4-4 Detailed examination of wnt2 expression... signaling on the epithelium development of swimbladder Effects of temporal inhibition of Wnt signaling on swimbladder mesenchyme and smooth muscles Effects of temporal inhibition of Wnt signaling on swimbladder mesothelium development 105 Fig 4-5 Fig 4-6 Fig 4-7 Fig 4-8 Fig 4-9 Fig 4-10 Fig.4-11 98 104 106 110 112 114 116 Fig 4-12 Effects of Wnt inhibition on cell proliferation in the swimbladder 119 Fig... 4-13 Effects of Wnt inhibition on cell apoptosis in the swimbladder Design and validation of wif1 morpholinos Dosage-dependent effect of IWR1 on specification of swimbladder epithelial cells 120 Fig 4-14 XI 124 List of figures Fig 4-15 Timing of requirement of Wnt signaling for swimbladder specification and growth Dosage-dependent effect of IWR-1 treatment on the formation of the second swimbladder . WNT SIGNALING IN THE EARLY DEVELOPMENT OF ZEBRAFISH SWIMBLADDER AND XENOPUS LUNG YIN AO NATIONAL UNIVERSITY OF SINGAPORE 2011 WNT SIGNALING IN THE EARLY DEVELOPMENT. 18 1.6.5 Development of the zebrafish swimbladder 19 1.7 The Wnt signaling 20 1.7.1 The discovery of Wnt signaling 20 1.7.2 The Wnt gene family 21 1.7.3 Classification of Wnt signaling and Wnts 22 1.7.4. target genes 29 1.7.10 Wnt signaling in lung and lung development 31 1.7.11 Wnt signaling in Xenopus lung development 32 1.7.12 Wnt signaling in Zebrafish 33 1.8 Objectives of the study 33 Chapter

Ngày đăng: 11/09/2015, 09:07

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN