Role of stathmin 1 in colorectal cancer metastasis and chemo resistance

175 634 0
Role of stathmin 1 in colorectal cancer metastasis and chemo resistance

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

ROLE OF STATHMIN-1 IN COLORECTAL CANCER METASTASIS AND CHEMO-RESISTANCE WU WEI B Sc (Hons), NUS A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF BIOCHEMISTRY NATIONAL UNIVERSITY OF SINGAPORE 2014 DECLARATION I hereby declare that this thesis is my original work and it has been written by me in its entirety I have duly acknowledged all the sources of information which have been used in the thesis This thesis has also not been submitted for any degree in any university previously _ Wu Wei 23rd January 2014 i Acknowledgement “All that is valuable in human society depends upon the opportunity for development accorded the individual.” Albert Einstein It was my utmost privilege to receive the mentorship of three great scientists As I reflect in the final lap upon this journey, these opportunities appear even more valuable than ever I am immensely grateful for the opportunity to work under A/P Maxey Chung Ching Ming, who saw faith in an enthusiastic but otherwise mediocre student Without his encouragement and dedicated care, this amazing four-year adventure would never have been any more than the desire to explore I also thank Dr David Balasundaram for captivating me with his passion for science almost a decade ago Till this day, I remember the shine in his eyes at that eureka moment we shared I am also indebted to A/P Alan G Porter who provided the best environment to learn experimental techniques, and for trusting that a third-year undergraduate just picking up cancer biology was worth his time I am also blessed to have supportive thesis advisors who were genuinely concerned, as well as efficient department staff whom I trouble frequently, but still remain friendly This voyage was never lonely, for I had labmates who shared the joy of making discoveries and never failed to spur me on Thank you all This thesis is dedicated to my parents, who held the conviction that I was meant to pursue this path, and bestowed upon me the fortitude to take on this challenge With your love, I made it ii Table of Contents Acknowledgement .ii List of figures vii List of Tables x Summary xii Abbreviations xiii Chapter Introduction 1.1 Colon cancer 1.1.1 1.1.2 Diagnosis and staging 1.1.3 CRC survival 1.1.4 1.2 Colorectal carcinoma CRC treatment Stathmin-1 1.2.1 The Stathmin family 1.2.2 STMN1 in microtubule regulation 10 1.2.3 STMN1 in cell cycle regulation 12 1.2.4 STMN1 in cancer 14 Chapter Objective of study 15 2.1 Motivation of study 16 2.1.1 2.1.2 2.2 STMN1 up-regulation in metastatic CRC 16 Knowledge gaps and experimental aims 20 Workflow 22 Chapter Results 25 3.1 Stable STMN1 knockdown and over-expression 26 3.1.1 3.1.2 STMN1 over-expression 30 3.1.3 3.2 STMN1 knockdown 28 Summary 31 STMN1 expression is required for metastatic processes in vitro 33 iii 3.2.1 3.2.2 Invasion 36 3.2.3 Adhesion 37 3.2.4 Colony formation 38 3.2.5 Growth 39 3.2.6 3.3 Migration 34 Summary 40 STMN1 silencing regulates the metastatic proteome 41 3.3.1 3.3.2 Metastatic balance 44 3.3.3 Cell junctions and intracellular architecture 46 3.3.4 Apoptotic defense 48 3.3.5 Validation 50 3.3.6 3.4 iTRAQTM Summary statistics 42 Summary 54 STMN1 silencing enhances cellular anchorage and intracellular rigidity 55 3.4.1 3.4.2 Desmosomes and intermediate filaments 57 3.4.3 3.5 Hemidesmosomes 56 Summary 58 STMN1 silencing promotes 5-Fluorouracil sensitivity 59 3.5.1 3.5.2 5-Fluorouracil sensitisation 62 3.5.3 Caspase-dependent apoptosis 64 3.5.4 Caspase activity 66 3.5.5 3.6 General cytotoxicity 60 Summary 68 STMN1 silencing regulates transcript abundance 69 3.6.1 3.6.2 Quality control 72 3.6.3 CRC progression and cytoskeletal remodelling 74 3.6.4 Metastatic and EMT transcriptional profile 76 3.6.5 Validation 79 3.6.6 3.7 p38 phosphorylation 70 Summary 80 Regulation of STMN1 function 81 3.7.1 STMN1 interactions 82 3.7.2 Fibronectin stimulation 86 3.7.3 p53 dependence 87 3.7.4 STMN1 phosphorylation 90 3.7.5 S25/38 phosphorylation in metastatic processes 92 iv 3.7.6 Summary 94 Chapter Discussion 95 4.1 Experimental strategy 96 4.2 STMN1 expression drives in vitro metastatic phenotype 97 4.3 Molecular benefits of STMN1 silencing 99 4.4 STMN1 interactions and S25/38 phosphorylation determine pro-metastatic activity 101 4.5 STMN1 silencing regulates metastatic networks 103 4.6 STMN1 silencing: a potential therapy against metastatic CRC 104 Chapter Conclusion and future work 107 Chapter Materials and methods 110 6.1 Cell lines and constructs 112 6.1.1 6.1.2 Preparation of whole cell lysate 112 6.1.3 STMN1 KD and OE constructs 113 6.1.4 Mutagenesis 113 6.1.5 6.2 HCT116 and E1 cell lines 112 Transfection 114 Cell-based assays 115 6.2.1 6.2.2 Wound healing 115 6.2.3 Transwell migration 116 6.2.4 Matrigel invasion 117 6.2.5 Cell adhesion 117 6.2.6 6.3 Proliferation 115 Anchorage-independent colony formation 118 Proteome profiling 119 6.3.1 iTRAQTM: labeling chemistry 119 6.3.2 iTRAQTM: sample preparation 120 6.3.3 iTRAQTM: 2D LC-MS/MS 121 6.3.4 iTRAQTM: protein and peptide identification 122 6.3.5 iTRAQTM: data analysis 123 6.3.6 SWATHTM MS: label-free technology 124 6.3.7 SWATHTM MS: sample preparation and analysis 125 6.3.8 SWATHTM MS: protein identification and quantitation 126 v 6.4 Transcript analysis 127 6.4.1 6.4.2 6.5 RNA extraction and quantification 127 qPCR array 127 Molecular methods 128 6.5.1 6.5.2 2D western blotting 129 6.5.3 Dephosphorylation 130 6.5.4 Immuno-fluorescence 131 6.5.5 Cytotoxicity 132 6.5.6 Flow cytometry 132 6.5.7 Caspase inhibition 133 6.5.8 6.6 1D western blotting 128 Caspase activity 133 Data representation 135 6.6.1 Graphs and data visualisation 135 6.6.2 Images 135 6.6.3 Statistical analyses 135 Appendix I: Proteins regulated by STMN1 silencing (iTRAQTM) 136 Appendix II: Regulated proteins validated by SWATHTM 142 Appendix III: Transcripts regulated by STMN1 silencing (qPCR) 143 Publications 144 Conference presentations 145 Awards 146 Bibliography 148 vi List of Figures Chapter Introduction Figure 1-1: Survival of primary and metastatic CRC Figure 1-2: Stathmin family multiple sequence alignment Figure 1-3: STMN1 regulates MT and mitotic spindle dynamics during cell cycle 12 Chapter Objective of study Figure 2-1: STMN1 is significantly up-regulated in hepato-metastatic cell line E1 17 Figure 2-2: STMN1 expression increases with CRC progression 18 Figure 2-3: STMN1 expression indicates CRC prognosis 19 Figure 2-4: Experimental workflow 23 Chapter Results Figure 3-1: Representative colony amplified from a single stably-transfected cell 28 Figure 3-2: Morphology of STMN1 KD and SC cells 29 Figure 3-3: Morphology of STMN1 OE and vector control cells 30 Figure 3-4: Panel of stable STMN1 KD and OE cell lines 31 Figure 3-5: STMN1 expression is required for efficient wound healing 34 Figure 3-6: STMN1 expression promotes cell migration 35 Figure 3-7: STMN1 expression promotes matrix invasion 36 Figure 3-8: STMN1 expression inhibits cell adhesion 37 Figure 3-9: STMN1 expression promotes anchorage-independent growth 38 Figure 3-10: STMN1 expression confers no proliferative advantage 39 Figure 3-11: Functional classification of targets regulated by STMN1 silencing 43 Figure 3-12: Hemidesmosomes 46 vii Figure 3-13: Desmosomes 47 Figure 3-14: iTRAQTM validation by western blotting 50 Figure 3-15: iTRAQTM validation by immuno-fluorescence 51 Figure 3-16: STMN1 silencing strengthens hemidesmosomes 56 Figure 3-17: STMN1 silencing increases intracellular rigidity 57 Figure 3-18: STMN1 silencing promotes sensitivity to MT inhibitors and 5FU 60 Figure 3-19: Microtubule inhibition and 5FU treatment decrease STMN1 level 61 Figure 3-20: STMN1 silencing amplifies 5FU-dependent apoptosis 63 Figure 3-21: 5FU-induced apoptosis is caspase-dependent 64 Figure 3-22: 5FU sensitisation in STMN1 KD cells depends on Caspases and 65 Figure 3-23: Caspase activity amplifies 5FU sensitivity 66 Figure 3-24: Caspase activation and cleavage of Lamin A 67 Figure 3-25: Model of STMN1 silencing induced 5FU sensitisation 68 Figure 3-26: p38 phosphorylation 70 Figure 3-27: qPCR reproducibility 73 Figure 3-28: STMN1 KD inhibits CRC progression and cytoskeletal remodelling 74 Figure 3-29: STMN1 KD reverses metastatic and EMT transcriptional profile 77 Figure 3-30: qPCR validation by western blotting 79 Figure 3-31: STMN1 is enriched by immuno-precipitation 82 Figure 3-32: 2D separation of STMN1 IP eluate 83 Figure 3-33: STMN1 potentially interacts with RhoGAP8 84 Figure 3-34: STMN1 may regulate G protein signaling 85 Figure 3-35: Fibronectin induces STMN1 expression 86 Figure 3-36: STMN1 silencing perturbs p53 transcirptional network 87 Figure 3-37: Stable STMN1 silencing in HCT116 p53-/- cells 88 Figure 3-38: Functional p53 not required to achieve efficacy of STMN1 silencing 88 Figure 3-39: STMN1 is phosphorylated at S16, 25, 38 and 63 in CRC cells 90 Figure 3-40: Rescue of STMN1 KD by phosphorylation defective mutants 92 viii Figure 3-41: STMN1 pro-metastatic activity depends on S25/38 phosphorylation 93 Chapter Discussion Figure 4-1: Structure of STMN1 protein (schematic) 101 Figure 4-2: Model of STMN1 inhibition in CRC 105 Chapter Materials and methods Figure 6-1: Wound healing insert 115 Figure 6-2: Transwell migration insert 116 Figure 6-3: Matrigel invasion chamber 117 Figure 6-4: iTRAQ labels 119 Figure 6-5: iTRAQ reporter ions 120 Figure 6-6: iTRAQ sample pooling 120 Figure 6-7: iTRAQ experimental workflow 121 Figure 6-8: iTRAQ threshold filtering 123 Figure 6-9: SWATH acquisition 124 ix 147 Bibliography Kamangar F, Dores GM, Anderson WF Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world J Clin Oncol 2006;24:2137-50 Cancer Facts & Figures 2013 American Cancer Society 2013 Trends in Cancer Incidence in Singapore 2005-2009 Singapore Cancer Registry;Interim Annual Registry Report Boyle P, Langman JS ABC of colorectal cancer: Epidemiology BMJ 2000;321:805-8 Rasool S, Kadla SA, Rasool V, Ganai BA A comparative overview of general risk factors associated with the incidence of colorectal cancer Tumour Biol 2013;34:2469-76 Triantafillidis JK, Nasioulas G, Kosmidis PA Colorectal cancer and inflammatory bowel disease: epidemiology, risk factors, mechanisms of carcinogenesis and prevention strategies Anticancer Res 2009;29:2727-37 Galiatsatos P, Foulkes WD Familial adenomatous polyposis Am J Gastroenterol 2006;101:385-98 Allen BA, Terdiman JP Hereditary polyposis syndromes and hereditary nonpolyposis colorectal cancer Best Pract Res Clin Gastroenterol 2003;17:237-58 Negri E, Franceschi S, Parpinel M, La Vecchia C Fiber intake and risk of colorectal cancer Cancer Epidemiol Biomarkers Prev 1998;7:667-71 10 Potter JD Colorectal cancer: molecules and populations J Natl Cancer Inst 1999;91:916-32 11 Berster JM, Goke B Type diabetes mellitus as risk factor for colorectal cancer Arch Physiol Biochem 2008;114:84-98 12 Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, Nakamura Y, White R, Smits AM, Bos JL Genetic alterations during colorectal-tumor development N Engl J Med 1988;319:525-32 13 Plawski A, Banasiewicz T, Borun P, Kubaszewski L, Krokowicz P, Skrzypczak-Zielinska M, Lubinski J Familial adenomatous polyposis of the colon Hered Cancer Clin Pract 2013;11:15 14 Dowty JG, Win AK, Buchanan DD, Lindor NM, Macrae FA, Clendenning M, Antill YC, Thibodeau SN, Casey G, Gallinger S, Marchand LL, Newcomb PA, Haile RW, Young GP, James PA, Giles GG, Gunawardena SR, Leggett BA, Gattas M, Boussioutas A, Ahnen DJ, Baron JA, Parry S, Goldblatt J, Young JP, Hopper JL, Jenkins MA Cancer risks for MLH1 and MSH2 mutation carriers Hum Mutat 2013;34:490-7 148 15 Markman B, Javier Ramos F, Capdevila J, Tabernero J EGFR and KRAS in colorectal cancer Adv Clin Chem 2010;51:71-119 16 Iacopetta B TP53 mutation in colorectal cancer Hum Mutat 2003;21:271-6 17 Schoen RE, Pinsky PF, Weissfeld JL, Yokochi LA, Church T, Laiyemo AO, Bresalier R, Andriole GL, Buys SS, Crawford ED, Fouad MN, Isaacs C, Johnson CC, Reding DJ, O'Brien B, Carrick DM, Wright P, Riley TL, Purdue MP, Izmirlian G, Kramer BS, Miller AB, Gohagan JK, Prorok PC, Berg CD Colorectal-cancer incidence and mortality with screening flexible sigmoidoscopy N Engl J Med 2012;366:2345-57 18 Rex DK Maximizing detection of adenomas and cancers during colonoscopy Am J Gastroenterol 2006;101:2866-77 19 Ciatto S, Castiglione G Role of double-contrast barium enema in colorectal cancer screening based on fecal occult blood Tumori 2002;88:95-8 20 Fletcher JG, Silva AC, Fidler JL, Cernigliaro JG, Manduca A, Limburg PJ, Wilson LA, Engelby TA, Spencer G, Harmsen WS, Mandrekar J, Johnson CD Noncathartic CT colonography: Image quality assessment and performance and in a screening cohort AJR Am J Roentgenol 2013;201:787-94 21 Faivre J, Dancourt V, Lejeune C, Tazi MA, Lamour J, Gerard D, Dassonville F, Bonithon-Kopp C Reduction in colorectal cancer mortality by fecal occult blood screening in a French controlled study Gastroenterology 2004;126:1674-80 22 Ahlquist DA, Zou H, Domanico M, Mahoney DW, Yab TC, Taylor WR, Butz ML, Thibodeau SN, Rabeneck L, Paszat LF, Kinzler KW, Vogelstein B, Bjerregaard NC, Laurberg S, Sorensen HT, Berger BM, Lidgard GP Next-generation stool DNA test accurately detects colorectal cancer and large adenomas Gastroenterology 2012;142:248-56; quiz e25-6 23 Blumberg D Laparoscopic colon resection of benign polyps: high grade dysplasia on endoscopic biopsy and polyp location predict risk of cancer Surg Laparosc Endosc Percutan Tech 2009;19:255-7 24 van der Paardt MP, Stoker J Magnetic resonance colonography for screening and diagnosis of colorectal cancer Magn Reson Imaging Clin N Am 2014;22:67-83 25 Edge SB, Compton CC The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM Ann Surg Oncol 2010;17:1471-4 26 Pox CP, Altenhofen L, Brenner H, Theilmeier A, Von Stillfried D, Schmiegel W Efficacy of a nationwide screening colonoscopy program for colorectal cancer Gastroenterology 2012;142:1460-7 e2 27 Ayanian JZ, Zaslavsky AM, Fuchs CS, Guadagnoli E, Creech CM, Cress RD, O'Connor LC, West DW, Allen ME, Wolf RE, Wright WE Use of adjuvant chemotherapy and radiation therapy for colorectal cancer in a population-based cohort J Clin Oncol 2003;21:1293-300 149 28 Ackland SP, Jones M, Tu D, Simes J, Yuen J, Sargeant AM, Dhillon H, Goldberg RM, Abdi E, Shepherd L, Moore MJ A meta-analysis of two randomised trials of early chemotherapy in asymptomatic metastatic colorectal cancer Br J Cancer 2005;93:1236-43 29 Chun P, Wainberg ZA Adjuvant Chemotherapy for Stage II Colon Cancer: The Role of Molecular Markers in Choosing Therapy Gastrointest Cancer Res 2009;3:191-6 30 Goh C, Burke JP, McNamara DA, Cahill RA, Deasy J Endolaparoscopic removal of colonic polyps Colorectal Dis 2013 31 Andre T, Boni C, Mounedji-Boudiaf L, Navarro M, Tabernero J, Hickish T, Topham C, Zaninelli M, Clingan P, Bridgewater J, Tabah-Fisch I, de Gramont A Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer N Engl J Med 2004;350:2343-51 32 Shaheen RM, Ahmad SA, Liu W, Reinmuth N, Jung YD, Tseng WW, Drazan KE, Bucana CD, Hicklin DJ, Ellis LM Inhibited growth of colon cancer carcinomatosis by antibodies to vascular endothelial and epidermal growth factor receptors Br J Cancer 2001;85:584-9 33 Gravalos C, Cassinello J, Fernandez-Ranada I, Holgado E Role of tyrosine kinase inhibitors in the treatment of advanced colorectal cancer Clin Colorectal Cancer 2007;6:691-9 34 Levy AD, Devignot V, Fukata Y, Fukata M, Sobel A, Chauvin S Subcellular Golgi localization of stathmin family proteins is promoted by a specific set of DHHC palmitoyl transferases Mol Biol Cell 2011;22:1930-42 35 Sobczak A, Debowska K, Blazejczyk M, Kreutz MR, Kuznicki J, Wojda U Calmyrin1 binds to SCG10 protein (stathmin2) to modulate neurite outgrowth Biochim Biophys Acta 2011;1813:1025-37 36 Poulain FE, Sobel A The "SCG10-LIke Protein" SCLIP is a novel regulator of axonal branching in hippocampal neurons, unlike SCG10 Mol Cell Neurosci 2007;34:137-46 37 Cassimeris L The oncoprotein 18/stathmin family of microtubule destabilizers Curr Opin Cell Biol 2002;14:18-24 38 Steinmetz MO Structure and thermodynamics of the tubulin-stathmin interaction J Struct Biol 2007;158:137-47 39 Di Paolo G, Pellier V, Catsicas M, Antonsson B, Catsicas S, Grenningloh G The phosphoprotein stathmin is essential for nerve growth factor-stimulated differentiation J Cell Biol 1996;133:1383-90 40 Jin K, Mao XO, Cottrell B, Schilling B, Xie L, Row RH, Sun Y, Peel A, Childs J, Gendeh G, Gibson BW, Greenberg DA Proteomic and immunochemical characterization of a role for stathmin in adult neurogenesis FASEB J 2004;18:287-99 150 41 Giampietro C, Luzzati F, Gambarotta G, Giacobini P, Boda E, Fasolo A, Perroteau I Stathmin expression modulates migratory properties of GN-11 neurons in vitro Endocrinology 2005;146:1825-34 42 Larsson N, Marklund U, Gradin HM, Brattsand G, Gullberg M Control of microtubule dynamics by oncoprotein 18: dissection of the regulatory role of multisite phosphorylation during mitosis Mol Cell Biol 1997;17:5530-9 43 Manna T, Thrower D, Miller HP, Curmi P, Wilson L Stathmin strongly increases the minus end catastrophe frequency and induces rapid treadmilling of bovine brain microtubules at steady state in vitro J Biol Chem 2006;281:2071-8 44 Ringhoff DN, Cassimeris L Stathmin regulates centrosomal nucleation of microtubules and tubulin dimer/polymer partitioning Mol Biol Cell 2009;20:3451-8 45 Gigant B, Curmi PA, Martin-Barbey C, Charbaut E, Lachkar S, Lebeau L, Siavoshian S, Sobel A, Knossow M The A X-ray structure of a tubulin:stathmin-like domain complex Cell 2000;102:809-16 46 Jourdain L, Curmi P, Sobel A, Pantaloni D, Carlier MF Stathmin: a tubulinsequestering protein which forms a ternary T2S complex with two tubulin molecules Biochemistry 1997;36:10817-21 47 Andersen SS Balanced regulation of microtubule dynamics during the cell cycle: a contemporary view Bioessays 1999;21:53-60 48 Gupta KK, Li C, Duan A, Alberico EO, Kim OV, Alber MS, Goodson HV Mechanism for the catastrophe-promoting activity of the microtubule destabilizer Op18/stathmin Proc Natl Acad Sci U S A 2013;110:20449-54 49 Brattsand G, Marklund U, Nylander K, Roos G, Gullberg M Cell-cycle-regulated phosphorylation of oncoprotein 18 on Ser16, Ser25 and Ser38 Eur J Biochem 1994;220:359-68 50 Gradin HM, Larsson N, Marklund U, Gullberg M Regulation of microtubule dynamics by extracellular signals: cAMP-dependent protein kinase switches off the activity of oncoprotein 18 in intact cells J Cell Biol 1998;140:131-41 51 Larsson N, Melander H, Marklund U, Osterman O, Gullberg M G2/M transition requires multisite phosphorylation of oncoprotein 18 by two distinct protein kinase systems J Biol Chem 1995;270:14175-83 52 Marklund U, Larsson N, Gradin HM, Brattsand G, Gullberg M Oncoprotein 18 is a phosphorylation-responsive regulator of microtubule dynamics EMBO J 1996;15:5290-8 53 Andersen SS, Ashford AJ, Tournebize R, Gavet O, Sobel A, Hyman AA, Karsenti E Mitotic chromatin regulates phosphorylation of Stathmin/Op18 Nature 1997;389:640-3 151 54 Filbert EL, Le Borgne M, Lin J, Heuser JE, Shaw AS Stathmin regulates microtubule dynamics and microtubule organizing center polarization in activated T cells J Immunol 2012;188:5421-7 55 Tian X, Tian Y, Sarich N, Wu T, Birukova AA Novel role of stathmin in microtubuledependent control of endothelial permeability FASEB J 2012 56 Rubin CI, Atweh GF The role of stathmin in the regulation of the cell cycle J Cell Biochem 2004;93:242-50 57 Mistry SJ, Atweh GF Stathmin inhibition enhances okadaic acid-induced mitotic arrest: a potential role for stathmin in mitotic exit J Biol Chem 2001;276:31209-15 58 Gavet O, Ozon S, Manceau V, Lawler S, Curmi P, Sobel A The stathmin phosphoprotein family: intracellular localization and effects on the microtubule network J Cell Sci 1998;111 ( Pt 22):3333-46 59 Okazaki T, Himi T, Peterson C, Mori N Induction of stathmin mRNA during liver regeneration FEBS Lett 1993;336:8-12 60 Koppel J, Loyer P, Maucuer A, Rehak P, Manceau V, Guguen-Guillouzo C, Sobel A Induction of stathmin expression during liver regeneration FEBS Lett 1993;331:6570 61 Johnson WE, Watters DJ, Suniara RK, Brown G, Bunce CM Bistratene A induces a microtubule-dependent block in cytokinesis and altered stathmin expression in HL60 cells Biochem Biophys Res Commun 1999;260:80-8 62 Hanash SM, Strahler JR, Kuick R, Chu EH, Nichols D Identification of a polypeptide associated with the malignant phenotype in acute leukemia J Biol Chem 1988;263:12813-5 63 Nakashima D, Uzawa K, Kasamatsu A, Koike H, Endo Y, Saito K, Hashitani S, Numata T, Urade M, Tanzawa H Protein expression profiling identifies maspin and stathmin as potential biomarkers of adenoid cystic carcinoma of the salivary glands Int J Cancer 2006;118:704-13 64 Curmi PA, Nogues C, Lachkar S, Carelle N, Gonthier MP, Sobel A, Lidereau R, Bieche I Overexpression of stathmin in breast carcinomas points out to highly proliferative tumours Br J Cancer 2000;82:142-50 65 Baquero MT, Hanna JA, Neumeister V, Cheng H, Molinaro AM, Harris LN, Rimm DL Stathmin expression and its relationship to microtubule-associated protein tau and outcome in breast cancer Cancer 2012 66 Price DK, Ball JR, Bahrani-Mostafavi Z, Vachris JC, Kaufman JS, Naumann RW, Higgins RV, Hall JB The phosphoprotein Op18/stathmin is differentially expressed in ovarian cancer Cancer Invest 2000;18:722-30 67 Wei SH, Lin F, Wang X, Gao P, Zhang HZ Prognostic significance of stathmin expression in correlation with metastasis and clinicopathological characteristics in human ovarian carcinoma Acta Histochem 2008;110:59-65 152 68 Kouzu Y, Uzawa K, Koike H, Saito K, Nakashima D, Higo M, Endo Y, Kasamatsu A, Shiiba M, Bukawa H, Yokoe H, Tanzawa H Overexpression of stathmin in oral squamous-cell carcinoma: correlation with tumour progression and poor prognosis Br J Cancer 2006;94:717-23 69 Ghosh R, Gu G, Tillman E, Yuan J, Wang Y, Fazli L, Rennie PS, Kasper S Increased expression and differential phosphorylation of stathmin may promote prostate cancer progression Prostate 2007;67:1038-52 70 Kuo MF, Wang HS, Kuo QT, Shun CT, Hsu HC, Yang SH, Yuan RH High expression of stathmin protein predicts a fulminant course in medulloblastoma J Neurosurg Pediatr 2009;4:74-80 71 Gan L, Guo K, Li Y, Kang X, Sun L, Shu H, Liu Y Up-regulated expression of stathmin may be associated with hepatocarcinogenesis Oncol Rep 2010;23:1037-43 72 Tan HT, Wu W, Ng YZ, Zhang X, Yan B, Ong CW, Tan S, Salto-Tellez M, Hooi SC, Chung MC Proteomic analysis of colorectal cancer metastasis: stathmin-1 revealed as a player in cancer cell migration and prognostic marker J Proteome Res 2012;11:1433-45 73 Machado-Neto JA, de Melo Campos P, Favaro P, Lazarini M, Lorand-Metze I, Costa FF, Olalla Saad ST, Traina F Stathmin is involved in the highly proliferative phenotype of high-risk myelodysplastic syndromes and acute leukemia cells Leuk Res 2013 74 Hsu HP, Li CF, Lee SW, Wu WR, Chen TJ, Chang KY, Liang SS, Tsai CJ, Shiue YL Overexpression of stathmin confers an independent prognostic indicator in nasopharyngeal carcinoma Tumour Biol 2013 75 Jeon TY, Han ME, Lee YW, Lee YS, Kim GH, Song GA, Hur GY, Kim JY, Kim HJ, Yoon S, Baek SY, Kim BS, Kim JB, Oh SO Overexpression of stathmin1 in the diffuse type of gastric cancer and its roles in proliferation and migration of gastric cancer cells Br J Cancer 2010;102:710-8 76 Ke B, Wu LL, Liu N, Zhang RP, Wang CL, Liang H Overexpression of stathmin is associated with poor prognosis of patients with gastric cancer Tumour Biol 2013;34:3137-45 77 Xi W, Rui W, Fang L, Ke D, Ping G, Hui-Zhong Z Expression of stathmin/op18 as a significant prognostic factor for cervical carcinoma patients J Cancer Res Clin Oncol 2009;135:837-46 78 Howitt BE, Nucci MR, Drapkin R, Crum CP, Hirsch MS Stathmin-1 expression as a complement to p16 helps identify high-grade cervical intraepithelial neoplasia with increased specificity Am J Surg Pathol 2013;37:89-97 79 Chen J, Abi-Daoud M, Wang A, Yang X, Zhang X, Feilotter HE, Tron VA Stathmin is a potential novel oncogene in melanoma Oncogene 2013;32:1330-7 153 80 Bhagirath D, Abrol N, Khan R, Sharma M, Seth A, Sharma A Expression of CD147, BIGH3 and Stathmin and their potential role as diagnostic marker in patients with urothelial carcinoma of the bladder Clin Chim Acta 2012 81 Tay PN, Tan P, Lan Y, Leung CH, Laban M, Tan TC, Ni H, Manikandan J, Rashid SB, Yan B, Yap CT, Lim LH, Lim YC, Hooi SC Palladin, an actin-associated protein, is required for adherens junction formation and intercellular adhesion in HCT116 colorectal cancer cells Int J Oncol 2010;37:909-26 82 Tan HT, Tan S, Lin Q, Lim TK, Hew CL, Chung MC Quantitative and temporal proteome analysis of butyrate-treated colorectal cancer cells Mol Cell Proteomics 2008;7:1174-85 83 Manabe R, Kovalenko M, Webb DJ, Horwitz AR GIT1 functions in a motile, multimolecular signaling complex that regulates protrusive activity and cell migration J Cell Sci 2002;115:1497-510 84 Zhang N, Cai W, Yin G, Nagel DJ, Berk BC GIT1 is a novel MEK1-ERK1/2 scaffold that localizes to focal adhesions Cell Biol Int 2010;34:41-7 85 Cao XX, Xu JD, Xu JW, Liu XL, Cheng YY, Li QQ, Xu ZD, Liu XP RACK1 promotes breast carcinoma migration/metastasis via activation of the RhoA/Rho kinase pathway Breast Cancer Res Treat 2011;126:555-63 86 Doan AT, Huttenlocher A RACK1 regulates Src activity and modulates paxillin dynamics during cell migration Exp Cell Res 2007;313:2667-79 87 Jung MJ, Murzik U, Wehder L, Hemmerich P, Melle C Regulation of cellular actin architecture by S100A10 Exp Cell Res 2010;316:1234-40 88 Chambers AF, Tuck AB Ras-responsive genes and tumor metastasis Crit Rev Oncog 1993;4:95-114 89 Komatsu K, Kobune-Fujiwara Y, Andoh A, Ishiguro S, Hunai H, Suzuki N, Kameyama M, Murata K, Miyoshi J, Akedo H, Tatsuta M, Nakamura H Increased expression of S100A6 at the invading fronts of the primary lesion and liver metastasis in patients with colorectal adenocarcinoma Br J Cancer 2000;83:769-74 90 Ungerer C, Doberstein K, Burger C, Hardt K, Boehncke WH, Bohm B, Pfeilschifter J, Dummer R, Mihic-Probst D, Gutwein P ADAM15 expression is downregulated in melanoma metastasis compared to primary melanoma Biochem Biophys Res Commun 2010;401:363-9 91 Charrier L, Yan Y, Driss A, Laboisse CL, Sitaraman SV, Merlin D ADAM-15 inhibits wound healing in human intestinal epithelial cell monolayers Am J Physiol Gastrointest Liver Physiol 2005;288:G346-53 92 Zou Z, Anisowicz A, Hendrix MJ, Thor A, Neveu M, Sheng S, Rafidi K, Seftor E, Sager R Maspin, a serpin with tumor-suppressing activity in human mammary epithelial cells Science 1994;263:526-9 154 93 Bizet AA, Liu K, Tran-Khanh N, Saksena A, Vorstenbosch J, Finnson KW, Buschmann MD, Philip A The TGF-beta co-receptor, CD109, promotes internalization and degradation of TGF-beta receptors Biochim Biophys Acta 2011;1813:742-53 94 Schimanski CC, Schmitz G, Kashyap A, Bosserhoff AK, Bataille F, Schafer SC, Lehr HA, Berger MR, Galle PR, Strand S, Strand D Reduced expression of Hugl-1, the human homologue of Drosophila tumour suppressor gene lgl, contributes to progression of colorectal cancer Oncogene 2005;24:3100-9 95 Tsuruga T, Nakagawa S, Watanabe M, Takizawa S, Matsumoto Y, Nagasaka K, Sone K, Hiraike H, Miyamoto Y, Hiraike O, Minaguchi T, Oda K, Yasugi T, Yano T, Taketani Y Loss of Hugl-1 expression associates with lymph node metastasis in endometrial cancer Oncol Res 2007;16:431-5 96 Ger M, Zitkus Z, Valius M Adaptor protein Nck1 interacts with p120 Ras GTPaseactivating protein and regulates its activity Cell Signal 2011;23:1651-8 97 Miyamoto Y, Yamauchi J, Mizuno N, Itoh H The adaptor protein Nck1 mediates endothelin A receptor-regulated cell migration through the Cdc42-dependent c-Jun N-terminal kinase pathway J Biol Chem 2004;279:34336-42 98 Borradori L, Sonnenberg A Structure and function of hemidesmosomes: more than simple adhesion complexes J Invest Dermatol 1999;112:411-8 99 Jones JC, Kurpakus MA, Cooper HM, Quaranta V A function for the integrin alpha beta in the hemidesmosome Cell Regul 1991;2:427-38 100 Fang IM, Yang CH, Yang CM, Chen MS Overexpression of integrin alpha6 and beta4 enhances adhesion and proliferation of human retinal pigment epithelial cells on layers of porcine Bruch's membrane Exp Eye Res 2009;88:12-21 101 Giannelli G, Antonaci S Biological and clinical relevance of Laminin-5 in cancer Clin Exp Metastasis 2000;18:439-43 102 Lorch JH, Klessner J, Park JK, Getsios S, Wu YL, Stack MS, Green KJ Epidermal growth factor receptor inhibition promotes desmosome assembly and strengthens intercellular adhesion in squamous cell carcinoma cells J Biol Chem 2004;279:37191-200 103 Dusek RL, Attardi LD Desmosomes: new perpetrators in tumour suppression Nat Rev Cancer 2011;11:317-23 104 Kouklis PD, Hutton E, Fuchs E Making a connection: direct binding between keratin intermediate filaments and desmosomal proteins J Cell Biol 1994;127:1049-60 105 Xu W, Mezencev R, Kim B, Wang L, McDonald J, Sulchek T Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells PLoS One 2012;7:e46609 106 Rousalova I, Krepela E, Prochazka J, Cermak J, Benkova K Expression of proteinase inhibitor-9/serpinB9 in non-small cell lung carcinoma cells and tissues Int J Oncol 2010;36:275-83 155 107 Morgenstern R, Zhang J, Johansson K Microsomal glutathione transferase 1: mechanism and functional roles Drug Metab Rev 2011;43:300-6 108 Johansson K, Ahlen K, Rinaldi R, Sahlander K, Siritantikorn A, Morgenstern R Microsomal glutathione transferase in anticancer drug resistance Carcinogenesis 2007;28:465-70 109 Shen SM, Yu Y, Wu YL, Cheng JK, Wang LS, Chen GQ Downregulation of ANP32B, a novel substrate of caspase-3, enhances caspase-3 activation and apoptosis induction in myeloid leukemic cells Carcinogenesis 2010;31:419-26 110 Suboj P, Babykutty S, Srinivas P, Gopala S Aloe emodin induces G2/M cell cycle arrest and apoptosis via activation of caspase-6 in human colon cancer cells Pharmacology 2012;89:91-8 111 MacLachlan TK, El-Deiry WS Apoptotic threshold is lowered by p53 transactivation of caspase-6 Proc Natl Acad Sci U S A 2002;99:9492-7 112 Reiss U, Oskouian B, Zhou J, Gupta V, Sooriyakumaran P, Kelly S, Wang E, Merrill AH, Jr., Saba JD Sphingosine-phosphate lyase enhances stress-induced ceramide generation and apoptosis J Biol Chem 2004;279:1281-90 113 Yang Z, Cheng W, Hong L, Chen W, Wang Y, Lin S, Han J, Zhou H, Gu J Adenine nucleotide (ADP/ATP) translocase participates in the tumor necrosis factor induced apoptosis of MCF-7 cells Mol Biol Cell 2007;18:4681-9 114 Brenner C, Subramaniam K, Pertuiset C, Pervaiz S Adenine nucleotide translocase family: four isoforms for apoptosis modulation in cancer Oncogene 2011;30:883-95 115 Freeman JW, McGrath P, Bondada V, Selliah N, Ownby H, Maloney T, Busch RK, Busch H Prognostic significance of proliferation associated nucleolar antigen P120 in human breast carcinoma Cancer Res 1991;51:1973-8 116 Hyun TS, Rao DS, Saint-Dic D, Michael LE, Kumar PD, Bradley SV, Mizukami IF, Oravecz-Wilson KI, Ross TS HIP1 and HIP1r stabilize receptor tyrosine kinases and bind 3-phosphoinositides via epsin N-terminal homology domains J Biol Chem 2004;279:14294-306 117 Loboda A, Nebozhyn MV, Watters JW, Buser CA, Shaw PM, Huang PS, Van't Veer L, Tollenaar RA, Jackson DB, Agrawal D, Dai H, Yeatman TJ EMT is the dominant program in human colon cancer BMC Med Genomics 2011;4:9 118 Chen HH, Zhou XL, Shi YL, Yang J Roles of p38 MAPK and JNK in TGF-beta1-induced human alveolar epithelial to mesenchymal transition Arch Med Res 2013;44:93-8 119 Sikora K, Chan S, Evan G, Gabra H, Markham N, Stewart J, Watson J c-myc oncogene expression in colorectal cancer Cancer 1987;59:1289-95 120 Rochlitz CF, Herrmann R, de Kant E Overexpression and amplification of c-myc during progression of human colorectal cancer Oncology 1996;53:448-54 156 121 Yochum GS Multiple Wnt/ss-catenin responsive enhancers align with the MYC promoter through long-range chromatin loops PLoS One 2011;6:e18966 122 Zhu W, Cai MY, Tong ZT, Dong SS, Mai SJ, Liao YJ, Bian XW, Lin MC, Kung HF, Zeng YX, Guan XY, Xie D Overexpression of EIF5A2 promotes colorectal carcinoma cell aggressiveness by upregulating MTA1 through C-myc to induce epithelialmesenchymaltransition Gut 2012;61:562-75 123 Tuncay Cagatay S, Cimen I, Savas B, Banerjee S MTA-1 expression is associated with metastasis and epithelial to mesenchymal transition in colorectal cancer cells Tumour Biol 2013;34:1189-204 124 Toh Y, Nicolson GL The role of the MTA family and their encoded proteins in human cancers: molecular functions and clinical implications Clin Exp Metastasis 2009;26:215-27 125 Selvakumar P, Lakshmikuttyamma A, Dimmock JR, Sharma RK Methionine aminopeptidase and cancer Biochim Biophys Acta 2006;1765:148-54 126 Hashimoto Y, Kondo C, Kojima T, Nagata H, Moriyama A, Hayakawa T, Katunuma N Significance of 32-kDa cathepsin L secreted from cancer cells Cancer Biother Radiopharm 2006;21:217-24 127 Jamieson T, Clarke M, Steele CW, Samuel MS, Neumann J, Jung A, Huels D, Olson MF, Das S, Nibbs RJ, Sansom OJ Inhibition of CXCR2 profoundly suppresses inflammation-driven and spontaneous tumorigenesis J Clin Invest 2012;122:312744 128 Ning Y, Labonte MJ, Zhang W, Bohanes PO, Gerger A, Yang D, Benhaim L, Paez D, Rosenberg DO, Nagulapalli Venkata KC, Louie SG, Petasis NA, Ladner RD, Lenz HJ The CXCR2 antagonist, SCH-527123, shows antitumor activity and sensitizes cells to oxaliplatin in preclinical colon cancer models Mol Cancer Ther 2012;11:1353-64 129 Nobuhisa T, Naomoto Y, Ohkawa T, Takaoka M, Ono R, Murata T, Gunduz M, Shirakawa Y, Yamatsuji T, Haisa M, Matsuoka J, Tsujigiwa H, Nagatsuka H, Nakajima M, Tanaka N Heparanase expression correlates with malignant potential in human colon cancer J Cancer Res Clin Oncol 2005;131:229-37 130 Shankar J, Messenberg A, Chan J, Underhill TM, Foster LJ, Nabi IR Pseudopodial actin dynamics control epithelial-mesenchymal transition in metastatic cancer cells Cancer Res 2010;70:3780-90 131 Lim HJ, Kang DH, Lim JM, Kang DM, Seong JK, Kang SW, Bae YS Function of Ahnak protein in aortic smooth muscle cell migration through Rac activation Cardiovasc Res 2013;97:302-10 132 Parri M, Chiarugi P Rac and Rho GTPases in cancer cell motility control Cell Commun Signal 2010;8:23 133 Friedl P, Alexander S Cancer invasion and the microenvironment: plasticity and reciprocity Cell 2011;147:992-1009 157 134 ten Klooster JP, Leeuwen I, Scheres N, Anthony EC, Hordijk PL Rac1-induced cell migration requires membrane recruitment of the nuclear oncogene SET EMBO J 2007;26:336-45 135 Teng TS, Lin B, Manser E, Ng DC, Cao X Stat3 promotes directional cell migration by regulating Rac1 activity via its activator betaPIX J Cell Sci 2009;122:4150-9 136 Murashige M, Miyahara M, Shiraishi N, Saito T, Kohno K, Kobayashi M Enhanced expression of tissue inhibitors of metalloproteinases in human colorectal tumors Jpn J Clin Oncol 1996;26:303-9 137 Bourboulia D, Stetler-Stevenson WG Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs): Positive and negative regulators in tumor cell adhesion Semin Cancer Biol 2010;20:161-8 138 Mazzoccoli G, Pazienza V, Panza A, Valvano MR, Benegiamo G, Vinciguerra M, Andriulli A, Piepoli A ARNTL2 and SERPINE1: potential biomarkers for tumor aggressiveness in colorectal cancer J Cancer Res Clin Oncol 2012;138:501-11 139 Lei Y, Huang K, Gao C, Lau QC, Pan H, Xie K, Li J, Liu R, Zhang T, Xie N, Nai HS, Wu H, Dong Q, Zhao X, Nice EC, Huang C, Wei Y Proteomics identification of ITGB3 as a key regulator in reactive oxygen species-induced migration and invasion of colorectal cancer cells Mol Cell Proteomics 2011;10:M110 005397 140 Luo Y, Liang F, Zhang ZY PRL1 promotes cell migration and invasion by increasing MMP2 and MMP9 expression through Src and ERK1/2 pathways Biochemistry 2009;48:1838-46 141 Ahonen M, Baker AH, Kahari VM Adenovirus-mediated gene delivery of tissue inhibitor of metalloproteinases-3 inhibits invasion and induces apoptosis in melanoma cells Cancer Res 1998;58:2310-5 142 Bond M, Murphy G, Bennett MR, Amour A, Knauper V, Newby AC, Baker AH Localization of the death domain of tissue inhibitor of metalloproteinase-3 to the N terminus Metalloproteinase inhibition is associated with proapoptotic activity J Biol Chem 2000;275:41358-63 143 Ouyang P, Sugrue SP Characterization of pinin, a novel protein associated with the desmosome-intermediate filament complex J Cell Biol 1996;135:1027-42 144 Shi Y, Ouyang P, Sugrue SP Characterization of the gene encoding pinin/DRS/memA and evidence for its potential tumor suppressor function Oncogene 2000;19:289-97 145 Wu WK, Wang XJ, Cheng AS, Luo MX, Ng SS, To KF, Chan FK, Cho CH, Sung JJ, Yu J Dysregulation and crosstalk of cellular signaling pathways in colon carcinogenesis Crit Rev Oncol Hematol 2013;86:251-77 146 Ueno K, Hazama S, Mitomori S, Nishioka M, Suehiro Y, Hirata H, Oka M, Imai K, Dahiya R, Hinoda Y Down-regulation of frizzled-7 expression decreases survival, invasion and metastatic capabilities of colon cancer cells Br J Cancer 2009;101:1374-81 158 147 Connolly EC, Freimuth J, Akhurst RJ Complexities of TGF-beta targeted cancer therapy Int J Biol Sci 2012;8:964-78 148 Liu XQ, Rajput A, Geng L, Ongchin M, Chaudhuri A, Wang J Restoration of transforming growth factor-beta receptor II expression in colon cancer cells with microsatellite instability increases metastatic potential in vivo J Biol Chem 2011;286:16082-90 149 Samarakoon R, Chitnis SS, Higgins SP, Higgins CE, Krepinsky JC, Higgins PJ Redoxinduced Src kinase and caveolin-1 signaling in TGF-beta1-initiated SMAD2/3 activation and PAI-1 expression PLoS One 2011;6:e22896 150 Jubb AM, Zhong F, Bheddah S, Grabsch HI, Frantz GD, Mueller W, Kavi V, Quirke P, Polakis P, Koeppen H EphB2 is a prognostic factor in colorectal cancer Clin Cancer Res 2005;11:5181-7 151 Coopman PJ, Mueller SC The Syk tyrosine kinase: a new negative regulator in tumor growth and progression Cancer Lett 2006;241:159-73 152 Guan-Zhen Y, Ying C, Can-Rong N, Guo-Dong W, Jian-Xin Q, Jie-Jun W Reduced protein expression of metastasis-related genes (nm23, KISS1, KAI1 and p53) in lymph node and liver metastases of gastric cancer Int J Exp Pathol 2007;88:175-83 153 Rodilla V, Villanueva A, Obrador-Hevia A, Robert-Moreno A, Fernandez-Majada V, Grilli A, Lopez-Bigas N, Bellora N, Alba MM, Torres F, Dunach M, Sanjuan X, Gonzalez S, Gridley T, Capella G, Bigas A, Espinosa L Jagged1 is the pathological link between Wnt and Notch pathways in colorectal cancer Proc Natl Acad Sci U S A 2009;106:6315-20 154 Lark AL, Livasy CA, Calvo B, Caskey L, Moore DT, Yang X, Cance WG Overexpression of focal adhesion kinase in primary colorectal carcinomas and colorectal liver metastases: immunohistochemistry and real-time PCR analyses Clin Cancer Res 2003;9:215-22 155 De Craene B, Berx G Regulatory networks defining EMT during cancer initiation and progression Nat Rev Cancer 2013;13:97-110 156 Spaderna S, Schmalhofer O, Wahlbuhl M, Dimmler A, Bauer K, Sultan A, Hlubek F, Jung A, Strand D, Eger A, Kirchner T, Behrens J, Brabletz T The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer Cancer Res 2008;68:537-44 157 Schepeler T, Holm A, Halvey P, Nordentoft I, Lamy P, Riising EM, Christensen LL, Thorsen K, Liebler DC, Helin K, Orntoft TF, Andersen CL Attenuation of the betacatenin/TCF4 complex in colorectal cancer cells induces several growth-suppressive microRNAs that target cancer promoting genes Oncogene 2012;31:2750-60 158 Cho SH, Park YS, Kim HJ, Kim CH, Lim SW, Huh JW, Lee JH, Kim HR CD44 enhances the epithelial-mesenchymal transition in association with colon cancer invasion Int J Oncol 2012;41:211-8 159 159 Su YJ, Lai HM, Chang YW, Chen GY, Lee JL Direct reprogramming of stem cell properties in colon cancer cells by CD44 EMBO J 2011;30:3186-99 160 Chen Q, Chen L, Zhao R, Yang XD, Imran K, Xing CG Microarray analyses reveal liver metastasis-related genes in metastatic colorectal cancer cell model J Cancer Res Clin Oncol 2013;139:1169-78 161 Johnsen JI, Aurelio ON, Kwaja Z, Jorgensen GE, Pellegata NS, Plattner R, Stanbridge EJ, Cajot JF p53-mediated negative regulation of stathmin/Op18 expression is associated with G(2)/M cell-cycle arrest Int J Cancer 2000;88:685-91 162 Curmi PA, Andersen SS, Lachkar S, Gavet O, Karsenti E, Knossow M, Sobel A The stathmin/tubulin interaction in vitro J Biol Chem 1997;272:25029-36 163 Honnappa S, Cutting B, Jahnke W, Seelig J, Steinmetz MO Thermodynamics of the Op18/stathmin-tubulin interaction J Biol Chem 2003;278:38926-34 164 Steinmetz MO, Jahnke W, Towbin H, Garcia-Echeverria C, Voshol H, Muller D, van Oostrum J Phosphorylation disrupts the central helix in Op18/stathmin and suppresses binding to tubulin EMBO Rep 2001;2:505-10 165 Melhem R, Hailat N, Kuick R, Hanash SM Quantitative analysis of Op18 phosphorylation in childhood acute leukemia Leukemia 1997;11:1690-5 166 Yang J, Weinberg RA Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis Dev Cell 2008;14:818-29 167 Xiong H, Hong J, Du W, Lin YW, Ren LL, Wang YC, Su WY, Wang JL, Cui Y, Wang ZH, Fang JY Roles of STAT3 and ZEB1 proteins in E-cadherin down-regulation and human colorectal cancer epithelial-mesenchymal transition J Biol Chem 2012;287:5819-32 168 Deng Y, Deng H, Liu J, Han G, Malkoski S, Liu B, Zhao R, Wang XJ, Zhang Q Transcriptional down-regulation of Brca1 and E-cadherin by CtBP1 in breast cancer Mol Carcinog 2012;51:500-7 169 Alpatov R, Munguba GC, Caton P, Joo JH, Shi Y, Hunt ME, Sugrue SP Nuclear speckle-associated protein Pnn/DRS binds to the transcriptional corepressor CtBP and relieves CtBP-mediated repression of the E-cadherin gene Mol Cell Biol 2004;24:10223-35 170 Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP, Sedivy JM, Kinzler KW, Vogelstein B Requirement for p53 and p21 to sustain G2 arrest after DNA damage Science 1998;282:1497-501 171 Sadowski PG, Dunkley TP, Shadforth IP, Dupree P, Bessant C, Griffin JL, Lilley KS Quantitative proteomic approach to study subcellular localization of membrane proteins Nat Protoc 2006;1:1778-89 172 Gillet LC, Navarro P, Tate S, Rost H, Selevsek N, Reiter L, Bonner R, Aebersold R Targeted data extraction of the MS/MS spectra generated by data-independent 160 acquisition: a new concept for consistent and accurate proteome analysis Mol Cell Proteomics 2012;11:O111 016717 173 Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J TM4: a free, open-source system for microarray data management and analysis Biotechniques 2003;34:374-8 161 ... 11 3 6 .1. 4 Mutagenesis 11 3 6 .1. 5 6.2 HCT 116 and E1 cell lines 11 2 Transfection 11 4 Cell-based assays 11 5 6.2 .1 6.2.2 Wound healing 11 5 6.2.3... Stathmin- 1 1. 2 .1 The Stathmin family 1. 2.2 STMN1 in microtubule regulation 10 1. 2.3 STMN1 in cell cycle regulation 12 1. 2.4 STMN1 in cancer 14 ... Conclusion and future work 10 7 Chapter Materials and methods 11 0 6 .1 Cell lines and constructs 11 2 6 .1. 1 6 .1. 2 Preparation of whole cell lysate 11 2 6 .1. 3 STMN1 KD and

Ngày đăng: 09/09/2015, 11:25

Từ khóa liên quan

Mục lục

  • Acknowledgement

  • List of Figures

  • List of Tables

  • Summary

  • Abbreviations

  • Chapter 1 Introduction

    • 1.1 Colon cancer

      • 1.1.1 Colorectal carcinoma

      • 1.1.2 Diagnosis and staging

      • 1.1.3 CRC survival

      • 1.1.4 CRC treatment

      • 1.2 Stathmin-1

        • 1.2.1 The Stathmin family

        • 1.2.2 STMN1 in microtubule regulation

        • 1.2.3 STMN1 in cell cycle regulation

        • 1.2.4 STMN1 in cancer

        • Chapter 2 Objectives of study

          • 2.1 Motivation of study

            • 2.1.1 STMN1 up-regulation in metastatic CRC

            • 2.1.2 Knowledge gaps and experimental aims

            • 2.2 Workflow

            • 3 Chapter 3 Results

              • 3.1 Stable STMN1 knockdown and over-expression

                • 3.1.1 STMN1 knockdown

                • 3.1.2 STMN1 over-expression

                • 3.1.3 Summary

                • 3.2 STMN1 expression is required for metastatic processes in vitro

                  • 3.2.1 Migration

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan