Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 21 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
21
Dung lượng
2,7 MB
Nội dung
CHAPTER 94 5. RECOMMENDATIONS FOR FUTURE RESEARCH 5.1. ROLE OF TGF-β CO-REPRESSOR SnoN DURING THE HGFDEPENDENT INHIBITION OF TGF-β1 ACTIVATION As seen in Chapters and 2, TGF−β signaling plays a very important role in the activation of HSC and fibrosis progression. Strategies to target and antagonize TGF−β signaling have been researched upon extensively leading to the knowledge of activators of the signaling at the transcriptional/protein level and repressors of the signaling at the transcriptional level. Signaling by TGF−β is initiated by the binding of TGF−β to its heteromeric complex of type I & II cell surface receptors. Each receptor is a transmembrane protein that possesses a cytoplasmic serine-threonine kinase domain. Binding of TGF−β to the ectodomain of the type II receptor induces hetero-oligomerization between the type II and the type I receptors. Once the two receptor subunits are in close proximity, the constitutively active type II receptor kinase phosphorylates the type I receptor kinase (174,175). Once activated, the type I TGF−β receptor kinase phosphorylates a Smad2 or Smad3 protein, resulting in the oligomerization of Smad2 or -3 with their common partner, Smad4. The resulting heteromeric Smad protein complexes then migrate to the nucleus, where they regulate expression of a large number of target genes (176). Several nuclear proteins have been found to interact with Smad proteins. Such interactions either influence Smad function directly or, alternatively, affect the functions of its binding partners. One such nuclear protein that binds to Smad is the Ski-related protein SnoN, which when over-expressed decreases TGF−β signaling and in some cases renders the cells unresponsive to TGF−β stimulation (177). Since HGF and plasmin have been 95 demonstrated to induce SnoN expression in contexts of kidney (178,179) and liver fibrosis (126) respectively, we investigated whether SnoN expression was modulated in our HGF-treated HSC-T6 monocultures and HGF-treated fibrotic rats. Interestingly, we observed an up-regulation in HGF-treated HSC-T6 monoculture when compared to HGF-treated hepatocyte monoculture (Fig. 39) or the untreated HSC-T6 monoculture demonstrating a HGF/HGF-induced plasmin- SnoN expression relative to control (normalized to β-actin) based selective up-regulation of SnoN in ‘high TGF-β1’ contexts. 10 Untreated control cultures * HGF-treated cultures CTRL Hepatocytes HSC-T6 Figure 39: SnoN gene expression in HGF-treated liver cells in vitro as measured by RT-PCR.Freshly isolated primary rat hepatocytes or HSC-T6 cells were cultured overnight and treated with 40ng/ml HGF protein for 48 hrs and the gene expression of SnoN was evaluated by RT-PCR. * p-value < 0.05 compared to untreated control cultures of HSC-T6 cells. In DMN-induced fibrotic rats administered with Vitamin A-Liposome-HGF (VALH), we observed a large increase in SnoN expression comparable to the levels of naïve control rats (Fig. 40) demonstrating the HGF-based up-regulation of SnoN even in animal models of fibrosis. Additionally, the HSC-targeted delivery appeared to have higher levels of SnoN up-regulation compared to the 96 untargeted Liposome-HGF (Lip-HGF) therapy reiterating the importance of targeting the fibrotic foci within the diseased liver. Sno Gene expression levels in tissue homogenates (Normalized to GAPDH) CTRL DMN Lip-HGF VALH -1 -2 -3 Figure 40: SnoN expression in fibrotic rats treated with VALH particles. Gene expression of SnoN normalized to GAPDH gene in DMN-induced fibrotic rats treated with untargeted and targeted liposome-DNA complexes as measured by RT-PCR. 5.2. REGRESSION OF LIVER FIBROSIS IN TAA-INDUCED FIBROTIC RATS AFTER RETROGRADE INTRABILIARY INFUSION OF VALH PARTICLES Since our earlier treatment of DMN-induced fibrotic rats were administered 200 µg dose of therapeutic, we further investigated whether lower dose of therapeutics can also induce fibrosis regression. In order to demonstrate a more broad-based 97 application of our therapeutic in other models of liver injury we tested the VALH particles on thioacetamide (TAA)-induced fibrotic rat model. Fibrotic rats were establishment with intraperitoneal administration of 200µg/kg B.W. of thioacetamide administration consecutive days per week for 12 weeks. After 12 weeks of TAA administration and week of no injections, the rats were administered a single dose of VALH particles containing 50 µg of plasmid DNA through retrograde intrabiliary infusion as described in Chapter 3. Liver tissue samples were collected and 14 days after treatment. We observed a decline in the nodular appearance of the liver (Fig. 41) and a decline in the fibrotic index as measured form the Masson Trichrome and H&E stained images (Fig. 42). Figure 41: Appearance of rat livers after treatment. Naïve control rats (A), TAA-induced fibrotic rats (B) and VALH-treated fibrotic rats (C) after 14 days 98 LH 14 L D D LH VA VA + + A A TA TA TR C Fibrosis score 99 Figure 42: Liver histopathology and fibrosis score. Masson Trichrome and H&E stained liver tissue sections, naïve control (A), TAA only (B) and VALH-treated days (C) and 14 days after treatment (D). Scale bar: 100 µm. Decline in fibrosis score of VALH-treated fibrotic rats by day 14 (E). We also observed a decline in the fibrotic markers, α-SMA and TGF-β Receptor I (see materials & methods in Chapter 3) in the liver tissue homogenates 14 days after VALH treatment (Fig. 43). (55 kDa) (42 kDa) (47 kDa) Figure 43: Decreased α-SMA and TGF-β Receptor I expression 14 days after VALH treatment. VALH-treated TAA-induced fibrotic rats were tested for TGF-b1 and a-SMA protein levels by western blot. Benchmark protein ladder (Invitrogen) used as molecular marker. Experiments evaluating the distribution of the delivered transgene in the fibrotic liver are ongoing to test their specific localization in the HSC-rich fibrotic foci and the control of fibrosis expansion. 5.3. ALTERNATIVE SOURCE OF HEPATOCYTES FOR TRANSPLANTATION PURPOSES IN END-STAGE LIVER DISEASES 5.3.1. iPSC-Derived Hepatocytes 100 Liver cell transplantation (LCT), an experimental procedure designed to reconstitute the liver mass with functional hepatocytes, is based on transplantation of isolated hepatocytes from a cadaver or from a liver portion from a living donor (180). This experimental procedure has been successfully used in patients to correct certain metabolic disorders (180). Transplantation of fetal hepatocytes has also been considered as an alternative treatment (181). Liver cell transplantation (LCT) has been attempted in patients with acute liver failure, chronic liver disease with endstage cirrhosis, and children with metabolic disease (180). Since metabolic deficiencies are often associated with the severe damage to hepatocytes, transplanted hepatocytes have a growth advantage over recipient hepatocytes. Under these conditions, donor hepatocytes have a selective pressure and LCT has been reported in patients to correct ornithine trans-carbamylase deficiency, α-1-anti-trypsin deficiency, glycogen storage disease type Ia, infantile Refsum’s disease, factor VII deficiency, bile salt export protein deficiency, and Crigler-Najjar syndrome type (180,182). Immunological rejection of hepatocytes requires prolonged immunosuppressive therapy in patients suitable for LCT (183). Identification and characterization of hepatocyte progenitor/stem cells and their differentiation into functionally mature liver cells is an evolving goal for the stem cell-based therapy for liver diseases. In recent times, there has been a lot of interest in the development of induced pluripotent stem cells from adult human somatic cells by the forced expression of genes otherwise known as Yamanaka factors i.e., Oct3/4, Sox2, c-Myc and Klf-4 (184). Further research showed that iPS can be generated even without the oncogene c-Myc thus reducing the risk of tumor development (185). In our study, we differentiated iPSF4 (WiCell; Fig. 44) into hepatocytes employing a modified directed differentiation protocol adapted from Roelandt et al. (186). 101 Figure 44: Undifferentiated feeder-free iPSF4 colonies. iPSF4 cell colonies maintained in mTESR1 medium showing undifferentiated morphology under phase contrast microscope (10x magnification). We cultured the iPS cells in matrigel-coated dishes in APEL medium and treated them with different cytokines for different time periods as described in Fig. 45. Oncostatin-M Figure 45: Schematic representation of the protocol for directed differentiation of pluripotent stem cells into mature hepatocytes. Protocol adapted from (182). Initial phase of differentiation until day 10 is to induce the pluripotent stem cells into the definitive endoderm lineage by inducing the Activin/Wnt signaling pathway. The 102 canonical Wnt signaling involves Wnt proteins and their interactions with cell-surface receptors of the Frizzled family on target cells and further signaling that regulates the amount of B-catenin that enters the nucleus in turn regulates physiological responses such as cell growth and morphogensis (187). As seen in Fig. 46, 10 days from start of differentiation there was a strong increase in the marker for endoderm, Foxa2 as compared to the ectoderm or mesoderm markers Pax6 and Brachury/T respectively in feeder-free cultures. A 103 Fold change over day control (Normalized to GAPDH) B Day 100 Day 10 80 60 40 20 10 -5 -10 Oct3/4 Foxa2 T Pax6 Figure 46: Definitive endoderm induction of hiPSCs. Morphology of iPSF4 cell colonies in feeder and feeder-free configurations (A; 4x magnification). At day and day 10, the feeder-free cultures show a gradual progression in definite endoderm marker Foxa2 The next phase of hepatic induction leads to highly specific epithelial morphology similar to mature hepatocytes (Fig. 47A) and significant increases in the hepatocytespecific genes such as albumin, AAT, HNF4A and CYP3A4 (Fig. 47B). A Feeder culture Feeder-free culture 104 B Figure 47: Expression of hepatocyte-like markers in differentiated hiPSCs by day 20. Photomicrographs showing hepatocyte-like morphology of differentiated hiPSCs (A; upper panel: 4x magnification, lower panel: 40x magnification). Increased expression of hepatocyte specific genes as assessed from RT-PCR measurements (B). We also observed a significant increase in the expression of hepatic markers albumin and MRP-2 (Fig. 48) and increase in albumin secretion (140.57 ± 7.33ng/million cells) in the hepatocyte-like cells derived from hiPSCs. Figure 48: Expression of mature hepatic markers by the hepatocyte-like cells derived from hiPSCs. Albumin (green) and MRP-2 (red). Scale bar: 20 µm Further characterization of the hepatocyte functions at day 20 and testing for safety, efficient integration and function in vivo is required before these cells can be further used as an alternative source for hepatocyte transplantation in clinics. 105 BIBLIOGRAPHY 106 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. Junqueira, L., and Carneiro, J. (2003) Organs associated with the digestive tract. in Basic histology: text and atlas (Junqueira, L., and Carneiro, J. eds.), 11th Ed., The McGraw Hill Companies. pp 332-343 Racanelli, V., and Rehermann, B. (2006) Hepatology 43, S54-62 Arias, I. M., Che, M., Gatmaitan, Z., Leveille, C., Nishida, T., and St Pierre, M. (1993) Hepatology 17, 318-329 Stamatoglou, S. C., and Hughes, R. C. (1994) FASEB J 8, 420-427 Michalopoulos, G. K. (2007) J Cell Physiol 213, 286-300 Lake, B. G., Price, R. J., Giddings, A. M., and Walters, D. G. (2009) Methods Mol Biol 481, 47-58 Friedman, S. L. (2000) J Biol Chem 275, 2247-2250 Gandhi, C. R. (2011) Stellate Cells. in Molecular Pathology of Liver Diseases (Monga, S. P. S. ed.), Springer. pp 53-79 Gandhi, C. R. (2011) Kupffer Cells. in Molecular Pathology of Liver Diseases (Monga, S. P. S. ed.), Springer. pp 81-95 Shibayama, Y., and Nakata, K. (1985) Hepatology 5, 643-648 Ueno, T., Bioulac-Sage, P., Balabaud, C., and Rosenbaum, J. (2004) Anat Rec A Discov Mol Cell Evol Biol 280, 868-873 Gandhi, C. R., Berkowitz, D. E., and Watkins, W. D. (1994) Anesthesiology 80, 892-905 Gandhi, C. R., Sproat, L. A., and Subbotin, V. M. (1996) Life Sci 58, 55-62 Aird, W. C. (2007) Circ Res 100, 174-190 Aird, W. C. (2007) Circ Res 100, 158-173 Wisse, E. (1972) J Ultrastruct Res 38, 528-562 Stolz, D. B. (2011) Sinusoidal Endothelial Cells. in Molecular Pathology of Liver Diseases (Monga, S. P. S. ed.), Springer. pp 97-107 Smedsrod, B., Le Couteur, D., Ikejima, K., Jaeschke, H., Kawada, N., Naito, M., Knolle, P., Nagy, L., Senoo, H., Vidal-Vanaclocha, F., and Yamaguchi, N. (2009) Liver Int 29, 490-501 Braet, F., and Wisse, E. (2002) Comp Hepatol 1, Wisse, E., Jacobs, F., Topal, B., Frederik, P., and De Geest, B. (2008) Gene Ther 15, 1193-1199 Wisse, E., De Zanger, R. B., Jacobs, R., and McCuskey, R. S. (1983) Scan Electron Microsc, 1441-1452 Fraser, R., Dobbs, B. R., and Rogers, G. W. (1995) Hepatology 21, 863-874 Wisse, E., De Zanger, R. B., Charels, K., Van Der Smissen, P., and McCuskey, R. S. (1985) Hepatology 5, 683-692 Britton, R. S., and Bacon, B. R. (1999) Alcohol Clin Exp Res 23, 922-925 Friedman, S. L. (1999) Alcohol Clin Exp Res 23, 904-910 Reeves, H. L., and Friedman, S. L. (2002) Front Biosci 7, d808-826 Bataller, R., and Brenner, D. A. (2005) J Clin Invest 115, 209-218 Iredale, J. P. (2007) J Clin Invest 117, 539-548 Schnabl, B., Scholten, D., and Brenner, D. A. (2008) Nat Clin Pract Gastroenterol Hepatol 5, 496-497 Friedman, S. L., and Bansal, M. B. (2006) Hepatology 43, S82-88 Everhart, J. E., and Ruhl, C. E. (2009) Gastroenterology 136, 1134-1144 Lim, Y. S., and Kim, W. R. (2008) Clin Liver Dis 12, 733-746, vii Kisseleva, T., and Brenner, D. A. (2007) J Gastroenterol Hepatol 22 Suppl 1, S73-78 107 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. Mallat, A., Hezode, C., and Lotersztajn, S. (2008) J Hepatol 48, 657-665 Knittel, T., Kobold, D., Piscaglia, F., Saile, B., Neubauer, K., Mehde, M., Timpl, R., and Ramadori, G. (1999) Histochemistry and cell biology 112, 387401 Popper, H., and Uenfriend, S. (1970) Am J Med 49, 707-721 Ley, K. (1996) Cardiovasc Res 32, 733-742 Gressner, A. M. (1995) J Hepatol 22, 28-36 De Minicis, S., Seki, E., Uchinami, H., Kluwe, J., Zhang, Y., Brenner, D. A., and Schwabe, R. F. (2007) Gastroenterology 132, 1937-1946 Leo, M. A., and Lieber, C. S. (1982) N Engl J Med 307, 597-601 Pinzani, M., Gentilini, P., and Abboud, H. E. (1992) J Hepatol 14, 211-220 Senoo, H., and Wake, K. (1985) Lab Invest 52, 182-194 Davis, B. H., Rapp, U. R., and Davidson, N. O. (1991) Biochem J 278 ( Pt 1), 43-47 Gressner, A. M., Lahme, B., and Brenzel, A. (1995) Hepatology 22, 15071518 Hellerbrand, C., Stefanovic, B., Giordano, F., Burchardt, E. R., and Brenner, D. A. (1999) J Hepatol 30, 77-87 Neubauer, K., Kruger, M., Quondamatteo, F., Knittel, T., Saile, B., and Ramadori, G. (1999) J Hepatol 31, 692-702 Prosser, C. C., Yen, R. D., and Wu, J. (2006) World J Gastroenterol 12, 509515 Saile, B., Matthes, N., Knittel, T., and Ramadori, G. (1999) Hepatology 30, 196-202 Armendariz-Borunda, J., Katai, H., Jones, C. M., Seyer, J. M., Kang, A. H., and Raghow, R. (1993) Lab Invest 69, 283-294 Jarvelainen, H. A., Fang, C., Ingelman-Sundberg, M., and Lindros, K. O. (1999) Hepatology 29, 1503-1510 Schnabl, B., Kweon, Y. O., Frederick, J. P., Wang, X. F., Rippe, R. A., and Brenner, D. A. (2001) Hepatology 34, 89-100 Bosch, J. (2007) J Clin Gastroenterol 41 Suppl 3, S247-253 Iwakiri, Y., and Groszmann, R. J. (2007) J Hepatol 46, 927-934 DeLeve, L. D., Wang, X., Hu, L., McCuskey, M. K., and McCuskey, R. S. (2004) Am J Physiol Gastrointest Liver Physiol 287, G757-763 Pinzani, M., and Vizzutti, F. (2008) Clin Liver Dis 12, 901-913, x Popper, H. (1977) Am J Pathol 87, 228-264 Fernandez, M., Semela, D., Bruix, J., Colle, I., Pinzani, M., and Bosch, J. (2009) J Hepatol 50, 604-620 Gieling, R. G., Burt, A. D., and Mann, D. A. (2008) Clin Liver Dis 12, 915937, xi Corpechot, C., Barbu, V., Wendum, D., Kinnman, N., Rey, C., Poupon, R., Housset, C., and Rosmorduc, O. (2002) Hepatology 35, 1010-1021 Lee, J. S., Semela, D., Iredale, J., and Shah, V. H. (2007) Hepatology 45, 817825 Novo, E., Cannito, S., Zamara, E., Valfre di Bonzo, L., Caligiuri, A., Cravanzola, C., Compagnone, A., Colombatto, S., Marra, F., Pinzani, M., and Parola, M. (2007) Am J Pathol 170, 1942-1953 Semela, D., Das, A., Langer, D., Kang, N., Leof, E., and Shah, V. (2008) Gastroenterology 135, 671-679 108 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74. 75. 76. 77. 78. 79. 80. 81. 82. 83. 84. 85. Racine-Samson, L., Scoazec, J. Y., D'Errico, A., Fiorentino, M., Christa, L., Moreau, A., Roda, C., Grigioni, W. F., and Feldman, G. (1996) Hepatology 24, 104-113 Hernandez-Gea, V., and Friedman, S. L. (2011) Annu Rev Pathol 6, 425-456 Yasuda, H., Imai, E., Shiota, A., Fujise, N., Morinaga, T., and Higashio, K. (1996) Hepatology 24, 636-642 Ishiki, Y., Ohnishi, H., Muto, Y., Matsumoto, K., and Nakamura, T. (1992) Hepatology 16, 1227-1235 Ishii, T., Sato, M., Sudo, K., Suzuki, M., Nakai, H., Hishida, T., Niwa, T., Umezu, K., and Yuasa, S. (1995) Journal of biochemistry 117, 1105-1112 Miyazawa, K., Shimomura, T., and Kitamura, N. (1996) J Biol Chem 271, 3615-3618 P., R. J. S. B. D. (2011) UCSD Molecule Pages Vitale, A., and Denecke, J. (1999) The Plant Cell Online 11, 615-628 Horiguchi, K., Hirano, T., Ueki, T., Hirakawa, K., and Fujimoto, J. (2009) Journal of hepato-biliary-pancreatic surgery 16, 171-177 Li, F., Sun, J. Y., Wang, J. Y., Du, S. L., Lu, W. Y., Liu, M., Xie, C., and Shi, J. Y. (2008) Journal of controlled release : official journal of the Controlled Release Society 131, 77-82 Inoue, T., Okada, H., Kobayashi, T., Watanabe, Y., Kanno, Y., Kopp, J. B., Nishida, T., Takigawa, M., Ueno, M., Nakamura, T., and Suzuki, H. (2003) FASEB J 17, 268-270 Kim, W. H., Matsumoto, K., Bessho, K., and Nakamura, T. (2005) Am J Pathol 166, 1017-1028 Taniyama, Y., Morishita, R., Aoki, M., Hiraoka, K., Yamasaki, K., Hashiya, N., Matsumoto, K., Nakamura, T., Kaneda, Y., and Ogihara, T. (2002) Hypertension 40, 47-53 Nishino, M., Iimuro, Y., Ueki, T., Hirano, T., and Fujimoto, J. (2008) Surgery 144, 374-384 Azuma, J., Taniyama, Y., Takeya, Y., Iekushi, K., Aoki, M., Dosaka, N., Matsumoto, K., Nakamura, T., Ogihara, T., and Morishita, R. (2006) Gene Ther 13, 1206-1213 Jiang, D., Jiang, Z., Han, F., Zhang, Y., and Li, Z. (2008) Eur J Appl Physiol 103, 489-493 Kanemura, H., Iimuro, Y., Takeuchi, M., Ueki, T., Hirano, T., Horiguchi, K., Asano, Y., and Fujimoto, J. (2008) Hepatol Res 38, 930-939 Xia, J. L., Dai, C., Michalopoulos, G. K., and Liu, Y. (2006) Am J Pathol 168, 1500-1512 Friedman, S. L. (2008) Nat Biotechnol 26, 399-400 Iimuro, Y., and Brenner, D. A. (2008) Pharm Res 25, 249-258 Siller-Lopez, F., Sandoval, A., Salgado, S., Salazar, A., Bueno, M., Garcia, J., Vera, J., Galvez, J., Hernandez, I., Ramos, M., Aguilar-Cordova, E., and Armendariz-Borunda, J. (2004) Gastroenterology 126, 1122-1133; discussion 1949 Bueno, M., Salgado, S., Beas-Zarate, C., and Armendariz-Borunda, J. (2006) J Gene Med 8, 1291-1299 Roderfeld, M., Weiskirchen, R., Wagner, S., Berres, M. L., Henkel, C., Grotzinger, J., Gressner, A. M., Matern, S., and Roeb, E. (2006) FASEB J 20, 444-454 109 86. 87. 88. 89. 90. 91. 92. 93. 94. 95. 96. 97. 98. 99. 100. 101. 102. 103. 104. 105. 106. 107. 108. 109. Jiang, W., Wang, J. Y., Yang, C. Q., Liu, W. B., Wang, Y. Q., and He, B. M. (2005) Chin Med J (Engl) 118, 192-197 Hu, Y. B., Li, D. G., and Lu, H. M. (2007) J Gene Med 9, 217-229 Qi, Z., Atsuchi, N., Ooshima, A., Takeshita, A., and Ueno, H. (1999) Proc Natl Acad Sci U S A 96, 2345-2349 Arias, M., Sauer-Lehnen, S., Treptau, J., Janoschek, N., Theuerkauf, I., Buettner, R., Gressner, A. M., and Weiskirchen, R. (2003) BMC Gastroenterol 3, 29 Kinoshita, K., Iimuro, Y., Otogawa, K., Saika, S., Inagaki, Y., Nakajima, Y., Kawada, N., Fujimoto, J., Friedman, S. L., and Ikeda, K. (2007) Gut 56, 706714 Chen, S. W., Zhang, X. R., Wang, C. Z., Chen, W. Z., Xie, W. F., and Chen, Y. X. (2008) Liver Int 28, 1446-1457 George, J., and Tsutsumi, M. (2007) Gene Ther 14, 790-803 Ghiassi-Nejad, Z., and Friedman, S. L. (2008) Expert review of gastroenterology & hepatology 2, 803-816 Stone, D., Liu, Y., Shayakhmetov, D., Li, Z. Y., Ni, S., and Lieber, A. (2007) J Virol 81, 4866-4871 Snoeys, J., Lievens, J., Wisse, E., Jacobs, F., Duimel, H., Collen, D., Frederik, P., and De Geest, B. (2007) Gene Ther 14, 604-612 Leopold, P. L., and Crystal, R. G. (2007) Adv Drug Deliv Rev 59, 810-821 Boussif, O., Lezoualc'h, F., Zanta, M. A., Mergny, M. D., Scherman, D., Demeneix, B., and Behr, J. P. (1995) Proc Natl Acad Sci U S A 92, 7297-7301 Habibullah, C. M., Syed, I. H., Qamar, A., and Taher-Uz, Z. (1994) Transplantation 58, 951-952 Blei, A. T. (2005) Liver transplantation : official publication of the American Association for the Study of Liver Diseases and the International Liver Transplantation Society, S30-34 Dai, H., Jiang, X., Leong, K. W., and Mao, H. Q. (2011) Human gene therapy 22, 873-878 Otsuka, M., Baru, M., Delriviere, L., Talpe, S., Nur, I., and Gianello, P. (2000) Journal of drug targeting 8, 267-279 Kuriyama, S., Yoshiji, H., Nakai, S., Deguchi, A., Uchida, N., Kimura, Y., Inoue, H., Kinekawa, F., Ogawa, M., Nonomura, T., Masaki, T., Kurokohchi, K., and Watanabe, S. (2005) Oncology reports 13, 69-74 Beljaars, L., Molema, G., Weert, B., Bonnema, H., Olinga, P., Groothuis, G. M., Meijer, D. K., and Poelstra, K. (1999) Hepatology 29, 1486-1493 Beljaars, L., Olinga, P., Molema, G., de Bleser, P., Geerts, A., Groothuis, G. M., Meijer, D. K., and Poelstra, K. (2001) Liver 21, 320-328 Beljaars, L., Molema, G., Schuppan, D., Geerts, A., De Bleser, P. J., Weert, B., Meijer, D. K., and Poelstra, K. (2000) J Biol Chem 275, 12743-12751 Sato, Y., Murase, K., Kato, J., Kobune, M., Sato, T., Kawano, Y., Takimoto, R., Takada, K., Miyanishi, K., Matsunaga, T., Takayama, T., and Niitsu, Y. (2008) Nat Biotechnol 26, 431-442 Iredale, J. P. (2001) Semin Liver Dis 21, 427-436 Blouin, A., Bolender, R. P., and Weibel, E. R. (1977) J Cell Biol 72, 441-455 Tilg, H., and Diehl, A. M. (2000) N Engl J Med 343, 1467-1476 110 110. 111. 112. 113. 114. 115. 116. 117. 118. 119. 120. 121. 122. 123. 124. 125. 126. 127. 128. 129. 130. 131. 132. 133. 134. 135. 136. 137. Guyot, C., Lepreux, S., Combe, C., Doudnikoff, E., Bioulac-Sage, P., Balabaud, C., and Desmouliere, A. (2006) Int J Biochem Cell Biol 38, 135151 Dooley, S., Delvoux, B., Lahme, B., Mangasser-Stephan, K., and Gressner, A. M. (2000) Hepatology 31, 1094-1106 Border, W. A., and Noble, N. A. (1994) N Engl J Med 331, 1286-1292 Franklin, T. J. (1997) Int J Biochem Cell Biol 29, 79-89 Stella, M. C., and Comoglio, P. M. (1999) Int J Biochem Cell Biol 31, 13571362 Inoue, H., Yokoyama, F., Kita, Y., Yoshiji, H., Tsujimoto, T., Deguchi, A., Nakai, S., Morishita, A., Uchida, N., Masaki, T., Watanabe, S., and Kuriyama, S. (2006) Int J Mol Med 17, 857-864 Florquin, S., and Rouschop, K. M. (2003) Kidney Int Suppl, S15-20 Munger, J. S., Harpel, J. G., Gleizes, P. E., Mazzieri, R., Nunes, I., and Rifkin, D. B. (1997) Kidney Int 51, 1376-1382 Wipff, P. J., and Hinz, B. (2008) Eur J Cell Biol 87, 601-615 Kondou, H., Mushiake, S., Etani, Y., Miyoshi, Y., Michigami, T., and Ozono, K. (2003) J Hepatol 39, 742-748 Breitkopf, K., Sawitza, I., Westhoff, J. H., Wickert, L., Dooley, S., and Gressner, A. M. (2005) Gut 54, 673-681 Hayashi, H., Sakai, K., Baba, H., and Sakai, T. (2012) Hepatology 55, 15621573 Scarpino, S., Di Napoli, A., Taraboletti, G., Cancrini, A., and Ruco, L. P. (2005) J Pathol 205, 50-56 Bezerra, J. A., Bugge, T. H., Melin-Aldana, H., Sabla, G., Kombrinck, K. W., Witte, D. P., and Degen, J. L. (1999) Proc Natl Acad Sci U S A 96, 1514315148 Waisman, D. M. (2003) Plasminogen: Structure, Activation and Regulation, Wang, H., Zhang, Y., and Heuckeroth, R. O. (2007) FEBS Lett 581, 30983104 Martinez-Rizo, A., Bueno-Topete, M., Gonzalez-Cuevas, J., and ArmendarizBorunda, J. (2010) Liver Int 30, 298-310 Ghosh, A. K., and Vaughan, D. E. (2012) J Cell Physiol 227, 493-507 Hu, P. F., Chen, H., Zhong, W., Lin, Y., Zhang, X., Chen, Y. X., and Xie, W. F. (2009) J Hepatol 51, 102-113 Pedrozo, H. A., Schwartz, Z., Robinson, M., Gomes, R., Dean, D. D., Bonewald, L. F., and Boyan, B. D. (1999) Endocrinology 140, 5806-5816 Zheng, G., and Harris, D. C. (2004) Kidney Int 66, 455-456 Hughes, R. D., Mitry, R. R., and Dhawan, A. (2012) Transplantation 93, 342347 310.1097/TP.1090b1013e31823b31872d31826 Ochiya, T., Yamamoto, Y., and Banas, A. (2010) Differentiation 79, 65-73 Seglen, P. O. (1976) Methods Cell Biol 13, 29-83 Vogel, S., Piantedosi, R., Frank, J., Lalazar, A., Rockey, D. C., Friedman, S. L., and Blaner, W. S. (2000) J Lipid Res 41, 882-893 Sato, Y., and Rifkin, D. B. (1989) J Cell Biol 109, 309-315 Longstaff, C. (1994) Blood Coagul Fibrinolysis 5, 537-542 Budinger, G. R., Mutlu, G. M., Eisenbart, J., Fuller, A. C., Bellmeyer, A. A., Baker, C. M., Wilson, M., Ridge, K., Barrett, T. A., Lee, V. Y., and Chandel, N. S. (2006) Proc Natl Acad Sci U S A 103, 4604-4609 111 138. 139. 140. 141. 142. 143. 144. 145. 146. 147. 148. 149. 150. 151. 152. 153. 154. 155. 156. 157. 158. 159. 160. 161. 162. van't Veer, M. B., Brooijmans, A. M., Langerak, A. W., Verhaaf, B., Goudswaard, C. S., Graveland, W. J., van Lom, K., and Valk, P. J. (2006) Haematologica 91, 56-63 Bhandari, R. N., Riccalton, L. A., Lewis, A. L., Fry, J. R., Hammond, A. H., Tendler, S. J., and Shakesheff, K. M. (2001) Tissue Eng 7, 345-357 Abu-Absi, S. F., Hansen, L. K., and Hu, W. S. (2004) Cytotechnology 45, 125140 Murphy-Ullrich, J. E., Schultz-Cherry, S., and Hook, M. (1992) Mol Biol Cell 3, 181-188 Nishimura, K., Matsumiya, K., Miura, H., Tsujimura, A., Nonomura, N., Matsumoto, K., Nakamura, T., and Okuyama, A. (2003) Int J Androl 26, 175179 Yang, J., Dai, C., and Liu, Y. (2005) J Am Soc Nephrol 16, 68-78 Anonick, P. K., Yoo, J. K., Webb, D. J., and Gonias, S. L. (1993) Biochem J 289 ( Pt 3), 903-909 Bonnefoy, A., and Legrand, C. (2000) Thromb Res 98, 323-332 Hogg, P. J., Stenflo, J., and Mosher, D. F. (1992) Biochemistry 31, 265-269 Olsen, A. L., Bloomer, S. A., Chan, E. P., Gaca, M. D., Georges, P. C., Sackey, B., Uemura, M., Janmey, P. A., and Wells, R. G. (2011) Am J Physiol Gastrointest Liver Physiol 301, G110-118 Scotton, C. J., and Chambers, R. C. (2007) Chest 132, 1311-1321 Shek, F. W., and Benyon, R. C. (2004) Eur J Gastroenterol Hepatol 16, 123126 Schuppan, D., and Pinzani, M. (2012) J Hepatol 56 Suppl 1, S66-74 Fallowfield, J. A. (2011) Am J Physiol Gastrointest Liver Physiol 300, G709715 Poelstra, K., and Schuppan, D. (2011) J Hepatol 55, 726-728 Hu, Z., Evarts, R. P., Fujio, K., Marsden, E. R., and Thorgeirsson, S. S. (1993) Am J Pathol 142, 1823-1830 Ebrahimkhani, M. R., Oakley, F., Murphy, L. B., Mann, J., Moles, A., Perugorria, M. J., Ellis, E., Lakey, A. F., Burt, A. D., Douglass, A., Wright, M. C., White, S. A., Jaffre, F., Maroteaux, L., and Mann, D. A. (2011) Nat Med 17, 1668-1673 Hirata, K., Ogata, I., Ohta, Y., and Fujiwara, K. (1989) J Pathol 158, 157-165 Wang, Z. X., Wang, Z. G., Ran, H. T., Ren, J. L., Zhang, Y., Li, Q., Zhu, Y. F., and Ao, M. (2009) Clin Imaging 33, 454-461 Tabata, Y., and Ikada, Y. (1988) Biomaterials 9, 356-362 Chouly, C., Pouliquen, D., Lucet, I., Jeune, J., and Jallet, P. (1996) Journal of microencapsulation 13, 245-255 Jiang, X., Dai, H., Ke, C. Y., Mo, X., Torbenson, M. S., Li, Z., and Mao, H. Q. (2007) Journal of controlled release : official journal of the Controlled Release Society 122, 297-304 Tai, D. C., Tan, N., Xu, S., Kang, C. H., Chia, S. M., Cheng, C. L., Wee, A., Wei, C. L., Raja, A. M., Xiao, G., Chang, S., Rajapakse, J. C., So, P. T., Tang, H. H., Chen, C. S., and Yu, H. (2009) J Biomed Opt 14, 044013 Wisse, E., Braet, F., Duimel, H., Vreuls, C., Koek, G., Olde Damink, S. W., van den Broek, M. A., De Geest, B., Dejong, C. H., Tateno, C., and Frederik, P. (2010) World J Gastroenterol 16, 2851-2866 Martinez-Hernandez, A., and Martinez, J. (1991) Hepatology 14, 864-874 112 163. 164. 165. 166. 167. 168. 169. 170. 171. 172. 173. 174. 175. 176. 177. 178. 179. 180. 181. 182. 183. 184. 185. 186. Schaffner, F., and Poper, H. (1963) Gastroenterology 44, 239-242 DeLeve, L. D. (2007) Semin Liver Dis 27, 390-400 Anderson, N., and Borlak, J. (2008) Mechanisms of Toxic Liver Injury. in Hepatotoxicity: From Genomics to In Vitro and In Vivo Models (Sahu, S. C. ed.), John Wiley & Sons. pp 191-286 Heinloth, A. N., Irwin, R. D., Boorman, G. A., Nettesheim, P., Fannin, R. D., Sieber, S. O., Snell, M. L., Tucker, C. J., Li, L., Travlos, G. S., Vansant, G., Blackshear, P. E., Tennant, R. W., Cunningham, M. L., and Paules, R. S. (2004) Toxicol Sci 80, 193-202 Matsuzaki, S., Onda, M., Tajiri, T., and Kim, D. Y. (1997) Hepatology 25, 828-832 Iredale, J. (2008) Clin Med 8, 29-31 Adrian, J. E., Poelstra, K., Scherphof, G. L., Meijer, D. K. F., van LoenenWeemaes, A.-m., Reker-Smit, C., Morselt, H. W. M., Zwiers, P., and Kamps, J. A. A. M. (2007) Journal of Pharmacology and Experimental Therapeutics 321, 536-543 Son, G., Hines, I. N., Lindquist, J., Schrum, L. W., and Rippe, R. A. (2009) Hepatology 50, 1512-1523 Xue, F., Takahara, T., Yata, Y., Kuwabara, Y., Shinno, E., Nonome, K., Minemura, M., Takahara, S., Li, X., Yamato, E., and Watanabe, A. (2003) Gut 52, 694-700 Dai, H., Jiang, X., Tan, G. C., Chen, Y., Torbenson, M., Leong, K. W., and Mao, H. Q. (2006) Int J Nanomedicine 1, 507-522 Otsuka, M., Baru, M., Delrivière, L., Talpe, S., Nur, I., and Gianello, P. (2000) Journal of drug targeting 8, 267-279 Derynck, R., Chen, R. H., Ebner, R., Filvaroff, E. H., and Lawler, S. (1994) Princess Takamatsu Symp 24, 264-275 Massague, J., and Weis-Garcia, F. (1996) Cancer Surv 27, 41-64 Heldin, C. H., Miyazono, K., and ten Dijke, P. (1997) Nature 390, 465-471 Sun, Y., Liu, X., Ng-Eaton, E., Lodish, H. F., and Weinberg, R. A. (1999) Proc Natl Acad Sci U S A 96, 12442-12447 Esposito, C., Parrilla, B., Cornacchia, F., Grosjean, F., Mangione, F., Serpieri, N., Valentino, R., Villa, L., Arra, M., Esposito, V., and Dal Canton, A. (2009) Growth Factors 27, 173-180 Liu, Y. (2004) Am J Physiol Renal Physiol 287, F7-16 Soto-Gutierrez, A., Navarro-Alvarez, N., Yagi, H., and Yarmush, M. L. (2009) Curr Opin Organ Transplant 14, 667-673 Fitzpatrick, E., Mitry, R. R., and Dhawan, A. (2009) J Intern Med 266, 339357 Dhawan, A., Mitry, R. R., and Hughes, R. D. (2006) J Inherit Metab Dis 29, 431-435 Bumgardner, G. L., and Orosz, C. G. (2000) Immunol Rev 174, 260-279 Takahashi, K., and Yamanaka, S. (2006) Cell 126, 663-676 Nakagawa, M., Koyanagi, M., Tanabe, K., Takahashi, K., Ichisaka, T., Aoi, T., Okita, K., Mochiduki, Y., Takizawa, N., and Yamanaka, S. (2008) Nat Biotech 26, 101-106 Roelandt, P., Pauwelyn, K. A., Sancho-Bru, P., Subramanian, K., Bose, B., Ordovas, L., Vanuytsel, K., Geraerts, M., Firpo, M., De Vos, R., Fevery, J., Nevens, F., Hu, W. S., and Verfaillie, C. M. (2010) PLoS One 5, e12101 113 187. Logan, C. Y., and Nusse, R. (2004) Annual Review of Cell and Developmental Biology 20, 781-810 114 [...]... 41 , 882-893 Sato, Y., and Rifkin, D B (1989) J Cell Biol 109, 309-315 Longstaff, C (19 94) Blood Coagul Fibrinolysis 5, 537- 542 Budinger, G R., Mutlu, G M., Eisenbart, J., Fuller, A C., Bellmeyer, A A., Baker, C M., Wilson, M., Ridge, K., Barrett, T A., Lee, V Y., and Chandel, N S (2006) Proc Natl Acad Sci U S A 103, 46 04- 4609 111 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 1 54. .. 12 743 -12751 Sato, Y., Murase, K., Kato, J., Kobune, M., Sato, T., Kawano, Y., Takimoto, R., Takada, K., Miyanishi, K., Matsunaga, T., Takayama, T., and Niitsu, Y (2008) Nat Biotechnol 26, 43 1 -44 2 Iredale, J P (2001) Semin Liver Dis 21, 42 7 -43 6 Blouin, A., Bolender, R P., and Weibel, E R (1977) J Cell Biol 72, 44 1 -45 5 Tilg, H., and Diehl, A M (2000) N Engl J Med 343 , 146 7- 147 6 110 110 111 112 113 1 14. .. 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 Mallat, A., Hezode, C., and Lotersztajn, S (2008) J Hepatol 48 , 657-665 Knittel, T., Kobold, D., Piscaglia, F., Saile, B., Neubauer, K., Mehde, M., Timpl, R., and Ramadori, G (1999) Histochemistry and cell biology 112, 38 740 1 Popper, H., and Uenfriend, S (1970) Am J Med 49 , 707-721 Ley, K (1996) Cardiovasc Res 32, 733- 742 Gressner,... similar to mature hepatocytes (Fig 47 A) and significant increases in the hepatocytespecific genes such as albumin, AAT, HNF4A and CYP3A4 (Fig 47 B) A Feeder culture Feeder-free culture 1 04 B Figure 47 : Expression of hepatocyte-like markers in differentiated hiPSCs by day 20 Photomicrographs showing hepatocyte-like morphology of differentiated hiPSCs (A; upper panel: 4x magnification, lower panel: 40 x... Derynck, R., Chen, R H., Ebner, R., Filvaroff, E H., and Lawler, S (19 94) Princess Takamatsu Symp 24, 2 64- 275 Massague, J., and Weis-Garcia, F (1996) Cancer Surv 27, 41 - 64 Heldin, C H., Miyazono, K., and ten Dijke, P (1997) Nature 390, 46 5 -47 1 Sun, Y., Liu, X., Ng-Eaton, E., Lodish, H F., and Weinberg, R A (1999) Proc Natl Acad Sci U S A 96, 1 244 2-1 244 7 Esposito, C., Parrilla, B., Cornacchia, F., Grosjean,... 117, 539- 548 Schnabl, B., Scholten, D., and Brenner, D A (2008) Nat Clin Pract Gastroenterol Hepatol 5, 49 6 -49 7 Friedman, S L., and Bansal, M B (2006) Hepatology 43 , S82-88 Everhart, J E., and Ruhl, C E (2009) Gastroenterology 136, 11 34- 1 144 Lim, Y S., and Kim, W R (2008) Clin Liver Dis 12, 733- 746 , vii Kisseleva, T., and Brenner, D A (2007) J Gastroenterol Hepatol 22 Suppl 1, S73-78 107 34 35 36 37... 170 171 172 173 1 74 175 176 177 178 179 180 181 182 183 1 84 185 186 Schaffner, F., and Poper, H (1963) Gastroenterology 44 , 239- 242 DeLeve, L D (2007) Semin Liver Dis 27, 390 -40 0 Anderson, N., and Borlak, J (2008) Mechanisms of Toxic Liver Injury in Hepatotoxicity: From Genomics to In Vitro and In Vivo Models (Sahu, S C ed.), John Wiley & Sons pp 191-286 Heinloth, A N., Irwin, R D., Boorman, G A.,... Y., Otogawa, K., Saika, S., Inagaki, Y., Nakajima, Y., Kawada, N., Fujimoto, J., Friedman, S L., and Ikeda, K (2007) Gut 56, 7067 14 Chen, S W., Zhang, X R., Wang, C Z., Chen, W Z., Xie, W F., and Chen, Y X (2008) Liver Int 28, 144 6- 145 7 George, J., and Tsutsumi, M (2007) Gene Ther 14, 790-803 Ghiassi-Nejad, Z., and Friedman, S L (2008) Expert review of gastroenterology & hepatology 2, 803-816 Stone,... Walters, D G (2009) Methods Mol Biol 48 1, 47 -58 Friedman, S L (2000) J Biol Chem 275, 2 247 -2250 Gandhi, C R (2011) Stellate Cells in Molecular Pathology of Liver Diseases (Monga, S P S ed.), Springer pp 53-79 Gandhi, C R (2011) Kupffer Cells in Molecular Pathology of Liver Diseases (Monga, S P S ed.), Springer pp 81-95 Shibayama, Y., and Nakata, K (1985) Hepatology 5, 643 - 648 Ueno, T., Bioulac-Sage, P.,... control (Normalized to GAPDH) B Day 6 100 Day 10 80 60 40 20 10 5 0 -5 -10 Oct3 /4 Foxa2 T Pax6 Figure 46 : Definitive endoderm induction of hiPSCs Morphology of iPSF4 cell colonies in feeder and feeder-free configurations (A; 4x magnification) At day 6 and day 10, the feeder-free cultures show a gradual progression in definite endoderm marker Foxa2 The next phase of hepatic induction leads to highly specific . Martinez, J. (1991) Hepatology 14, 8 64- 8 74 ! 113! 163. Schaffner, F., and Poper, H. (1963) Gastroenterology 44 , 239- 242 1 64. DeLeve, L. D. (2007) Semin Liver Dis 27, 390 -40 0 165. Anderson, N.,. (2001) Semin Liver Dis 21, 42 7 -43 6 108. Blouin, A., Bolender, R. P., and Weibel, E. R. (1977) J Cell Biol 72, 44 1 -45 5 109. Tilg, H., and Diehl, A. M. (2000) N Engl J Med 343 , 146 7- 147 6 ! 111! 110 comparable to the levels of naïve control rats (Fig. 40 ) demonstrating the HGF-based up -regulation of SnoN even in animal models of fibrosis. Additionally, the HSC-targeted delivery appeared to have