Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 157 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
157
Dung lượng
4,75 MB
Nội dung
LABEL-FREE ELECTROCHEMICAL DNA AND PROTEIN DETECTION USING RUTHENIUM COMPLEXES AND FUNCTIONAL POLYETHYLENEDIOXYTHIOPHENES XIE HONG (M Sc., NUS) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CHEMISTRY NATIONAL UNIVERSITY OF SINGAPORE 2008 LIST OF PUBLICATIONS Tansil, N C.; Xie, H.; Xie, F.; Gao, Z Q., Direct detection of DNA with an electrocatalytic threading intercalator Analytical Chemistry 2005, 77, (1), 126-134 Tansil, N C.; Xie, F.; Xie, H.; Gao, Z Q., An ultrasensitive nucleic acid biosensor based on the catalytic oxidation of guanine by a novel redox threading intercalator Chemical Communications 2005, (8), 1064-1066 Xie, H.; Tansil, N C.; Gao, Z Q., A redox active and electrochemiluminescent threading bis-intercalator and its applications in DNA assays Frontiers in Bioscience 2006, 11, 1147-1157 Xie, H.; Yang, D W.; Heller, A.; Gao, Z Q., Electrocatalytic oxidation of guanine, guanosine, and guanosine monophosphate Biophysical Journal 2007, 92, (8), L70L72 Luo, S-C; Xie, H.; Chen, N Y.;Yu, H-h; Ying, J Y., Functional PEDOT thin film for electrochemical DNA biosensing and controlled cell adhesion To be submitted Xie, H.; Luo, S-C; Yu, H-h; Ying, J Y., Functional PEDOT nanowires for label-free protein detection To be submitted Patents and Technology Disclosures: Xie, H., Gao Z.Q., Xie, F., Determination of nucleic acid using electrocatalytic intercalators, WO 2006/025796, US 2006/0046254, Mar 2006 Yu, H-H, Ying, J Y-R., Luo, S-C, Xie, H., Chen, N.Y., polyethylenedioxythiophene (PEDOT) biointerfaces for DNA detection, IBN Technology Disclosure, Nov 2006 Yu, H-H., Ying, J Y-R, Xie, H., Kantchev, E A B, Luo, S-C., Non-fouling polyethylenedioxythiophene (PEDOT) biointerfaces for controlled adhesion of cells and proteins, IBN Technology Disclosure, Jun 2007 Conference Presentations: Xie, H.; Luo, S-C; Yu, H-h; Ying, J Y., Non-fouling PEDOT for controled cell adhesion, Oral presentation, NanoBioEurope 2008, Barcelona, 9-13 Jun 2008 Xie, H.; Luo, S-C; Chen, N Y.; Yu, H-h; Ying, J Y., Functional PEDOTs for electrochemical biosensors, Oral presentation, Regional Electrochemical Meeting of South-East Aisa 2008, Singapore, 5-7 Aug 2008 ACKNOWLEDGEMENTS It is a pleasure to thank many people who made this thesis possible I would like to start by thanking my advisor, Dr Hsiao-hua (Bruce) Yu, for his enthusiastic supervision; and my co-advisor, Dr Choon Hong Tan, for many valuable advices I would also like to thank my ex-advisors, Dr Zhiqiang Gao and Dr Daiwen Yang Although they are unable to guide me throughout my whole PhD work, I am grateful to their guidance and mentorship during my first year I am very grateful to Prof Jackie Y Ying and Ms Noreena AbuBarka for allowing me to pursue my dreams in Institute of Bioengineering and Nanotechnology (IBN) I truly appreciate their constant support over the years Without them, IBN would not be so successful today and I would not be able to finish my projects so smoothly My gratitude also extends to all IBN administrative staffs for their general support Many wonderful friends have kept me balanced and lighthearted through my graduate study They have contributed to this thesis along the way I would like to especially thank Dr Shyh-Chyang Luo, Zaoli Zhang, Natalia Tansil, Emril Ali, Naiyan Chen, Dr Eric Kantchev, Dr Shujun Gao, Dr Han Yu, Dr Hongwei Gu, Dr Alex Lin, Shawn Tan, Dr Jiang Jiang, Dr Majad Khan, James Hsieh, Guangrong Peh, Huilin Shao, Dr Peggy Chan and Lishan Wang I am thankful for their valuable discussions, assistance, friendship, and for making my stay in IBN enjoyable I would like to express my deepest gratitude to those who helped me get through the difficult times I thank you for all the emotional support, entertainment and caring you provided i Finally I am forever indebted to my family for their love and understanding I would like to thank my parents for their endless support when it was most needed This thesis is dedicated to you Last but not least, I would like to thank IBN, BMRC and A*Star for the funding ii TABLE OF CONTENTS List of Publications Acknowledgements Table of Contents Summary List of Abbreviations List of Figures, Schemes and Tables Introduction 1.1 Background 1.1.1 Electrochemical Biosensors 1.1.2 Label-Free Electrochemical/Electrical Assays 1.1.3 Electroactive Conducting Polymers for Biosensing .10 1.2 Motivation and Objectives .11 1.3 Scope 12 1.4 Thesis Outline 12 Ruthenium-Complexed Electroactive Intercalators for Label-Free DNA Detection 14 2.1 Introduction .14 2.2 Experimental .18 2.2.1 Materials and Reagents 18 2.2.2 Synthesis of Electroactive DNA Intercalators 19 2.2.3 Apparatus .22 2.2.4 Sensor Construction 23 2.3 Results and Discussion .25 iii 2.3.1 Synthesis and Characterization of Electroactive DNA Intercalators 25 2.3.2 Intercalation with DNA 29 2.3.3 Application for Label-free DNA Detection 33 2.4 Conclusions .43 Ruthenium-Based Polymer Complexes for Electrocatalytic Guanine Oxidation 44 3.1 Introduction .44 3.2 Experimental .46 3.2.1 Materials and Reagents 46 3.2.2 Synthesis of Ruthenium-complexed Redox Polymers 46 3.2.3 Preparation of Redox Polymer Modified Electrodes 49 3.2.4 Apparatus .49 3.3 Results and Discussion .50 3.3.1 Synthesis and Characterization of Redox Polymers 50 3.3.2 Redox Polymer Modified Electrode 53 3.3.3 Electrocatalytic Oxidation of Guanine on Modified Electrode 54 3.3.4 Redox Titration .56 3.3.5 Oxidation of Guanosine and Guanosine Monophosphate (GMP) .58 3.4 Conclusions .60 Nanostructured Functional Polyethylenedioxythiophenes (PEDOTs) 61 4.1 Introduction .61 4.1.1 Conducting Polymers 61 4.1.2 Nanostructured Conducting Polymers 63 4.1.3 Synthesis of 1-D Conducting Polymer Nanostructures 64 iv 4.1.4 1-D Polyethylenedioxythiophene (PEDOT) Nanostructures .65 4.2 Experimental .66 4.2.1 Materials and Reagents 66 4.2.2 Chemical Polymerization .67 4.2.3 Electrochemical Polymerization 68 4.2.4 Characterization 68 4.3 Results and Discussion .68 4.3.1 Surfactant Template-Guided Nanofiber Synthesis .68 4.3.2 Stepwise Electropolymerization 73 4.3.3 Electrical Field-Assisted Nanowire Growth 77 4.4 Conclusions .79 PEDOT Nanowires for Label-Free Protein Detection 81 5.1 Introduction .81 5.2 Experimental Section 83 5.2.1 Materials and Reagents 83 5.2.2 Device Fabrication and Nanowire Synthesis .83 5.2.3 Aptamer Immobilization and Protein Binding 84 5.2.4 Electrical Measurement 84 5.3 Results and Discussion .85 5.3.1 Device Characteristics 85 5.3.2 Biomolecule Conjugation .86 5.3.3 Protein Detection 88 5.3.4 1-D Nanostructure vs 2-D Film 91 5.4 Conclusions .93 v Functional PEDOT Nanobiointerface: Toward in vivo Applications 95 6.1 Introduction .95 6.2 Experimental .97 6.2.1 Materials and Reagents 97 6.2.2 Electropolymerization and Film Synthesis 98 6.2.3 Electrochemical Characterization 99 6.2.4 Polymer Film Analysis 99 6.2.5 Protein Adsorption 100 6.2.6 Cell Culture 100 6.3 Results and Discussions 102 6.3.1 Synthesis and Characterization of Functional PEDOT Thin Films 102 6.3.2 Biocompatibility of Functional PEDOT Thin Films 106 6.3.3 Adhesive and Non-adhesive PEDOT Nanobiointerfaces 107 6.3.4 Controlled Cell Patterning 110 6.3.5 Biotin-functionalized PEDOT Nanobiointerface 111 6.3.6 Peptide-functionalized PEDOT Nanobiointerface 115 6.4 Conclusions .120 Conclusions and Outlook 121 References vi SUMMARY This thesis presents our studies on the development of label-free electrochemical biosensors for DNA/protein detection The urgent need for the development of point-of-care devices for the detection of infectious agents and cancer-related biomarkers motivate us to keep searching for simple, fast, sensitive yet affordable analytical tools We have demonstrated two very different approaches for label-free DNA/protein detection with electrochemical transduction Rutheniumcomplexed electroactive DNA threading intercalators and aptamer-modified polyethylenedioxythiophene (PEDOT) nanowires were used as signal reporters for the corresponding binding events In part I, we studied label-free electrochemical DNA detection using ruthenium-complexed intercalators Two ruthenium-complexed electroactive DNA intercalators were synthesized, characterized, and their application for label-free DNA detection were investigated One based on electrochemiluminescence, and the other one based on electrocatalytic oxidation of guanine bases in the DNA sequences The electroactive intercalators are dual functional: selective binding of double-stranded DNA (ds-DNA) and generation of catalytic electrochemical signals This feature allows simple and sensitive detection Moreover, the oxidation potential of guanine base and its corresponding nucleoside and nucleotide under physiological buffer condition were determined experimentally first time by electrocatalytic oxidation titration using ruthenium-complexed redox polymer modified electrode In part II, we explored the use of a conducting polymer, functionalized polyethylenedioxythiophene (PEDOT), as an intrinsic transducer for label-free protein sensing Various approaches for the synthesis of 1-D PEDOT nanostructures were vii studied Functional PEDOT nanowires were directly synthesized across the electrode junction under the assistance of an external electric field Such PEDOT nanowires devices can be applied immediately after synthesis for field effect transistor (FET) based sensing, eliminating complicated post-synthesis alignment and assembly Label-free detection of a blood-clogging factor, thrombin, was demonstrated using aptamer-modified PEDOT nanowires In comparison with 2-D thin films, 1-D nanostructures are crucial for field effect transistor (FET) based sensing The PEDOT nanowire based sensing platform is applicable for label-free detection of DNA as well as proteins which their DNA aptamers are available Finally, we evaluated functional PEDOT thin films as tunable nanobiointerfaces for effective biomolecule immobilization and controlled cell adhesion, for future cell-based sensing and other in vivo applications Particularly, biotin-functionalized PEDOT surface and peptide-functionalized PEDOT surface were achieved through direct polymerization from mixed monomer solution and facile post-polymerization functionalization Specific protein adsorption and controlled cell attachment were demonstrated on these biologically-relevant functionalized PEDOT surfaces Similar modification is also feasible on nanostructured PEDOT surfaces, and we expect to see more exciting in vivo applications in the future viii 36 Kelley, S O.; Barton, J K.; Jackson, N M.; Hill, M G., Electrochemistry of methylene blue bound to a DNA-modified electrode Bioconjugate Chemistry 1997, 8, (1), 31-37 37 Wong, E L S.; Gooding, J J., Charge transfer through DNA: A selective electrochemical DNA biosensor Analytical Chemistry 2006, 78, (7), 2138-2144 38 Gooding, J J.; Chou, A.; Mearns, F J.; Wong, E.; Jericho, K L., The ion gating effect: using a change in flexibility to allow label free electrochemical detection of DNA hybridisation Chemical Communications 2003, (15), 1938-1939 39 Lai, R Y.; Lagally, E T.; Lee, S H.; Soh, H T.; Plaxco, K W.; Heeger, A J., Rapid, sequence-specific detection of unpurified PCR amplicons via a reusable, electrochemical sensor Proceedings of the National Academy of Sciences of the United States of America 2006, 103, (11), 4017-4021 40 Fan, C H.; Plaxco, K W.; Heeger, A J., Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA Proceedings of the National Academy of Sciences of the United States of America 2003, 100, (16), 9134-9137 41 Palecek, E.; Jelen, F., Electrochemistry of nucleic acids and development of DNA sensors Critical Reviews in Analytical Chemistry 2002, 32, (3), 261-270 42 Armistead, P M.; Thorp, H H., Modification of indium tin oxide electrodes with nucleic acids: Detection of attomole quantities of immobilized DNA by electrocatalysis Analytical Chemistry 2000, 72, (16), 3764-3770 43 Warsinke, A.; Benkert, A.; Scheller, F W., Electrochemical immunoassays Fresenius Journal of Analytical Chemistry 2000, 366, (6-7), 622-634 44 Diaz-Gonzalez, M.; Gonzalez-Garcia, M B.; Costa-Garcia, A., Recent advances in electrochemical enzyme immunoassays Electroanalysis 2005, 17, (21), 19011918 45 Ronkainen-Matsuno, N J.; Thomas, J H.; Halsall, H B.; Heinemann, W R., Electrochemical immunoassay moving into the fast lane Trends in Analytical Chemistry 2002, 21, (4), 213-225 46 Lin, J H.; Ju, H X., Electrochemical and chemiluminescent immunosensors for tumor markers Biosensors & Bioelectronics 2005, 20, (8), 1461-1470 47 Das, J.; Aziz, M A.; Yang, H., A nanocatalyst-based assay for proteins: DNAfree ultrasensitive electrochemical detection using catalytic reduction of pnitrophenol by gold-nanoparticle labels Journal of the American Chemical Society 2006, 128, (50), 16022-16023 48 Dequaire, M.; Degrand, C.; Limoges, B., An electrochemical metalloimmunoassay based on a colloidal gold label Analytical Chemistry 2000, 72, (22), 5521-5528 49 Liu, G D.; Wang, J.; Kim, J.; Jan, M R.; Collins, G E., Electrochemical coding for multiplexed immunoassays of proteins Analytical Chemistry 2004, 76, (23), 7126-7130 50 Hansen, J A.; Wang, J.; Kawde, A N.; Xiang, Y.; Gothelf, K V.; Collins, G., Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor Journal of the American Chemical Society 2006, 128, (7), 2228-2229 51 Wang, J.; Liu, G D.; Jan, M R., Ultrasensitive electrical biosensing of proteins and DNA: Carbon-nanotube derived amplification of the recognition and transduction events Journal of the American Chemical Society 2004, 126, (10), 3010-3011 52 Yu, X.; Munge, B.; Patel, V.; Jensen, G.; Bhirde, A.; Gong, J D.; Kim, S N.; Gillespie, J.; Gutkind, J S.; Papadimitrakopoulos, F.; Rusling, J F., Carbon 125 53 54 55 56 57 58 59 60 61 62 63 64 65 66 nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers Journal of the American Chemical Society 2006, 128, (34), 11199-11205 Dubois, M P.; Gondran, C.; Renaudet, O.; Dumy, P.; Driguez, H.; Fort, S.; Cosnier, S., Electrochemical detection of Arachis hypogaea (peanut) agglutinin binding to monovalent and clustered lactosyl motifs immobilized on a polypyrrole film Chemical Communications 2005, (34), 4318-4320 Ramanaviciene, A.; Ramanavicius, A., Molecularly imprinted polypyrrole-based synthetic receptor for direct detection of bovine leukemia virus glycoproteins Biosensors & Bioelectronics 2004, 20, (6), 1076-1082 Li, B.; Sauve, G.; Iovu, M C.; Jeffries-El, M.; Zhang, R.; Cooper, J.; Santhanam, S.; Schultz, L.; Revelli, J C.; Kusne, A G.; Kowalewski, T.; Snyder, J L.; Weiss, L E.; Fedder, G K.; McCullough, R D.; Lambeth, D N., Volatile organic compound detection using nanostructured copolymers Nano Letters 2006, 6, (8), 1598-1602 Sadik, O A.; Xu, H.; Gheorghiu, E.; Andreescu, D.; Balut, C.; Gheorghiu, M.; Bratu, D., Differential impedance Spectroscopy for monitoring protein immobilization and antibody-antigen reactions Analytical Chemistry 2002, 74, (13), 3142-3150 Bart, M.; Stigter, E C A.; Stapert, H R.; de Jong, G J.; van Bennekom, W P., On the response of a label-free interferon-gamma immunosensor utilizing electrochemical impedance spectroscopy Biosensors & Bioelectronics 2005, 21, (1), 49-59 Jiang, D C.; Tang, J.; Liu, B H.; Yang, P Y.; Shen, X R.; Kong, J L., Covalently coupling the antibody on an amine-self-assembled gold surface to probe hyaluronan-binding protein with capacitance measurement Biosensors & Bioelectronics 2003, 18, (9), 1183-1191 Tang, D P.; Yuan, R.; Chai, Y Q., Ligand-functionalized core/shell Ag@Au nanoparticies label-free amperometric immun-biosensor Biotechnology and Bioengineering 2006, 94, (5), 996-1004 Sadik, O A.; John, M J.; Wallace, G G.; Barnett, D.; Clarke, C.; Laing, D G., Pulsed amperometric detection of thaumatin using antibody-containing poly(pyrrole) electrodes Analyst 1994, 119, (9), 1997-2000 Kerman, K.; Nagatani, N.; Chikae, M.; Yuhi, T.; Takamura, Y.; Tamiya, E., Label-free electrochemical immunoassay for the detection of human chorionic gonadotropin hormone Analytical Chemistry 2006, 78, (15), 5612-5616 Patolsky, F.; Lieber, C M., Nanowire nanosensors Materials Today 2005, 8, (5), 20-28 Patolsky, F.; Zheng, G F.; Lieber, C M., Nanowire-based biosensors Analytical Chemistry 2006, 78, (13), 4260-4269 Cui, Y.; Wei, Q Q.; Park, H K.; Lieber, C M., Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species Science 2001, 293, (5533), 1289-1292 Chen, R J.; Choi, H C.; Bangsaruntip, S.; Yenilmez, E.; Tang, X W.; Wang, Q.; Chang, Y L.; Dai, H J., An investigation of the mechanisms of electronic sensing of protein adsorption on carbon nanotube devices Journal of the American Chemical Society 2004, 126, (5), 1563-1568 Zheng, G F.; Patolsky, F.; Cui, Y.; Wang, W U.; Lieber, C M., Multiplexed electrical detection of cancer markers with nanowire sensor arrays Nature Biotechnology 2005, 23, (10), 1294-1301 126 67 Hahm, J.; Lieber, C M., Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors Nano Letters 2004, 4, (1), 51-54 68 Li, Z.; Chen, Y.; Li, X.; Kamins, T I.; Nauka, K.; Williams, R S., Sequencespecific label-free DNA sensors based on silicon nanowires Nano Letters 2004, 4, (2), 245-247 69 Chen, R J.; Bangsaruntip, S.; Drouvalakis, K A.; Kam, N W S.; Shim, M.; Li, Y M.; Kim, W.; Utz, P J.; Dai, H J., Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors Proceedings of the National Academy of Sciences of the United States of America 2003, 100, (9), 4984-4989 70 Besteman, K.; Lee, J O.; Wiertz, F G M.; Heering, H A.; Dekker, C., Enzyme-coated carbon nanotubes as single-molecule biosensors Nano Letters 2003, 3, (6), 727-730 71 Forzani, E S.; Zhang, H Q.; Nagahara, L A.; Amlani, I.; Tsui, R.; Tao, N J., A conducting polymer nanojunction sensor for glucose detection Nano Letters 2004, 4, (9), 1785-1788 72 Ramanathan, K.; Bangar, M A.; Yun, M.; Chen, W.; Myung, N V.; Mulchandani, A., Bioaffinity sensing using biologically functionalized conducting-polymer nanowire Journal of the American Chemical Society 2005, 127, (2), 496-497 73 Yoon, H.; Kim, J H.; Lee, N.; Kim, B G.; Jang, J., A novel sensor platform based on aptamer-conjugated polypyrrole nanotubes for label-free electrochemical protein detection Chembiochem 2008, 9, (4), 634-641 74 Wanekaya, A K.; Bangar, M A.; Yun, M.; Chen, W.; Myung, N V.; Mulchandani, A., Field-effect transistors based on single nanowires of conducting polymers Journal of Physical Chemistry C 2007, 111, (13), 52185221 75 Ahuja, T.; Mir, I A.; Kumar, D.; Rajesh, Biomolecular immobilization on conducting polymers for biosensing applications Biomaterials 2007, 28, (5), 791-805 76 Darain, F.; Park, S U.; Shim, Y B., Disposable amperometric immunosensor system for rabbit IgG using a conducting polymer modified screen-printed electrode Biosensors & Bioelectronics 2003, 18, (5-6), 773-780 77 Cai, H.; Xu, Y.; He, P G.; Fang, Y Z., Indicator free DNA hybridization detection by impedance measurement based on the DNA-doped conducting polymer film formed on the carbon nanotube modified electrode Electroanalysis 2003, 15, (23-24), 1864-1870 78 Cha, J H.; Han, J I.; Choi, Y.; Yoon, D S.; Oh, K W.; Lim, G., DNA hybridization electrochemical sensor using conducting polymer Biosensors & Bioelectronics 2003, 18, (10), 1241-1247 79 Thompson, L A.; Kowalik, J.; Josowicz, M.; Janata, J., Label-free DNA hybridization probe based on a conducting polymer Journal of the American Chemical Society 2003, 125, (2), 324-325 80 Reisberg, S.; Piro, B.; Noel, V.; Pham, M C., DNA electrochemical sensor based on conducting polymer: Dependence of the "signal-on" detection on the probe sequence localization Analytical Chemistry 2005, 77, (10), 3351-3356 81 Peng, H.; Soeller, C.; Vigar, N A.; Caprio, V.; Travas-Sejdic, J., Label-free detection of DNA hybridization based on a novel functionalized conducting polymer Biosensors & Bioelectronics 2007, 22, (9-10), 1868-1873 127 82 Peng, H.; Soeller, C.; Cannell, M B.; Bowmaker, G A.; Cooney, R P.; TravasSejdic, J., Electrochemical detection of DNA hybridization amplified by nanoparticles Biosensors & Bioelectronics 2006, 21, (9), 1727-1736 83 Ludwig, K A.; Uram, J D.; Yang, J Y.; Martin, D C.; Kipke, D R., Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film Journal of Neural Engineering 2006, 3, (1), 59-70 84 Wang, J., From DNA biosensors to gene chips Nucleic Acids Research 2000, 28, (16), 3011-3016 85 Drummond, T G.; Hill, M G.; Barton, J K., Electrochemical DNA sensors Nature Biotechnology 2003, 21, (10), 1192-1199 86 Kuhr, W G., Electrochemical DNA analysis comes of age Nature Biotechnology 2000, 18, (10), 1042-1043 87 Fritz, J.; Cooper, E B.; Gaudet, S.; Sorger, P K.; Manalis, S R., Electronic detection of DNA by its intrinsic molecular charge Proceedings of the National Academy of Sciences of the United States of America 2002, 99, (22), 1414214146 88 Steenken, S.; Jovanovic, S V., How easily oxidizable is DNA? One-electron reduction potentials of adenosine and guanosine radicals in aqueous solution Journal of the American Chemical Society 1997, 119, (3), 617-618 89 Gore, M R.; Szalai, V A.; Ropp, P A.; Yang, I V.; Silverman, J S.; Thorp, H H., Detection of attomole quantitites of DNA targets on gold microelectrodes by electrocatalytic nucleobase oxidation Analytical Chemistry 2003, 75, (23), 6586-6592 90 Wang, J.; Cai, X H.; Rivas, G.; Shiraishi, H.; Farias, P A M.; Dontha, N., DNA electrochemical biosensor for the detection of short DNA sequences related to the human immunodeficiency virus Analytical Chemistry 1996, 68, (15), 2629-2634 91 Wang, J.; Bollo, S.; Paz, J L L.; Sahlin, E.; Mukherjee, B., Ultratrace measurements of nucleic acids by baseline-corrected adsorptive stripping square wave voltammetry Analytical Chemistry 1999, 71, (9), 1910-1913 92 Wang, J.; Fernandes, J R.; Kubota, L T., Polishable and renewable DNA hybridization biosensors Analytical Chemistry 1998, 70, (17), 3699-3702 93 Hashimoto, K.; Ito, K.; Ishimori, Y., Sequence-specific gene detection with a gold electrode modified with DNA probes and an electrochemically active dye Analytical Chemistry 1994, 66, (21), 3830-3833 94 Ozkan, D.; Karadeniz, H.; Erdem, A.; Mascini, M.; Ozsoz, M., Electrochemical genosensor for Mitomycin C-DNA interaction based on guanine signal Journal of Pharmaceutical and Biomedical Analysis 2004, 35, (4), 905-912 95 Mishima, Y.; Motonaka, J.; Ikeda, S., Utilization of an osmium complex as a sequence recognizing material for DNA-immobilized electrochemical sensor Analytica Chimica Acta 1997, 345, (1-3), 45-50 96 Wang, J.; Rivas, G.; Cai, X H.; Dontha, N.; Shiraishi, H.; Luo, D B.; Valera, F S., Sequence-specific electrochemical biosensing of M-tuberculosis DNA Analytica Chimica Acta 1997, 337, (1), 41-48 97 Phillips, T.; Haq, I.; Meijer, A.; Adams, H.; Soutar, I.; Swanson, L.; Sykes, M J.; Thomas, J A., DNA binding of an organic dppz-based intercalator Biochemistry 2004, 43, (43), 13657-13665 98 Erkkila, K E.; Odom, D T.; Barton, J K., Recognition and reaction of metallointercalators with DNA Chemical Reviews 1999, 99, (9), 2777-2795 128 99 Takenaka, S.; Yamashita, K.; Takagi, M.; Uto, Y.; Kondo, H., DNA sensing on a DNA probe-modified electrode using ferrocenylnaphthalene diimide as the electrochemically active ligand Analytical Chemistry 2000, 72, (6), 1334-1341 100 Friedman, A E.; Chambron, J C.; Sauvage, J P.; Turro, N J.; Barton, J K., Molecular Light Switch For DNA: Ru(bpy)2(dppz)2+ Journal of the American Chemical Society 1990, 112, (12), 4960-4962 101 Kober, E M.; Caspar, J V.; Sullivan, B P.; Meyer, T J., Synthetic routes to new polypyridyl complexes of osmium(II) Inorganic Chemistry 1988, 27, (25), 4587-4598 102 Rodriguez, M.; Bard, A J., Electrochemical studies of the interaction of metalchelates with DNA.4 Voltammetric and electrogenerated chemiluminescent studies of the interaction of tris(2,2'-bipyridine) osmium(II) with DNA Analytical Chemistry 1990, 62, (24), 2658-2662 103 Sprintschnik, G.; Sprintschnik, H W.; Krisch, P P.; Whitten, D G., Preparation and photochemical reactivity of surfactant ruthenium(II) complexes in monolayer assemblies and at water-solid interfaces Journal of the American Chemical Society 1977, 99, 4947-4954 104 Miao, W J.; Bard, A J., Electrogenerated Chemiluminescence 77 DNA hybridization detection at high amplification with [Ru(bpy)3]2+-containing microspheres Analytical Chemistry 2004, 76, (18), 5379-5386 105 Miao, W J.; Bard, A J., Electrogenerated Chemiluminescence 80 C-reactive protein determination at high amplification with [Ru(bpy)3]2+-containing microspheres Analytical Chemistry 2004, 76, (23), 7109-7113 106 Miao, W J.; Bard, A J., Electrogenerated chemluminescence 72 Determination of immobilized DNA and C-reactive protein on Au(111) electrodes using tris(2,2 '-bipyridyl)ruthenium(II) labels Analytical Chemistry 2003, 75, (21), 5825-5834 107 Xu, X H.; Yang, H C.; Mallouk, T E.; Bard, A J., Immobilization of DNA on an aluminum(III) alkanebisphosphonate thin-film with electrogenerated chemiluminescent detection Journal of the American Chemical Society 1994, 116, (18), 8386-8387 108 Tokel, N E.; Bard, A J., Electrogenerated chemiluminescence IX Electrochemistry and emission from systems containing tris(2,2'-bipyridine)ruthenium(II) dichloride Journal of the American Chemical Society 1972, 94, 2862-2866 109 Meyer, T J., Chemical approaches to artificial photosynthesis Accounts of Chemical Research 1989, 22, (5), 163-170 110 Caspar, J V.; Meyer, T J., Photochemistry of tris (2,2'-bipyridine)ruthenium(2+) ion (Ru(bpy)32+) Solvent effects Journal of the American Chemical Society 1983, 105, 5583-5590 111 Mugweru, A.; Wang, B Q.; Rusling, J., Voltammetric sensor for oxidized DNA using ultrathin films of osmium and ruthenium metallopolymers Analytical Chemistry 2004, 76, (18), 5557-5563 112 Dennany, L.; Forster, R J.; Rusling, J F., Simultaneous direct electrochemiluminescence and catalytic voltammetry detection of DNA in ultrathin films Journal of the American Chemical Society 2003, 125, (17), 5213-5218 113 Tansil, N C.; Xie, H.; Xie, F.; Gao, Z Q., Direct detection of DNA with an electrocatalytic threading intercalator Analytical Chemistry 2005, 77, (1), 126134 129 114 Rademacher, A.; Maerkle, S.; Langhals, H., Lösliche Perylen-Fluoreszenzfarbstoffe mit hoher Photostabilität Chemische Berichte 1982, 115, 2927-2934 115 Katz, H E.; Johnson, J.; Lovinger, A J.; Li, W J., Naphthalenetetracarboxylic diimide-based n-channel transistor semiconductors: Structural variation and thiol-enhanced gold contacts Journal of the American Chemical Society 2000, 122, (32), 7787-7792 116 Lay, P A.; Sargeson, A M.; Taube, H., Cis-bis(2,2’-Bipyridine-N,N’) complexes of Ruthenium(III)/(II) and Osmium(III)/(II) Inorganic Syntheses 1986, 24, 291-299 117 Steel, A B.; Herne, T M.; Tarlov, M J., Electrochemical quantitation of DNA immobilized on gold Analytical Chemistry 1998, 70, (22), 4670-4677 118 Juris, A.; Balzani, V.; Barigelletti, F.; Campagna, S.; Belser, P.; Vonzelewsky, A., Ru(II) polypyridine complexes - photophysics, photochemistry, electrochemistry, and chemiluminescence Coordination Chemistry Reviews 1988, 84, 85-277 119 Dixon, D W.; Thornton, N B.; Steullet, V.; Netzel, T., Effect of DNA scaffolding on intramolecular electron transfer quenching of a photoexcited ruthenium(II) polypyridine naphthalene diimide Inorganic Chemistry 1999, 38, (24), 5526-5534 120 Yen, S F.; Gabbay, E J.; Wilson, W D., Interaction of aromatic imides with DNA Spectrophotometric and viscometric studies Biochemistry 1982, 21, 2070-2076 121 Lokey, R S.; Kwok, Y.; Guelev, V.; Pursell, C J.; Hurley, L H.; Iverson, B L., A new class of polyintercalating molecules Journal of the American Chemical Society 1997, 119, (31), 7202-7210 122 Guelev, V M.; Cubberley, M S.; Murr, M M.; Lokey, R S.; Iverson, B L., Design, synthesis, and characterization of polyintercalating ligands DrugNucleic Acid Interactions 2001, 340, 556-570 123 Boger, D L.; Fink, B E.; Brunette, S R.; Tse, W C.; Hedrick, M P., A simple, high-resolution method for establishing DNA binding affinity and sequence selectivity Journal of the American Chemical Society 2001, 123, (25), 58785891 124 Macgregor, R B.; Clegg, R M.; Jovin, T M., Viscosity Dependence Of Ethidium-DNA Intercalation Kinetics Biochemistry 1987, 26, (13), 4008-4016 125 Schmitz, H U.; Hubner, W., A thermodynamic and spectroscopic study on the binding of berenil of poly(dAT) and to Poly(dA)×Poly(dT) Biophysical Chemistry 1993, 48, (1), 61-74 126 Scatchard, G., The attractions of proteins for small molecules and ions Annals of the New York Academy of Sciences 1949, 51, 660-672 127 Caruso, F.; Rodda, E.; Furlong, D F.; Niikura, K.; Okahata, Y., Quartz crystal microbalance study of DNA immobilization and hybridization for nucleic acid sensor development Analytical Chemistry 1997, 69, (11), 2043-2049 128 Satjapipat, M.; Sanedrin, R.; Zhou, F M., Selective desorption of alkanethiols in mixed self-assembled monolayers for subsequent oligonucleotide attachment and DNA hybridization Langmuir 2001, 17, (24), 7637-7644 129 Bard, J D.; Faulkner, L R., Electrochemical methods John Wiley & Sons: New York, 2001 130 Eddy, S R., Non-coding RNA genes and the modern RNA world Nature Reviews Genetics 2001, 2, (12), 919-929 130 131 D'Erchia, A M.; Pesole, G.; Tullo, A.; Saccone, C.; Sbisa, E., Guinea pig p53 mRNA: Identification of new elements in coding and untranslated regions and their functional and evolutionary implications Genomics 1999, 58, (1), 50-64 132 Lewis, F D.; Letsinger, R L.; Wasielewski, M R., Dynamics of photoinduced charge transfer and hole transport in synthetic DNA hairpins Accounts of Chemical Research 2001, 34, (2), 159-170 133 Steenken, S., Purine-bases, nucleosides, and nucleotides: aqueous-solution redox chemistry and transformation reactions of their radical cations and e- and OH adducts Chemical Reviews 1989, 89, (3), 503-520 134 Burrows, C J.; Muller, J G., Oxidative nucleobase modifications leading to strand scission Chemical Reviews 1998, 98, (3), 1109-1151 135 Jovanovic, S V.; Simic, M G., One-electron redox potentials of purines and pyrimidines Journal of Physical Chemistry 1986, 90, 974-978 136 Subramanian, P.; Dryhurst, G., Electrochemical oxidation of guanosine formation of some novel guanine oligonucleotides Journal of Electroanalytical Chemistry 1987, 224, 137-162 137 Defelippis, M R.; Murthy, C P.; Faraggi, M.; Klapper, M H., Pulse radiolytic measurement of redox potentials: the tyrosine and tryptophan radicals Biochemistry 1989, 28, (11), 4847-4853 138 Faraggi, M.; Broitman, F.; Trent, J B.; Klapper, M H., One-electron oxidation reactions of some purine and pyrimidine bases in aqueous solutions Electrochemical and pulse radiolysis studies Journal of Physical Chemistry 1986, 100, 14751-14761 139 Brabec, V.; Dryhurst, G., Electrochemical behavior of natural and biosynthetic polynucleotides at the pyrolytic graphite electrode: A new probe for studies of polynucleotide structure and reactions Journal of Electroanalytical Chemistry 1978, 89, 161-173 140 Johnston, D H.; Cheng, C C.; Campbell, K J.; Thorp, H H., Transdioxorhenium(V)-mediated electrocatalytic oxidation of DNA at indium tin oxide electrodes: Voltammetric detection of DNA cleavage in solution Inorganic Chemistry 1994, 33, (26), 6388-6390 141 Tansil, N C.; Xie, F.; Xie, H.; Gao, Z Q., An ultrasensitive nucleic acid biosensor based on the catalytic oxidation of guanine by a novel redox threading intercalator Chemical Communications 2005, (8), 1064-1066 142 Ramaraj, R.; Natarajan, P., Preparation and photochemistry of macromolecular bound ruthenium(II) complexes in aqueous-solutions Journal of Polymer Science Part A-Polymer Chemistry 1991, 29, (9), 1339-1346 143 Forster, R J.; Vos, J G., Synthesis, characterization, and properties of a series of osmium-containing and ruthenium-containing metallopolymers Macromolecules 1990, 23, (20), 4372-4377 144 Delumleywoodyear, T.; Rocca, P.; Lindsay, J.; Dror, Y.; Freeman, A.; Heller, A A., Polyacrylamide-based redox polymer for connecting redox centers of enzymes to electrodes Analytical Chemistry 1995, 67, (8), 1332-1338 145 Chidsey, C E R.; Murray, R W., Electroactive polymers and macromolecular electronics Science 1986, 231, 25-31 146 Oh, S M.; Faulkner, L R., Luminescent and redox probes of structure and dynamics in quaternized poly(4-vinylpyridine) films on electrodes Journal of the American Chemical Society 1989, 111, (15), 5613-5618 131 147 Potts, K T.; Usifer, D A., Polymers and polymer metal-complexes containing pendent 2,2'-6',2''-terpyridinyl ligands Macromolecules 1988, 21, (7), 19851991 148 Geraty, S M.; Vos, J G., Synthesis, characterisation, and photochemical properties of a series of ruthenium containing metallopolymers based on poly-Nvinylimidazole Journal of the Chemical Society-Dalton Transactions 1987, 3073-3078 149 de-los-Santos-Alvarez, P.; Lobo-Castanon, M J.; Miranda-Ordieres, A J.; Tunon-Blanco, P., Electrochemistry of nucleic acids at solid electrodes and its applications Electroanalysis 2004, 16, (15), 1193-1204 150 Weatherly, S C.; Yang, I V.; Thorp, H H., Proton-coupled electron transfer in duplex DNA: Driving force dependence and isotope effects on electrocatalytic oxidation of guanine Journal of the American Chemical Society 2001, 123, (6), 1236-1237 151 Steenken, S.; Telo, J P.; Novais, H M.; Candeias, L P., One-electron reduction potentials of pyrimidine-bases, nucleosides, and nucleotides in aqueous solution: Consequences for DNA redox chemistry Journal of the American Chemical Society 1992, 114, (12), 4701-4709 152 Shirakawa, H.; Louis, E J.; MacDiarmid, A G.; Chiang, C K.; Heeger, A J., Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x Journal of the Chemical Society-Chemical Communications 1977, 578-580 153 Skotheim, T A.; Elsenbaumer, R L.; EReynoild, J R., Handbook of conducting polymers Second Ed.; Marcel Dekker Inc: New York, 1998 154 Arias, A C.; Granstrom, M.; Thomas, D S.; Petritsch, K.; Friend, R H., Doped conducting polymer/semiconducting polymer interfaces: Their use in organic photovoltaic devices Physical Review B 1999, 60, (3), 1854-1860 155 Jonas, F.; Morrison, J T., 3,4-polyethylenedioxythiophene (PEDT): Conductive coatings technical applications and properties Synthetic Metals 1997, 85, (1-3), 1397-1398 156 Akhtar, M.; Weakliem, H A.; Paiste, R M.; Gaughan, K., Polyaniline thin-film electrochromic devices Synthetic Metals 1988, 26, (3), 203-208 157 Granstrom, M.; Berggren, M.; Inganas, O., Micrometer-sized and nanometersized polymeric light-emitting-diodes Science 1995, 267, (5203), 1479-1481 158 Burroughes, J H.; Bradley, D D C.; Brown, A R.; Marks, R N.; Mackay, K.; Friend, R H.; Burns, P L.; Holmes, A B., Light-emitting-diodes based on conjugated polymers Nature 1990, 347, (6293), 539-541 159 McQuade, D T.; Pullen, A E.; Swager, T M., Conjugated polymer-based chemical sensors Chemical Reviews 2000, 100, (7), 2537-2574 160 Gurunathan, K.; Murugan, A V.; Marimuthu, R.; Mulik, U P.; Amalnerkar, D P., Electrochemically synthesised conducting polymeric materials for applications towards technology in electronics, optoelectronics and energy storage devices Materials Chemistry and Physics 1999, 61, (3), 173-191 161 Wong, J Y.; Langer, R.; Ingber, D E., Electrically conducting polymers can noninvasively control the shape and growth of mammalian-cells Proceedings of the National Academy of Sciences of the United States of America 1994, 91, (8), 3201-3204 162 Abidian, M R.; Kim, D H.; Martin, D C., Conducting-polymer nanotubes for controlled drug release Advanced Materials 2006, 18, (4), 405-409 132 163 Liu, H Q.; Kameoka, J.; Czaplewski, D A.; Craighead, H G., Polymeric nanowire chemical sensor Nano Letters 2004, 4, (4), 671-675 164 Yoon, H.; Chang, M.; Jang, J., Formation of 1D poly(3,4-ethylenedioxythiophene) nanomaterials in reverse microemulsions and their application to chemical sensors Advanced Functional Materials 2007, 17, (3), 431-436 165 Alam, M M.; Wang, J.; Guo, Y Y.; Lee, S P.; Tseng, H R., Electrolyte-gated transistors based on conducting polymer nanowire junction arrays Journal of Physical Chemistry B 2005, 109, (26), 12777-12784 166 Martin, C R., Template synthesis of electronically conductive polymer nanostructures Accounts of Chemical Research 1995, 28, (2), 61-68 167 Parthasarathy, R V.; Martin, C R., Template-synthesized polyaniline microtubules Chemistry of Materials 1994, 6, (10), 1627-1632 168 Zhang, X Y.; Lee, J S.; Lee, G S.; Cha, D K.; Kim, M J.; Yang, D J.; Manohar, S K., Chemical synthesis of PEDOT nanotubes Macromolecules 2006, 39, 470-472 169 Han, M G.; Foulger, S H., Facile synthesis of poly(3,4-ethylenedioxythiophene) nanofibers from an aqueous surfactant solution Small 2006, 2, (10), 1164-1169 170 Hatano, T.; Bae, A H.; Takeuchi, M.; Fujita, N.; Kaneko, K.; Ihara, H.; Takafuji, M.; Shinkai, S., Helical superstructure of conductive polymers as created by electrochemical polymerization by using synthetic lipid assemblies as a template Angewandte Chemie-International Edition 2004, 43, (4), 465-469 171 Zhang, X T.; Zhang, J.; Song, W H.; Liu, Z F., Controllable synthesis of conducting polypyrrole nanostructures Journal of Physical Chemistry B 2006, 110, (3), 1158-1165 172 Wu, A M.; Kolla, H.; Manohar, S K., Chemical synthesis of highly conducting polypyrrole nanofiber film Macromolecules 2005, 38, 7873-7875 173 Huang, J X.; Virji, S.; Weiller, B H.; Kaner, R B., Polyaniline nanofibers: Facile synthesis and chemical sensors Journal of the American Chemical Society 2003, 125, (2), 314-315 174 Zhang, X Y.; MacDiarmid, A G.; Manohar, S K., Chemical synthesis of PEDOT nanofibers Chemical Communications 2005, 5328-5330 175 Liang, L.; Liu, J.; Windisch, C F.; Exarhos, G J.; Lin, Y H., Direct assembly of large arrays of oriented conducting polymer nanowires Angewandte Chemie International Edition 2002, 41, (19), 3665-3668 176 Li, D.; Kaner, R B., Shape and aggregation control of nanoparticles: Not shaken, not stirred Journal of the American Chemical Society 2006, 128, 968-975 177 Groenendaal, B L.; Jonas, F.; Freitag, D.; Pielartzik, H.; Reynolds, J R., Poly(3,4-ethylenedioxythiophene) and its derivatives: Past, present, and future Advanced Materials 2000, 12, (7), 481-494 178 Hohnholz, D.; Okuzaki, H.; MacDiarmid, A G., Plastic electronic devices through line patterning of conducting polymers Advanced Functional Materials 2005, 15, (1), 51-56 179 Zhang, X Y.; Goux, W J.; Manohar, S K., Synthesis of polyaniline nanofibers by "nanofiber seeding" Journal of the American Chemical Society 2004, 126, (14), 4502-4503 180 Zhang, X Y.; Manohar, S K., Bulk synthesis of polypyrrole nanofibers by a seeding approach Journal of the American Chemical Society 2004, 126, (40), 12714-12715 181 Huang, J X.; Kaner, R B., A general chemical route to polyaniline nanofibers Journal of the American Chemical Society 2004, 126, (3), 851-855 133 182 Han, M G.; Foulger, S H., 1-dimensional structures of poly(3,4ethylenedioxythiophene) (PEDOT): a chemical route to tubes, rods, thimbles, and belts Chemical Communications 2005, (24), 3092-3094 183 Kim, B H.; Park, D H.; Joo, J.; Yu, S G.; Lee, S H., Synthesis, characteristics, and field emission of doped and de-doped polypyrrole, polyaniline, poly (3,4ethylenedioxythiophene) nanotubes and nanowires Synthetic Metals 2005, 150, (3), 279-284 184 Kim, B H.; Kim, M S.; Park, K T.; Lee, J K.; Park, D H.; Joo, J.; Yu, S G.; Lee, S H., Characteristics and field emission of conducting poly (3,4-ethylenedioxythiophene) nanowires Applied Physics Letters 2003, 83, (3), 539-541 185 Tansil, N C Design, synthesis, and application of electroactive reporter for nucleic acid biosensing Nanyang Technology University, Singapore, 2008 186 Turro, N J.; Kuo, P L.; Somasundaran, P.; Wong, K., Surface and bulk interactions of ionic and noionic surfactants Journal of Physical Chemistry 1986, 90, 288-291 187 Zhao, J.; Fung, B M., NMR study of the transformation of sodium dodecylsulfate micelles Langmuir 1993, 9, (5), 1228-1231 188 Jang, J.; Bae, J., Fabrication of polymer nanofibers and carbon nanoribers by using a salt-assisted microemulsion polymerization Angewandte Chemie International Edition 2004, 43, (29), 3803-3806 189 Brinker, C J.; Lu, Y F.; Sellinger, A.; Fan, H Y., Evaporation-induced selfassembly: Nanostructures made easy Advanced Materials 1999, 11, (7), 579-+ 190 Raman, N K.; Anderson, M T.; Brinker, C J., Template-based approaches to the preparation of amorphous, nanoporous silicas Chemistry of Materials 1996, 8, (8), 1682-1701 191 Zhang, X T.; Zhang, J.; Liu, Z F.; Robinson, C., Inorganic/organic mesostructure directed synthesis of wire/ribbon-like polypyrrole nanostructures Chemical Communications 2004, (16), 1852-1853 192 Liu, J.; Lin, Y H.; Liang, L.; Voigt, J A.; Huber, D L.; Tian, Z R.; Coker, E.; McKenzie, B.; McDermott, M J., Templateless assembly of molecularly aligned conductive polymer nanowires: A new approach for oriented nanostructures Chemistry-A European Journal 2003, 9, (3), 605-611 193 Jackowska, K.; Biegunski, A T.; Tagowska, M., Hard template synthesis of conducting polymers: a route to achieve nanostructures Journal of Solid State Electrochemistry 2008, 12, (4), 437-443 194 Wang, J.; Bunimovich, Y L.; Sui, G D.; Savvas, S.; Wang, J Y.; Guo, Y Y.; Heath, J R.; Tseng, H R., Electrochemical fabrication of conducting polymer nanowires in an integrated microfluidic system Chemical Communications 2006, (29), 3075-3077 195 Tsakova, V.; Winkels, S.; Schultze, J W., Anodic polymerization of 3,4ethylenedioxythiophene from aqueous microemulsions Electrochimica Acta 2000, 46, (5), 759-768 196 Sakmeche, N.; Aaron, J J.; Fall, M.; Aeiyach, S.; Jouini, M.; Lacroix, J C.; Lacaze, P C., Anionic micelles; A new aqueous medium for electropolymerization of poly(3,4-ethylenedioxythiophene) films on Pt electrodes Chemical Communications 1996, (24), 2723-2724 197 Cheng, C D.; Gonela, R K.; Gu, Q.; Haynie, D T., Self-assembly of metallic nanowires from aqueous solution Nano Letters 2005, 5, (1), 175-178 134 198 Das, A.; Lei, C H.; Elliott, M.; Macdonald, J E.; Turner, M L., Nonlithographic fabrication of PEDOT nano-wires between fixed Au electrodes Organic Electronics 2006, 7, (4), 181-187 199 Smith, P A.; Nordquist, C D.; Jackson, T N.; Mayer, T S.; Martin, B R.; Mbindyo, J.; Mallouk, T E., Electric-field assisted assembly and alignment of metallic nanowires Applied Physics Letters 2000, 77, (9), 1399-1401 200 Yun, Y H.; Dong, Z Y.; Shanov, V.; Heineman, W R.; Halsall, H B.; Bhattacharya, A.; Conforti, L.; Narayan, R K.; Ball, W S.; Schulz, M J., Nanotube electrodes and biosensors Nano Today 2007, 2, 30-37 201 Yang, W R.; Thordarson, P.; Gooding, J J.; Ringer, S P.; Braet, F., Carbon nanotubes for biological and biomedical applications Nanotechnology 2007, 18 202 Patolsky, F.; Zheng, G.; Lieber, C M., Nanowire sensors for medicine and the life sciences Nanomedicine 2006, 1, (1), 51-65 203 Wang, W U.; Chen, C.; Lin, K H.; Fang, Y.; Lieber, C M., Label-free detection of small-molecule-protein interactions by using nanowire nanosensors Proceedings of the National Academy of Sciences of the United States of America 2005, 102, (9), 3208-3212 204 Allen, B L.; Kichambare, P D.; Star, A., Carbon nanotube field-effecttransistor-based biosensors Advanced Materials 2007, 19, (11), 1439-1451 205 Star, A.; Tu, E.; Niemann, J.; Gabriel, J C P.; Joiner, C S.; Valcke, C., Labelfree detection of DNA hybridization using carbon nanotube network field-effect transistors Proceedings of the National Academy of Sciences of the United States of America 2006, 103, (4), 921-926 206 Star, A.; Gabriel, J C P.; Bradley, K.; Gruner, G., Electronic detection of specific protein binding using nanotube FET devices Nano Letters 2003, 3, (4), 459-463 207 Tran, H D.; Shin, K.; Hong, W G.; D'Arcy, J M.; Kojima, R W.; Weiller, B H.; Kaner, R B., A template-free route to polypyrrole nanofibers Macromolecular Rapid Communications 2007, 28, 2289-2293 208 Dong, B.; Zhong, D Y.; Chi, L F.; Fuchs, H., Patterning of conducting polymers based on a random copolymer strategy: Toward the facile fabrication of nanosensors exclusively based on polymers Advanced Materials 2005, 17, (22), 2736-2741 209 Huang, J.; Virji, S.; Weiller, B H.; Kaner, R B., Nanostructured polyaniline sensors Chemistry-A European Journal 2004, 10, (6), 1315-1319 210 Sun, X.; Hagner, M., Novel poly(acrylic acid)-mediated formation of composited, poly(3,4-ethylenedioxythiophene)-based conducting polymer nanowires Macromolecules 2007, 40, 8537-8539 211 Wanekaya, A K.; Chen, W.; Myung, N V.; Mulchandani, A., Nanowire-based electrochemical biosensors Electroanalysis 2006, 18, (6), 533-550 212 Ramanathan, K.; Bangar, M A.; Yun, M H.; Chen, W F.; Mulchandani, A.; Myung, N V., Individually addressable conducting polymer nanowires array Nano Letters 2004, 4, (7), 1237-1239 213 Lima, A.; Schottland, P.; Sadki, S.; Chevrot, C., Electropolymerization of 3,4ethylenedioxythiophene and 3,4-ethylenedioxythiophene methanol in the presence of dodecylbenzenesulfonate Synthetic Metals 1998, 93, (1), 33-41 214 Akoudad, S.; Roncali, J., Modification of the electrochemical and electronic properties of electrogenerated poly(3,4-ethylenedioxythiophene) by hydroxymethyl and oligo(oxyethylene)substituents Electrochemistry Communications 2000, 2, (1), 72-76 135 215 Navarro, A E.; Fages, F.; Moustrou, C.; Brisset, H.; Spinelli, N.; Chaix, C.; Mandrand, B., Characterization of PEDOT film functionalized with a series of automated synthesis ferrocenyl-containing oligonucleotides Tetrahedron 2005, 61, (16), 3947-3952 216 Ali, E M.; Kantchev, E A B.; Yu, H H.; Ying, J Y., Conductivity shift of polyethylenedioxythiophenes in aqueous solutions from side-chain charge perturbation Macromolecules 2007, 40, (17), 6025-6027 217 Minot, E D.; Janssens, A M.; Heller, I.; Heering, H A.; Dekker, C.; Lemay, S G., Carbon nanotube biosensors: The critical role of the reference electrode Applied Physics Letters 2007, 91 218 So, H M.; Won, K.; Kim, Y H.; Kim, B K.; Ryu, B H.; Na, P S.; Kim, H.; Lee, J O., Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements Journal of the American Chemical Society 2005, 127, (34), 11906-11907 219 Maehashi, K.; Katsura, T.; Kerman, K.; Takamura, Y.; Matsumoto, K.; Tamiya, E., Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors Analytical Chemistry 2007, 79, (2), 782-787 220 Xiao, Y.; Lubin, A A.; Heeger, A J.; Plaxco, K W., Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor Angewandte Chemie International Edition 2005, 44, (34), 5456-5459 221 Peppas, N A.; Langer, R., New challenges in biomaterials Science 1994, 263, (5154), 1715-1720 222 Sakiyama-Elbert, S E.; Hubbell, J A., Functional biomaterials: Design of novel biomaterials Annual Review of Materials Research 2001, 31, 183-201 223 Ikada, Y., Surface modification of polymers for medical applications Biomaterials 1994, 15, (10), 725-736 224 Langer, R., Biomaterials in drug delivery and tissue engineering: One laboratory's experience Accounts of Chemical Research 2000, 33, (2), 94-101 225 Guimard, N K.; Gomez, N.; Schmidt, C E., Conducting polymers in biomedical engineering Progress in Polymer Science 2007, 32, 876-921 226 Kotwal, A.; Schmidt, C E., Electrical stimulation alters protein adsorption and nerve cell interactions with electrically conducting biomaterials Biomaterials 2001, 22, (10), 1055-1064 227 Schmidt, C E.; Shastri, V R.; Vacanti, J P.; Langer, R., Stimulation of neurite outgrowth using an electrically conducting polymer Proceedings of the National Academy of Sciences of the United States of America 1997, 94, (17), 8948-8953 228 Gomez, N.; Lee, J Y.; Nickels, J D.; Schmidt, C E., Micropatterned polypyrrole: A combination of electrical and topographical characteristics for the stimulation of cells Advanced Functional Materials 2007, 17, (10), 16451653 229 De Giglio, E.; Sabbatini, L.; Colucci, S.; Zambonin, G., Synthesis, analytical characterization, and osteoblast adhesion properties on RGD-grafted polypyrrole coatings on titanium substrates Journal of Biomaterials Science-Polymer Edition 2000, 11, (10), 1073-1083 230 Peramo, A.; Urbanchek, M G.; Spanninga, S A.; Povlich, L K.; Cederna, P.; Martin, D C., In situ polymerization of a conductive polymer in acellular muscle tissue constructs Tissue Engineering Part A 2008, 14, (3), 423-432 231 Bidez, P R.; Li, S X.; MacDiarmid, A G.; Venancio, E C.; Wei, Y.; Lelkes, P I., Polyaniline, an electroactive polymer, supports adhesion and proliferation of 136 232 233 234 235 236 237 238 239 240 241 242 243 244 cardiac myoblasts Journal of Biomaterials Science-Polymer Edition 2006, 17, (1-2), 199-212 Xiao, Y H.; Martin, D C.; Cui, X Y.; Shenai, M., Surface modification of neural probes with conducting polymer poly(hydroxymethylated-3,4ethylenedioxythiophene) and its biocompatibility Applied Biochemistry and Biotechnology 2006, 128, (2), 117-129 Xiao, Y H.; Cui, X Y.; Hancock, J M.; Bouguettaya, M B.; Reynolds, J R.; Martin, D C., Electrochemical polymerization of poly(hydroxymethylated-3,4ethylenedioxythiophene) (PEDOT-MeOH) on multichannel neural probes Sensors and Actuators B-Chemical 2004, 99, (2-3), 437-443 George, P M.; Lyckman, A W.; LaVan, D A.; Hegde, A.; Leung, Y.; Avasare, R.; Testa, C.; Alexander, P M.; Langer, R.; Sur, M., Fabrication and biocompatibility of polypyrrole implants suitable for neural prosthetics Biomaterials 2005, 26, (17), 3511-3519 Kim, D H.; Abidian, M.; Martin, D C., Conducting polymers grown in hydrogel scaffolds coated on neural prosthetic devices Journal of Biomedical Materials Research Part A 2004, 71A, (4), 577-585 Ateh, D D.; Vadgama, P.; Navsaria, H A., Culture of human keratinocytes on polypyrrole-based conducting polymers Tissue Engineering 2006, 12, (4), 645655 Thomas, C A.; Zong, K.; Schottland, P.; Reynolds, J R., Poly(3,4-alkylenedioxypyrrole)s as highly stable aqueous-compatible conducting polymers,with biomedical implications Advanced Materials 2000, 12, (3), 222-225 Besbes, M.; Trippe, G.; Levillain, E.; Mazari, M.; Le Derf, F.; Perepichka, I F.; Derdour, A.; Gorgues, A.; Salle, M.; Roncali, J., Rapid and efficient postpolymerization functionalization of poly(3,4-ethylenedioxythiophene) (PEDOT) derivatives on an electrode surface Advanced Materials 2001, 13, (16), 12491252 Cosnier, S.; Stoytcheva, M.; Senillou, A.; Perrot, H.; Furriel, R P M.; Leone, F A., A biotinylated conducting polypyrrole for the spatially controlled construction of an amperometric biosensor Analytical Chemistry 1999, 71, (17), 3692-3697 Torres-Rodriguez, L M.; Roget, A.; Billon, M.; Bidan, G., Synthesis of a biotin functionalized pyrrole and its electropolymerization: toward a versatile avidin biosensor Chemical Communications 1998, 1993-1994 Mouffouk, F.; Higgins, S J., A biotin-functionalised poly(3,4-ethylenedioxythiophene)-coated microelectrode which responds electrochemically to avidin binding Electrochemistry Communications 2006, 8, (1), 15-20 Ionescu, R E.; Gondran, C.; Gheber, L A.; Cosnier, S.; Marks, R S., Construction of amperometric immunosensors based on the electrogeneration of a permeable biotinylated polypyrrole film Analytical Chemistry 2004, 76, (22), 6808-6813 Mouffouk, F.; Higgins, S J.; Brown, S J.; Sedghi, N.; Eccleston, B.; Reeman, S., A regioregular polyalkylthiophene bearing covalently-linked biotin, and its interaction with avidin in solution and in thin films Chemical Communications 2004, (20), 2314-2315 Su, X D.; Wu, Y J.; Robelek, R.; Knoll, W., Surface plasmon resonance spectroscopy and quartz crystal microbalance study of streptavidin film structure effects on biotinylated DNA assembly and target DNA hybridization Langmuir 2005, 21, (1), 348-353 137 245 AvilaSakar, A J.; Chiu, W., Visualization of beta-sheets and side-chain clusters in two-dimensional periodic arrays of streptavidin on phospholipid monolayers by electron crystallography Biophysical Journal 1996, 71, (1), 517-517 246 Pierschbacher, M D.; Ruoslahti, E., Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule Nature 1984, 309, (5963), 30-33 247 Ruoslahti, E.; Pierschbacher, M D., New perspectives in cell adhesion: RGD and integrins Science 1987, 238, (4826), 491-497 248 Hynes, R O., Integrins: versatility, modulation, and signaling in cell adhesion Cell 1992, 69, (1), 11-25 249 Clark, E A.; Brugge, J S., Integrins and signal transduction pathways: The road taken Science 1995, 268, (5208), 233-239 250 Guo, M L.; Chen, J H.; Zhang, Y J.; Chen, K.; Pan, C F.; Yao, S Z., Enhanced adhesion/spreading and proliferation of mammalian cells on electropolymerized porphyrin film for biosensing applications Biosensors & Bioelectronics 2008, 23, 865-871 251 Chen, R.; Curran, S J.; Curran, J M.; Hunt, J A., The use of poly(L-lactide) and RGD modified microspheres as cell carriers in a flow intermittency bioreactor for tissue engineering cartilage Biomaterials 2006, 27, (25), 44534460 252 Ho, M H.; Wang, D M.; Hsieh, H J.; Liu, H C.; Hsien, T Y.; Lai, J Y.; Hou, L T., Preparation and characterization of RGD-immobilized chitosan scaffolds Biomaterials 2005, 26, (16), 3197-3206 253 Lan, S.; Veiseh, M.; Zhang, M Q., Surface modification of silicon and goldpatterned silicon surfaces for improved biocompatibility and cell patterning selectivity Biosensors & Bioelectronics 2005, 20, 1697-1708 254 Sawyer, A A.; Hennessy, K M.; Bellis, S L., Regulation of mesenchymal stem cell attachment and spreading on hydroxyapatite by RGD peptides and adsorbed serum proteins Biomaterials 2005, 26, (13), 1467-1475 255 Swan, E E L.; Popat, K C.; Desai, T A., Peptide-immobilized nanoporous alumina membranes for enhanced osteoblast adhesion Biomaterials 2005, 26, (14), 1969-1976 256 Hersel, U.; Dahmen, C.; Kessler, H., RGD modified polymers: biomaterials for stimulated cell adhesion and beyond Biomaterials 2003, 24, (24), 4385-4415 257 Krijgsman, B.; Seifalian, A M.; Salacinski, H J.; Tai, N R.; Punshon, G.; Fuller, B J.; Hamilton, G., An assessment of covalent grafting of RGD peptides to the surface of a compliant poly(carbonate-urea)urethane vascular conduit versus conventional biological coatings: Its role in enhancing cellular retention Tissue Engineering 2002, 8, (4), 673-680 258 Lateef, S S.; Boateng, S.; Hartman, T J.; Crot, C A.; Russell, B.; Hanley, L., GRGDSP peptide-bound silicone membranes withstand mechanical flexing in vitro and display enhanced fibroblast adhesion Biomaterials 2002, 23, (15), 3159-3168 259 Ferris, D M.; Moodie, G D.; Dimond, P M.; Gioranni, C W D.; Ehrlich, M G.; Valentini, R F., RGD-coated titanium implants stimulate increased bone formation in vivo Biomaterials 1999, 20, (23-24), 2323-2331 260 Lee, J W.; Serna, F.; Nickels, J.; Schmidt, C E., Carboxylic acid-functionalized conductive polypyrrole as a bioactive platform for cell adhesion Biomacromolecules 2006, 7, (6), 1692-1695 138 261 Roberts, C.; Chen, C S.; Mrksich, M.; Martichonok, V.; Ingber, D E.; Whitesides, G M., Using mixed self-assembled monolayers presenting RGD and (EG)3OH groups to characterize long-term attachment of bovine capillary endothelial cells to surfaces Journal of the American Chemical Society 1998, 120, (26), 6548-6555 139 ... we studied label- free electrochemical DNA detection using ruthenium- complexed intercalators Two ruthenium- complexed electroactive DNA intercalators were synthesized, characterized, and their application... drawbacks, label- free bioaffinity sensors are intensively investigated Label- free approach is becoming a more favored choice due to its simple and rapid analysis Electrochemical detection Label- free detection. .. discuss ruthenium- based redox active compounds and their application for label- free DNA sensing Chapter two presents two ruthenium- based electroactive intercalators for label- free DNA detection,