Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 210 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
210
Dung lượng
3,38 MB
Nội dung
DEVELOPMENT OF LIVE BACTERIAL SYSTEMS FOR PRESENTATION OF DENGUE EDIII TO THE MUCOSAL IMMUNE SYSTEM LAM JIAN HANG NATIONAL UNIVERSITY OF SINGAPORE 2014 DEVELOPMENT OF LIVE BACTERIAL SYSTEMS FOR PRESENTATION OF DENGUE EDIII TO THE MUCOSAL IMMUNE SYSTEM LAM JIAN HANG B.SC (HONS), NUS A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF MICROBIOLOGY NATIONAL UNIVERSITY OF SINGAPORE 2014 DECLARATION I hereby declare that this thesis is my original work and it has been written by me in its entirety I have duly acknowledged all the sources of information which have been used in the thesis This thesis has also not been submitted for any degree in any university previously _ Lam Jian Hang 20 August 2014 PUBLICATIONS Hoo, R., Lam, J.H., Huot, L., Pant, A., Li, R., Hot, D., Alonso, S (2014) Evidence for a role of the polysaccharide capsule transport proteins in pertussis pathogenesis PLoS One 9(12): e115243 Ng, J.K., Zhang, S.L., Tan, H.C., Yan, B., Maria Martinez Gomez, J., Tan, W.Y., Lam, J.H., Tan, G.K., Ooi, E.E., Alonso, S (2014) First experimental in vivo model of enhanced dengue disease severity through maternally acquired heterotypic dengue antibodies PLoS Pathog 10(4): e1004031 PRESENTATION AT INTERNATIONAL CONFERENCES Lam, J.H., Alonso, S (2012) Expression and delivery of dengue EDIII by Bordetella pertussis BPZE1 via the BrkA autotransporter Oral presentation prize In: 4th Australasian Vaccines and Immunotherapeutics Development Meeting, Brisbane, Australia i ACKNOWLEDGEMENTS I would like express to my heartfelt thanks to my supervisor Assoc Prof Sylvie Alonso for first giving me the chance to join her lab in 2008, and subsequently offering invaluable advice, guidance and opportunities to develop my mind and skills as a researcher Over the years, I have known her to be the most patient and encouraging supervisor I could ask for and, once again, I offer my sincere appreciation for all she has taught me To my lab mates, past and present, I thank you all for making the working environment lively, entertaining, exciting and, frequently, edible I really treasure the friendships that we’ve built and the time we spent as a lab A big thank you to all the names listed in Table A below :) Past Jowin Ng Kai Wei Regina Hoo May Ling Annabelle Lim Rui Fen Xu Wei Zhen Grace Tan Kai Xin Khong Wei Xin Zarina Li Rui Aakanksha Present Lin Wenwei Julia Maria Martinez Gomez Michelle Ang Vanessa Koh Emily Ang Ong Li Ching Chionh Yok Hian Ng Sze Wai Issac Too Anna Ker Yeo Huimin Eshele Table A: List of awesome SA lab mates encountered over the course of my PhD candidature I would also like to express my appreciation to my TAC Dr Ooi Eng Eong and Dr Ratha Mahendran for offering useful comments and advice during our meeting Lastly, I would like to express my deepest gratitude to my parents and my sister who have been hugely supportive and understanding when I had to shift my residential address to CeLS during my most intensive months None of this work would have been possible without them ii TABLE OF CONTENTS ACKNOWLEDGEMENTS ii TABLE OF CONTENTS iii SUMMARY xii LIST OF TABLES xiv LIST OF FIGURES xv LIST OF ABBREVIATIONS xviii CHAPTER 1: INTRODUCTION 1.1 DENGUE: VIROLOGY, DISEASE AND EPIDEMIOLOGY 1.1.1 Virion structure and assembly 1.1.2 Disease and epidemiology 1.2 THE ADAPATIVE IMMUNE RESPONSE FOLLOWING A DENV INFECTION 1.2.1 The anti-DENV immune response in protection and disease enhancement 1.2.1.1 Antibodies 1.2.1.1.1 Antibody-dependent enhancement (ADE) of infection 1.2.1.2 1.3 T cells PROSPECTS FOR A DENGUE VACCINE 10 1.3.1 Challenges of vaccine development 10 1.3.1.1 Unbalanced immune responses 11 1.3.1.2 Immune correlates of protection 11 1.3.1.3 Animal model 12 1.3.2 Vaccine candidates in development 15 1.3.2.1 LATVs 15 1.3.2.2 Subunit vaccines as an alternative 15 1.4 DENV ENVELOPE GLYCOPROTEIN 19 1.4.1 Structural and serological characteristics 19 1.4.2 EDIII as a vaccine candidate: some considerations 20 1.4.2.1 20 Production and protective efficacy iii 1.4.2.2 Relevance to the human disease 20 1.4.2.3 Quality of the anti-EDIII antibody response 21 1.5 LIVE BACTERIAL VECTORS FOR ANTIGEN DELIVERY 22 1.5.1 Rationale for using a live bacterial vector 22 1.5.2 Attenuated pathogens 24 1.5.2.1 B pertussis as a live vector for nasal delivery of heterologous antigens 25 1.5.2.1.1 Resurgence of pertussis despite vaccination 25 1.5.2.1.2 Developing a live attenuated B pertussis vaccine 26 1.5.2.1.3 Virulence factors 26 1.5.2.1.3.1 FHA 27 1.5.2.1.3.2 PTX 28 1.5.2.1.3.3 BrkA 30 1.5.2.1.4 B pertussis as a live delivery system 31 1.5.2.1.4.1 Integration of foreign genes into B pertussis genome 31 1.5.2.1.4.2 Virulence factors as carriers for antigen presentation 33 1.5.3 Lactic acid bacteria 1.5.3.1 36 L lactis as a live vector for delivery of heterologous antigens 36 1.5.3.1.1 Characteristics of L lactis 36 1.5.3.1.2 The L lactis molecular toolbox 38 1.5.3.1.2.1 Promoters 38 1.5.3.1.2.1.1 Constitutive promoters 38 1.5.3.1.2.1.2 Inducible promoters 39 1.5.3.1.2.2 41 Protein targeting 1.5.3.1.2.2.1 Cytoplasmic expression 41 1.5.3.1.2.2.2 Secretion 41 1.5.3.1.2.2.3 Cell wall associated 42 1.5.3.1.3 46 1.6 L lactis as live mucosal vaccine HETEROLOGOUS PRODUCTION OF EDIII IN B PERTUSSIS AND L LACTIS – SOME CONSIDERATIONS 48 1.6.1 B pertussis – a gram negative organism iv 48 1.6.2 L lactis – a gram positive organism 49 1.7 51 OBJECTIVES OF THIS PROJECT CHAPTER 2: MATERIALS AND METHODS 2.1 52 ASSESSING THE SUITABILITY OF EDIII AS A SUBUNIT VACCINE CANDIDATE 53 2.1.1 Escherichia coli work 53 2.1.1.1 E coli strains, plasmids and culture conditions 53 2.1.1.1.1 Bacterial strains and plasmids 53 2.1.1.1.2 Culture conditions 54 2.1.1.2 Molecular biology 54 2.1.1.2.1 List of primers 54 2.1.1.2.2 DNA amplification 54 2.1.1.2.3 Restriction enzyme digest, agarose gel electrophoresis, gel extraction and generation of recombinant DNA 2.1.1.2.4 55 E coli transformation, plasmid extraction and DNA sequencing 2.1.1.3 55 Production and purification of recombinant EDIII (rEDIII) 55 2.1.1.3.1 Expression of ediii by IPTG induction 55 2.1.1.3.2 Inclusion body isolation 55 2.1.1.3.3 Solubilisation of inclusion body and refolding of rEDIII 56 2.1.1.3.4 Purification of rEDIII using Ni-NTA chromatography 56 2.1.2 Animal work 57 2.1.2.1 Mouse strains 57 2.1.2.2 Subcutaneous injection 57 2.1.2.3 Assessment of serum antibody responses 57 2.1.2.3.1 Enzyme-linked immunosorbent assay (ELISA) 57 2.1.2.3.1.1 Preparation of coating antigens 57 2.1.2.3.1.2 Indirect ELISA 58 2.1.3 Virus work 2.1.3.1 58 Virus strain, cell lines, growth conditions and virus quantitation 58 v 2.1.3.1.1 Virus strain and cell lines 58 2.1.3.1.2 Growth conditions 59 2.1.3.1.3 Virus quantitation 59 2.1.3.1.4 Plaque reduction neutralisation test (PRNT) 60 2.1.4 Statistical analysis 2.2 60 BORDETELLA PERTUSSIS AS A LIVE VECTOR FOR THE PRODUCTION AND MUCOSAL DELIVERY OF DENV2 EDIII 61 2.2.1 Escherichia coli work 61 2.2.1.1 E coli strains, plasmids and culture conditions 61 2.2.1.1.1 Bacterial strains and plasmids 61 2.2.1.1.2 Culture conditions 63 2.2.1.2 Molecular biology 63 2.2.1.2.1 List of primers 63 2.2.1.2.2 Polymerase chain reaction (PCR) 64 2.2.1.2.2.1 DNA amplification for cloning work 64 2.2.1.2.2.2 Colony PCR screening 65 2.2.1.2.3 Restriction enzyme digest 65 2.2.1.2.4 Agarose gel electrophoresis 65 2.2.1.2.5 Gel extraction 66 2.2.1.2.6 Generation of recombinant DNA 66 2.2.1.2.7 E coli heat shock transformation 66 2.2.1.2.8 Plasmid extraction 67 2.2.1.2.9 DNA Sequencing 67 2.2.2 Bordetella pertussis work 67 2.2.2.1 B pertussis strains and culture conditions 67 2.2.2.1.1 Bacterial strains 67 2.2.2.1.2 Culture conditions 68 2.2.2.2 Bacterial transformation 69 2.2.2.2.1 Preparation of electrocompetent cells 69 2.2.2.2.2 Electroporation 69 2.2.2.2.3 Double homologous recombination 69 2.2.2.3 Analysis of protein production 70 2.2.2.3.1 Western blot 70 vi 2.2.2.3.1.1 Preparation of bacterial lysate and culture supernatant 2.2.2.3.1.2 70 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) 70 2.2.2.3.1.3 Coomassie Blue staining 71 2.2.2.3.1.4 Electroblotting 71 2.2.2.3.1.5 Immunoblotting 71 2.2.2.3.2 Flow cytometry 72 2.2.2.4 Animal work 73 2.2.2.4.1 Mouse strains 73 2.2.2.4.2 Intranasal inoculation 73 2.2.2.4.3 Lung colonisation study 73 2.2.2.4.4 Immunisation study 74 2.2.2.4.4.1 Immunisation and blood collection schedule 74 2.2.2.4.4.2 Assessment of serum IgG response by enzyme-linked immunosorbent assay (ELISA) 74 2.2.2.4.4.2.1 Preparation of coating antigens 74 2.2.2.4.4.2.2 Indirect ELISA 74 2.2.3 Statistical analysis 75 2.2.4 Virus work 75 2.2.4.1 Virus strain, cell lines, growth conditions, virus quantitation and PRNT 2.3 75 LACTOCOCCUS LACTIS AS A LIVE VECTOR FOR THE PRODUCTION AND MUCOSAL DELIVERY OF DENV2 EDIII 76 2.3.1 Escherichia coli work 76 2.3.1.1 E coli strains, plasmids and culture conditions 76 2.3.1.1.1 Bacterial strains and plasmids 76 2.3.1.1.2 Culture conditions 77 2.3.1.2 Molecular biology 78 2.3.1.2.1 List of primers 78 2.3.1.2.2 DNA amplification and colony PCR screening 79 2.3.1.2.3 Restriction enzyme digest, agarose gel electrophoresis, gel extraction and generation vii References 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 challenge in mice and rhesus monkeys by passively transferred humanized antibody J Virol, 2007 81(23): p 12766-74 Teoh, E.P., et al., The structural basis for serotype-specific neutralization of dengue virus by a human antibody Sci Transl Med, 2012 4(139): p 139ra83 Pierson, T.C., et al., Structural insights into the mechanisms of antibody-mediated neutralization of flavivirus infection: implications for vaccine development Cell Host Microbe, 2008 4(3): p 229-38 Halstead, S.B., et al., Intrinsic antibody-dependent enhancement of microbial infection in macrophages: disease regulation by immune complexes Lancet Infect Dis, 2010 10(10): p 712-22 Zellweger, R.M., T.R Prestwood, and S Shresta, Enhanced infection of liver sinusoidal endothelial cells in a mouse model of antibodyinduced severe dengue disease Cell Host Microbe, 2010 7(2): p 12839 Balsitis, S.J., et al., Lethal antibody enhancement of dengue disease in mice is prevented by Fc modification PLoS Pathog, 2010 6(2): p e1000790 Vaughn, D.W., et al., Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity J Infect Dis, 2000 181(1): p 2-9 Libraty, D.H., et al., Differing influences of virus burden and immune activation on disease severity in secondary dengue-3 virus infections J Infect Dis, 2002 185(9): p 1213-21 Libraty, D.H., et al., A prospective nested case-control study of Dengue in infants: rethinking and refining the antibody-dependent enhancement dengue hemorrhagic fever model PLoS Med, 2009 6(10): p e1000171 Rivino, L., et al., Differential targeting of viral components by CD4+ versus CD8+ T lymphocytes in dengue virus infection J Virol, 2013 87(5): p 2693-706 Mongkolsapaya, J., et al., Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever Nat Med, 2003 9(7): p 921-7 Mangada, M.M and A.L Rothman, Altered cytokine responses of dengue-specific CD4+ T cells to heterologous serotypes J Immunol, 2005 175(4): p 2676-83 Green, S., et al., Early immune activation in acute dengue illness is related to development of plasma leakage and disease severity J Infect Dis, 1999 179(4): p 755-62 Tracey, K.J and A Cerami, Tumor necrosis factor: a pleiotropic cytokine and therapeutic target Annu Rev Med, 1994 45: p 491-503 Cardier, J.E., et al., Proinflammatory factors present in sera from patients with acute dengue infection induce activation and apoptosis of human microvascular endothelial cells: possible role of TNF-alpha in endothelial cell damage in dengue Cytokine, 2005 30(6): p 359-65 Kurane, I., A Meager, and F.A Ennis, Dengue virus-specific human T cell clones Serotype crossreactive proliferation, interferon gamma production, and cytotoxic activity J Exp Med, 1989 170(3): p 763-75 167 References 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 Bukowski, J.F., et al., Dengue virus-specific cross-reactive CD8+ human cytotoxic T lymphocytes J Virol, 1989 63(12): p 5086-91 Yauch, L.E., et al., A protective role for dengue virus-specific CD8+ T cells J Immunol, 2009 182(8): p 4865-73 Yauch, L.E., et al., CD4+ T cells are not required for the induction of dengue virus-specific CD8+ T cell or antibody responses but contribute to protection after vaccination J Immunol, 2010 185(9): p 5405-16 Weiskopf, D., et al., Comprehensive analysis of dengue virus-specific responses supports an HLA-linked protective role for CD8+ T cells Proc Natl Acad Sci U S A, 2013 110(22): p E2046-53 Crill, W.D., et al., Humoral immune responses of dengue fever patients using epitope-specific serotype-2 virus-like particle antigens PLoS One, 2009 4(4): p e4991 Durbin, A.P and S.S Whitehead, Next-generation dengue vaccines: novel strategies currently under development Viruses, 2011 3(10): p 1800-14 Coller, B.A., et al., The development of recombinant subunit envelopebased vaccines to protect against dengue virus induced disease Vaccine, 2011 29(42): p 7267-75 Durbin, A.P., et al., A single dose of any of four different live attenuated tetravalent dengue vaccines is safe and immunogenic in flavivirus-naive adults: a randomized, double-blind clinical trial J Infect Dis, 2013 207(6): p 957-65 Plotkin, S.A., Correlates of protection induced by vaccination Clin Vaccine Immunol, 2010 17(7): p 1055-65 Clements, D.E., et al., Development of a recombinant tetravalent dengue virus vaccine: immunogenicity and efficacy studies in mice and monkeys Vaccine, 2010 28(15): p 2705-15 Sabchareon, A., et al., Protective efficacy of the recombinant, liveattenuated, CYD tetravalent dengue vaccine in Thai schoolchildren: a randomised, controlled phase 2b trial Lancet, 2012 380(9853): p 1559-67 Watanaveeradej, V., et al., Safety and immunogenicity of a tetravalent live-attenuated dengue vaccine in flavivirus-naive infants Am J Trop Med Hyg, 2011 85(2): p 341-51 Endy, T.P., et al., Relationship of preexisting dengue virus (DV) neutralizing antibody levels to viremia and severity of disease in a prospective cohort study of DV infection in Thailand J Infect Dis, 2004 189(6): p 990-1000 Clark, K.B., et al., Can non-human primates serve as models for investigating dengue disease pathogenesis? Front Microbiol, 2013 4: p 305 Zompi, S and E Harris, Animal models of dengue virus infection Viruses, 2012 4(1): p 62-82 Yauch, L.E and S Shresta, Mouse models of dengue virus infection and disease Antiviral Res, 2008 80(2): p 87-93 Johnson, A.J and J.T Roehrig, New mouse model for dengue virus vaccine testing J Virol, 1999 73(1): p 783-6 168 References 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 Shresta, S., et al., Murine model for dengue virus-induced lethal disease with increased vascular permeability J Virol, 2006 80(20): p 10208-17 Tan, G.K., et al., A non mouse-adapted dengue virus strain as a new model of severe dengue infection in AG129 mice PLoS Negl Trop Dis, 2010 4(4): p e672 Tan, G.K., et al., Subcutaneous infection with non-mouse adapted Dengue virus D2Y98P strain induces systemic vascular leakage in AG129 mice Ann Acad Med Singapore, 2011 40(12): p 523-32 Ng, J.K., et al., First experimental in vivo model of enhanced dengue disease severity through maternally acquired heterotypic dengue antibodies PLoS Pathog, 2014 10(4): p e1004031 Bente, D.A., et al., Dengue fever in humanized NOD/SCID mice J Virol, 2005 79(21): p 13797-9 Kuruvilla, J.G., et al., Dengue virus infection and immune response in humanized RAG2(-/-)gamma(c)(-/-) (RAG-hu) mice Virology, 2007 369(1): p 143-52 Jaiswal, S., et al., Dengue virus infection and virus-specific HLA-A2 restricted immune responses in humanized NOD-scid IL2rgammanull mice PLoS One, 2009 4(10): p e7251 Jaiswal, S., et al., Enhanced humoral and HLA-A2-restricted dengue virus-specific T-cell responses in humanized BLT NSG mice Immunology, 2012 136(3): p 334-43 Thomas, S.J., et al., A phase II, randomized, safety and immunogenicity study of a re-derived, live-attenuated dengue virus vaccine in healthy adults Am J Trop Med Hyg, 2013 88(1): p 73-88 Osorio, J.E., et al., Development of DENVax: a chimeric dengue-2 PDK-53-based tetravalent vaccine for protection against dengue fever Vaccine, 2011 29(42): p 7251-60 Guy, B., et al., From research to phase III: preclinical, industrial and clinical development of the Sanofi Pasteur tetravalent dengue vaccine Vaccine, 2011 29(42): p 7229-41 Wright, P.F., et al., Phase trial of the dengue virus type vaccine candidate rDEN4{Delta}30-4995 in healthy adult volunteers Am J Trop Med Hyg, 2009 81(5): p 834-41 Sun, W., et al., Vaccination of human volunteers with monovalent and tetravalent live-attenuated dengue vaccine candidates Am J Trop Med Hyg, 2003 69(6 Suppl): p 24-31 Sun, W., et al., Phase clinical trial of three formulations of tetravalent live-attenuated dengue vaccine in flavivirus-naive adults Hum Vaccin, 2009 5(1): p 33-40 Dejnirattisai, W., et al., Cross-reacting antibodies enhance dengue virus infection in humans Science, 2010 328(5979): p 745-8 Simmons, M., et al., Evaluation of the protective efficacy of a recombinant dengue envelope B domain fusion protein against dengue virus infection in mice Am J Trop Med Hyg, 1998 58(5): p 655-62 Kelly, E.P., et al., Purified dengue virus envelope glycoprotein aggregates produced by baculovirus are immunogenic in mice Vaccine, 2000 18(23): p 2549-59 169 References 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 Batra, G., et al., Pichia pastoris-expressed dengue virus type envelope domain III elicits virus-neutralizing antibodies J Virol Methods, 2010 167(1): p 10-6 Beckett, C.G., et al., Evaluation of a prototype dengue-1 DNA vaccine in a Phase clinical trial Vaccine, 2011 29(5): p 960-8 Lazo, L., et al., A vaccine formulation consisting of nucleocapsid-like particles from Dengue-2 and the fusion protein P64k-domain III from Dengue-1 induces a protective immune response against the homologous serotypes in mice Acta Trop, 2012 124(2): p 107-12 Mani, S., et al., Pichia pastoris-expressed dengue envelope forms virus-like particles without pre-membrane protein and induces high titer neutralizing antibodies PLoS One, 2013 8(5): p e64595 Ramanathan, M.P., et al., Development of a novel DNA SynCon tetravalent dengue vaccine that elicits immune responses against four serotypes Vaccine, 2009 27(46): p 6444-53 Porter, K.R., et al., Immunogenicity and protective efficacy of a vaxfectin-adjuvanted tetravalent dengue DNA vaccine Vaccine, 2012 30(2): p 336-41 Khanam, S., et al., An adenovirus type (AdV5) vector encoding an envelope domain III-based tetravalent antigen elicits immune responses against all four dengue viruses in the presence of prior AdV5 immunity Vaccine, 2009 27(43): p 6011-21 Lai, C.Y., et al., Antibodies to envelope glycoprotein of dengue virus during the natural course of infection are predominantly cross-reactive and recognize epitopes containing highly conserved residues at the fusion loop of domain II J Virol, 2008 82(13): p 6631-43 Modis, Y., et al., Variable surface epitopes in the crystal structure of dengue virus type envelope glycoprotein J Virol, 2005 79(2): p 1223-31 Crill, W.D and J.T Roehrig, Monoclonal antibodies that bind to domain III of dengue virus E glycoprotein are the most efficient blockers of virus adsorption to Vero cells J Virol, 2001 75(16): p 7769-73 Sukupolvi-Petty, S., et al., Type- and subcomplex-specific neutralizing antibodies against domain III of dengue virus type envelope protein recognize adjacent epitopes J Virol, 2007 81(23): p 12816-26 Wahala, W.M., et al., Natural strain variation and antibody neutralization of dengue serotype viruses PLoS Pathog, 2010 6(3): p e1000821 Winkler, G., F.X Heinz, and C Kunz, Characterization of a disulphide bridge-stabilized antigenic domain of tick-borne encephalitis virus structural glycoprotein J Gen Virol, 1987 68 ( Pt 8): p 2239-44 Hermida, L., et al., A fragment of the envelope protein from dengue-1 virus, fused in two different sites of the meningococcal P64k protein carrier, induces a functional immune response in mice Biotechnol Appl Biochem, 2004 39(Pt 1): p 107-14 Etemad, B., et al., An envelope domain III-based chimeric antigen produced in Pichia pastoris elicits neutralizing antibodies against all 170 References 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 four dengue virus serotypes Am J Trop Med Hyg, 2008 79(3): p 35363 Wahala, W.M., et al., Dengue virus neutralization by human immune sera: role of envelope protein domain III-reactive antibody Virology, 2009 392(1): p 103-13 Midgley, C.M., et al., An in-depth analysis of original antigenic sin in dengue virus infection J Virol, 2011 85(1): p 410-21 Beltramello, M., et al., The human immune response to Dengue virus is dominated by highly cross-reactive antibodies endowed with neutralizing and enhancing activity Cell Host Microbe, 2010 8(3): p 271-83 Moreland, N.J., et al., Phage Display Approaches for the Isolation of Monoclonal Antibodies Against Dengue Virus Envelope Domain III from Human and Mouse Derived Libraries Int J Mol Sci, 2012 13(3): p 2618-35 Chiang, C.Y., et al., Dengue-1 envelope protein domain III along with PELC and CpG oligodeoxynucleotides synergistically enhances immune responses PLoS Negl Trop Dis, 2012 6(5): p e1645 Zlatkovic, J., K Stiasny, and F.X Heinz, Immunodominance and functional activities of antibody responses to inactivated West Nile virus and recombinant subunit vaccines in mice J Virol, 2011 85(5): p 1994-2003 Stiasny, K., et al., Cryptic properties of a cluster of dominant flavivirus cross-reactive antigenic sites J Virol, 2006 80(19): p 9557-68 Li, X.Q., et al., Dengue virus envelope domain III immunization elicits predominantly cross-reactive, poorly neutralizing antibodies localized to the AB loop: implications for dengue vaccine design J Gen Virol, 2013 94(Pt 10): p 2191-201 Purcell, A.W., J McCluskey, and J Rossjohn, More than one reason to rethink the use of peptides in vaccine design Nat Rev Drug Discov, 2007 6(5): p 404-14 Babu, J.P., et al., Immunogenicity of a recombinant envelope domain III protein of dengue virus type-4 with various adjuvants in mice Vaccine, 2008 26(36): p 4655-63 Khanam, S., et al., Induction of neutralizing antibodies specific to dengue virus serotypes and by a bivalent antigen composed of linked envelope domains III of these two serotypes Am J Trop Med Hyg, 2006 74(2): p 266-77 Khanam, S., N Khanna, and S Swaminathan, Induction of neutralizing antibodies and T cell responses by dengue virus type envelope domain III encoded by plasmid and adenoviral vectors Vaccine, 2006 24(42-43): p 6513-25 Shahabi, V., et al., Live, attenuated strains of Listeria and Salmonella as vaccine vectors in cancer treatment Bioeng Bugs, 2010 1(4): p 235-43 Kotton, C.N and E.L Hohmann, Enteric pathogens as vaccine vectors for foreign antigen delivery Infect Immun, 2004 72(10): p 5535-47 Wells, J.M and A Mercenier, Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria Nat Rev Microbiol, 2008 6(5): p 349-62 171 References 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 Kunkel, E.J and E.C Butcher, Plasma-cell homing Nat Rev Immunol, 2003 3(10): p 822-9 Neutra, M.R and P.A Kozlowski, Mucosal vaccines: the promise and the challenge Nat Rev Immunol, 2006 6(2): p 148-58 Holmgren, J and C Czerkinsky, Mucosal immunity and vaccines Nat Med, 2005 11(4 Suppl): p S45-53 Czerkinsky, C and J Holmgren, Enteric vaccines for the developing world: a challenge for mucosal immunology Mucosal Immunol, 2009 2(4): p 284-7 Bygbjerg, I.C., Double burden of noncommunicable and infectious diseases in developing countries Science, 2012 337(6101): p 1499501 Sztein, M.B., Cell-mediated immunity and antibody responses elicited by attenuated Salmonella enterica Serovar Typhi strains used as live oral vaccines in humans Clin Infect Dis, 2007 45 Suppl 1: p S15-9 Lagos, R., et al., Palatability, reactogenicity and immunogenicity of engineered live oral cholera vaccine CVD 103-HgR in Chilean infants and toddlers Pediatr Infect Dis J, 1999 18(7): p 624-30 Launay, O., et al., Safety and immunogenicity of SC599, an oral live attenuated Shigella dysenteriae type-1 vaccine in healthy volunteers: results of a Phase 2, randomized, double-blind placebo-controlled trial Vaccine, 2009 27(8): p 1184-91 Orme, I.M., Vaccine development for tuberculosis: current progress Drugs, 2013 73(10): p 1015-24 Mielcarek, N., et al., Live attenuated B pertussis as a single-dose nasal vaccine against whooping cough PLoS Pathog, 2006 2(7): p e65 Bergmann-Leitner, E.S., et al., Self-adjuvanting bacterial vectors expressing pre-erythrocytic antigens induce sterile protection against malaria Front Immunol, 2013 4: p 176 McKenzie, R., et al., Safety and immunogenicity of WRSd1, a live attenuated Shigella dysenteriae type vaccine candidate Vaccine, 2008 26(26): p 3291-6 Higgs, R., et al., Immunity to the respiratory pathogen Bordetella pertussis Mucosal Immunol, 2012 5(5): p 485-500 Locht, C., Molecular aspects of Bordetella pertussis pathogenesis Int Microbiol, 1999 2(3): p 137-44 Wendelboe, A.M., et al., Duration of immunity against pertussis after natural infection or vaccination Pediatr Infect Dis J, 2005 24(5 Suppl): p S58-61 Cherry, J.D., Epidemic pertussis in 2012 the resurgence of a vaccinepreventable disease N Engl J Med, 2012 367(9): p 785-7 Black, R.E., et al., Global, regional, and national causes of child mortality in 2008: a systematic analysis Lancet, 2010 375(9730): p 1969-87 Smallridge, W.E., et al., Different effects of whole cell and acellular vaccines on Bordetella transmission J Infect Dis, 2014 Auger, K.A., S.W Patrick, and M.M Davis, Infant hospitalizations for pertussis before and after Tdap recommendations for adolescents Pediatrics, 2013 132(5): p e1149-55 172 References 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 Wiley, K.E., et al., Sources of pertussis infection in young infants: a review of key evidence informing targeting of the cocoon strategy Vaccine, 2013 31(4): p 618-25 Roberts, M., et al., Construction and characterization in vivo of Bordetella pertussis aroA mutants Infect Immun, 1990 58(3): p 7329 Mielcarek, N., et al., Homologous and heterologous protection after single intranasal administration of live attenuated recombinant Bordetella pertussis Nat Biotechnol, 1998 16(5): p 454-7 Thorstensson, R., et al., A Phase I Clinical Study of a Live Attenuated Bordetella pertussis Vaccine - BPZE1; A Single Centre, Double-Blind, Placebo-Controlled, Dose-Escalating Study of BPZE1 Given Intranasally to Healthy Adult Male Volunteers PLoS One, 2014 9(1): p e83449 Hewlett, E.L., et al., Pertussis pathogenesis what we know and what we don't know J Infect Dis, 2014 209(7): p 982-5 Relman, D.A., et al., Filamentous hemagglutinin of Bordetella pertussis: nucleotide sequence and crucial role in adherence Proc Natl Acad Sci U S A, 1989 86(8): p 2637-41 Menozzi, F.D., et al., Surface-associated filamentous hemagglutinin induces autoagglutination of Bordetella pertussis Infect Immun, 1994 62(10): p 4261-9 Cahill, E.S., et al., Immune responses and protection against Bordetella pertussis infection after intranasal immunization of mice with filamentous haemagglutinin in solution or incorporated in biodegradable microparticles Vaccine, 1995 13(5): p 455-62 Alonso, S., et al., Eighty-kilodalton N-terminal moiety of Bordetella pertussis filamentous hemagglutinin: adherence, immunogenicity, and protective role Infect Immun, 2002 70(8): p 4142-7 Renauld-Mongenie, G., et al., Distinct roles of the N-terminal and Cterminal precursor domains in the biogenesis of the Bordetella pertussis filamentous hemagglutinin J Bacteriol, 1996 178(4): p 1053-60 Guedin, S., et al., Evidence that a globular conformation is not compatible with FhaC-mediated secretion of the Bordetella pertussis filamentous haemagglutinin Mol Microbiol, 1998 29(3): p 763-74 Clantin, B., et al., Structure of the membrane protein FhaC: a member of the Omp85-TpsB transporter superfamily Science, 2007 317(5840): p 957-61 Coutte, L., et al., Subtilisin-like autotransporter serves as maturation protease in a bacterial secretion pathway EMBO J, 2001 20(18): p 5040-8 Mazar, J and P.A Cotter, Topology and maturation of filamentous haemagglutinin suggest a new model for two-partner secretion Mol Microbiol, 2006 62(3): p 641-54 Stein, P.E., et al., The crystal structure of pertussis toxin Structure, 1994 2(1): p 45-57 Locht, C., L Coutte, and N Mielcarek, The ins and outs of pertussis toxin FEBS J, 2011 278(23): p 4668-82 173 References 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 Farizo, K.M., T Huang, and D.L Burns, Importance of holotoxin assembly in Ptl-mediated secretion of pertussis toxin from Bordetella pertussis Infect Immun, 2000 68(7): p 4049-54 Craig-Mylius, K.A and A.A Weiss, Mutants in the ptlA-H genes of Bordetella pertussis are deficient for pertussis toxin secretion FEMS Microbiol Lett, 1999 179(2): p 479-84 Craig-Mylius, K.A., T.H Stenson, and A.A Weiss, Mutations in the S1 subunit of pertussis toxin that affect secretion Infect Immun, 2000 68(3): p 1276-81 Nencioni, L., et al., Properties of the B oligomer of pertussis toxin Infect Immun, 1991 59(12): p 4732-4 Nencioni, L., et al., Characterization of genetically inactivated pertussis toxin mutants: candidates for a new vaccine against whooping cough Infect Immun, 1990 58(5): p 1308-15 Roberts, M., et al., A mutant pertussis toxin molecule that lacks ADPribosyltransferase activity, PT-9K/129G, is an effective mucosal adjuvant for intranasally delivered proteins Infect Immun, 1995 63(6): p 2100-8 Fernandez, R.C and A.A Weiss, Cloning and sequencing of a Bordetella pertussis serum resistance locus Infect Immun, 1994 62(11): p 4727-38 Oliver, D.C., G Huang, and R.C Fernandez, Identification of secretion determinants of the Bordetella pertussis BrkA autotransporter J Bacteriol, 2003 185(2): p 489-95 Oliver, D.C., et al., A conserved region within the Bordetella pertussis autotransporter BrkA is necessary for folding of its passenger domain Mol Microbiol, 2003 47(5): p 1367-83 Oliver, D.C and R.C Fernandez, Antibodies to BrkA augment killing of Bordetella pertussis Vaccine, 2001 20(1-2): p 235-41 Keen, N.T., et al., Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria Gene, 1988 70(1): p 191-7 De Feyter, R., Y Yang, and D.W Gabriel, Gene-for-genes interactions between cotton R genes and Xanthomonas campestris pv malvacearum avr genes Mol Plant Microbe Interact, 1993 6(2): p 225-37 Elzer, P.H., et al., In vivo and in vitro stability of the broad-host-range cloning vector pBBR1MCS in six Brucella species Plasmid, 1995 33(1): p 51-7 Stibitz, S., W Black, and S Falkow, The construction of a cloning vector designed for gene replacement in Bordetella pertussis Gene, 1986 50(1-3): p 133-40 Quandt, J and M.F Hynes, Versatile suicide vectors which allow direct selection for gene replacement in gram-negative bacteria Gene, 1993 127(1): p 15-21 Heintz, N., BAC to the future: the use of bac transgenic mice for neuroscience research Nat Rev Neurosci, 2001 2(12): p 861-70 Renauld-Mongenie, G., et al., Induction of mucosal immune responses against a heterologous antigen fused to filamentous hemagglutinin after intranasal immunization with recombinant Bordetella pertussis Proc Natl Acad Sci U S A, 1996 93(15): p 7944-9 174 References 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 Alonso, S., et al., Production of nontypeable Haemophilus influenzae HtrA by recombinant Bordetella pertussis with the use of filamentous hemagglutinin as a carrier Infect Immun, 2005 73(7): p 4295-301 Ho, S.Y., et al., Highly attenuated Bordetella pertussis strain BPZE1 as a potential live vehicle for delivery of heterologous vaccine candidates Infect Immun, 2008 76(1): p 111-9 Li, R., et al., Development of live attenuated Bordetella pertussis strains expressing the universal influenza vaccine candidate M2e Vaccine, 2011 29(33): p 5502-11 Kammoun, H., et al., Immunogenicity of live attenuated B pertussis BPZE1 producing the universal influenza vaccine candidate M2e PLoS One, 2013 8(3): p e59198 Reveneau, N., et al., Tetanus toxin fragment C-specific priming by intranasal infection with recombinant Bordetella pertussis Vaccine, 2001 20(5-6): p 926-33 Coppens, I., et al., Production of Neisseria meningitidis transferrinbinding protein B by recombinant Bordetella pertussis Infect Immun, 2001 69(9): p 5440-6 Pontes, D.S., et al., Lactococcus lactis as a live vector: heterologous protein production and DNA delivery systems Protein Expr Purif, 2011 79(2): p 165-75 Neirynck, S and L Steidler, Delivery of therapeutic proteins through Lactococcus lactis Biotechnol Genet Eng Rev, 2006 22: p 253-66 LeBlanc, J.G., et al., Mucosal targeting of therapeutic molecules using genetically modified lactic acid bacteria: an update FEMS Microbiol Lett, 2013 344(1): p 1-9 Trip, H., N.L Mulder, and J.S Lolkema, Cloning, expression, and functional characterization of secondary amino acid transporters of Lactococcus lactis J Bacteriol, 2013 195(2): p 340-50 Bolotin, A., et al., The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp lactis IL1403 Genome Res, 2001 11(5): p 731-53 Kilstrup, M., et al., Induction of heat shock proteins DnaK, GroEL, and GroES by salt stress in Lactococcus lactis Appl Environ Microbiol, 1997 63(5): p 1826-37 Kleerebezem, M., et al., Metabolic engineering of Lactococcus lactis: the impact of genomics and metabolic modelling J Biotechnol, 2002 98(2-3): p 199-213 Bolotin, A., et al., Low-redundancy sequencing of the entire Lactococcus lactis IL1403 genome Antonie Van Leeuwenhoek, 1999 76(1-4): p 27-76 Miyoshi, A., et al., Controlled production of stable heterologous proteins in Lactococcus lactis Appl Environ Microbiol, 2002 68(6): p 3141-6 Le Loir, Y., et al., Protein secretion in Lactococcus lactis : an efficient way to increase the overall heterologous protein production Microb Cell Fact, 2005 4(1): p de Vos, W.M., Gene expression systems for lactic acid bacteria Curr Opin Microbiol, 1999 2(3): p 289-95 175 References 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 van der Vossen, J.M., D van der Lelie, and G Venema, Isolation and characterization of Streptococcus cremoris Wg2-specific promoters Appl Environ Microbiol, 1987 53(10): p 2452-7 Drouault, S., et al., Expression of the Staphylococcus hyicus lipase in Lactococcus lactis Appl Environ Microbiol, 2000 66(2): p 588-98 Morello, E., et al., Lactococcus lactis, an efficient cell factory for recombinant protein production and secretion J Mol Microbiol Biotechnol, 2008 14(1-3): p 48-58 Frelet-Barrand, A., et al., Lactococcus lactis, an alternative system for functional expression of peripheral and intrinsic Arabidopsis membrane proteins PLoS One, 2010 5(1): p e8746 Wells, J.M., et al., Lactococcus lactis: high-level expression of tetanus toxin fragment C and protection against lethal challenge Mol Microbiol, 1993 8(6): p 1155-62 Madsen, S.M., et al., Molecular characterization of the pH-inducible and growth phase-dependent promoter P170 of Lactococcus lactis Mol Microbiol, 1999 32(1): p 75-87 Israelsen, H., et al., Cloning and partial characterization of regulated promoters from Lactococcus lactis Tn917-lacZ integrants with the new promoter probe vector, pAK80 Appl Environ Microbiol, 1995 61(7): p 2540-7 Mierau, I and M Kleerebezem, 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis Appl Microbiol Biotechnol, 2005 68(6): p 705-17 Kuipers, O.P., et al., Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction J Biol Chem, 1995 270(45): p 27299-304 de Ruyter, P.G., O.P Kuipers, and W.M de Vos, Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin Appl Environ Microbiol, 1996 62(10): p 3662-7 Stein, T., et al., Function of Lactococcus lactis nisin immunity genes nisI and nisFEG after coordinated expression in the surrogate host Bacillus subtilis J Biol Chem, 2003 278(1): p 89-94 Frees, D and H Ingmer, ClpP participates in the degradation of misfolded protein in Lactococcus lactis Mol Microbiol, 1999 31(1): p 79-87 Nouaille, S., et al., Heterologous protein production and delivery systems for Lactococcus lactis Genet Mol Res, 2003 2(1): p 102-11 van Asseldonk, M., et al., Cloning of usp45, a gene encoding a secreted protein from Lactococcus lactis subsp lactis MG1363 Gene, 1990 95(1): p 155-60 Tjalsma, H., et al., Proteomics of protein secretion by Bacillus subtilis: separating the "secrets" of the secretome Microbiol Mol Biol Rev, 2004 68(2): p 207-33 Savijoki, K., M Kahala, and A Palva, High level heterologous protein production in Lactococcus and Lactobacillus using a new secretion system based on the Lactobacillus brevis S-layer signals Gene, 1997 186(2): p 255-62 Satoh, E., et al., Application of the extracellular alpha-amylase gene from Streptococcus bovis 148 to construction of a secretion vector for 176 References 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 yogurt starter strains Appl Environ Microbiol, 1997 63(11): p 45936 Le Loir, Y., et al., Signal peptide and propeptide optimization for heterologous protein secretion in Lactococcus lactis Appl Environ Microbiol, 2001 67(9): p 4119-27 Le Loir, Y., et al., A nine-residue synthetic propeptide enhances secretion efficiency of heterologous proteins in Lactococcus lactis J Bacteriol, 1998 180(7): p 1895-903 Dieye, Y., et al., Design of a protein-targeting system for lactic acid bacteria J Bacteriol, 2001 183(14): p 4157-66 Dieye, Y., et al., Functionality of sortase A in Lactococcus lactis Appl Environ Microbiol, 2010 76(21): p 7332-7 Mazmanian, S.K., et al., Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall Science, 1999 285(5428): p 760-3 Mazmanian, S.K., H Ton-That, and O Schneewind, Sortase-catalysed anchoring of surface proteins to the cell wall of Staphylococcus aureus Mol Microbiol, 2001 40(5): p 1049-57 Piard, J.C., et al., Cell wall anchoring of the Streptococcus pyogenes M6 protein in various lactic acid bacteria J Bacteriol, 1997 179(9): p 3068-72 Steidler, L., et al., Functional display of a heterologous protein on the surface of Lactococcus lactis by means of the cell wall anchor of Staphylococcus aureus protein A Appl Environ Microbiol, 1998 64(1): p 342-5 Lindholm, A., A Smeds, and A Palva, Receptor binding domain of Escherichia coli F18 fimbrial adhesin FedF can be both efficiently secreted and surface displayed in a functional form in Lactococcus lactis Appl Environ Microbiol, 2004 70(4): p 2061-71 van de Guchte, M., et al., Construction of a lactococcal expression vector: expression of hen egg white lysozyme in Lactococcus lactis subsp lactis Appl Environ Microbiol, 1989 55(1): p 224-8 Kim, S.J., et al., Expression of Helicobacter pylori cag12 gene in Lactococcus lactis MG1363 and its oral administration to induce systemic anti-Cag12 immune response in mice Appl Microbiol Biotechnol, 2006 72(3): p 462-70 Chatel, J.M., et al., Induction of mucosal immune response after intranasal or oral inoculation of mice with Lactococcus lactis producing bovine beta-lactoglobulin Clin Diagn Lab Immunol, 2001 8(3): p 545-51 Rochat, T., et al., High-level resistance to oxidative stress in Lactococcus lactis conferred by Bacillus subtilis catalase KatE Microbiology, 2005 151(Pt 9): p 3011-8 Steidler, L., et al., Mucosal delivery of murine interleukin-2 (IL-2) and IL-6 by recombinant strains of Lactococcus lactis coexpressing antigen and cytokine Infect Immun, 1998 66(7): p 3183-9 Dieye, Y., et al., Ability of Lactococcus lactis to export viral capsid antigens: a crucial step for development of live vaccines Appl Environ Microbiol, 2003 69(12): p 7281-8 177 References 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 Monne, M., et al., Functional expression of eukaryotic membrane proteins in Lactococcus lactis Protein Sci, 2005 14(12): p 3048-56 Linares, D.M., E.R Geertsma, and B Poolman, Evolved Lactococcus lactis strains for enhanced expression of recombinant membrane proteins J Mol Biol, 2010 401(1): p 45-55 Iwaki, M., et al., Oral immunization with recombinant Streptococcus lactis carrying the Streptococcus mutans surface protein antigen gene Infect Immun, 1990 58(9): p 2929-34 Daniel, C., et al., Protection against Yersinia pseudotuberculosis infection conferred by a Lactococcus lactis mucosal delivery vector secreting LcrV Vaccine, 2009 27(8): p 1141-4 Bermudez-Humaran, L.G., et al., Intranasal immunization with recombinant Lactococcus lactis secreting murine interleukin-12 enhances antigen-specific Th1 cytokine production Infect Immun, 2003 71(4): p 1887-96 Que, Y.A., et al., Expression of Staphylococcus aureus clumping factor A in Lactococcus lactis subsp cremoris using a new shuttle vector Infect Immun, 2000 68(6): p 3516-22 Medina, M., et al., Nasal immunization with Lactococcus lactis expressing the pneumococcal protective protein A induces protective immunity in mice Infect Immun, 2008 76(6): p 2696-705 Norton, P.M., et al., Protection against tetanus toxin in mice nasally immunized with recombinant Lactococcus lactis expressing tetanus toxin fragment C Vaccine, 1997 15(6-7): p 616-9 Robinson, K., et al., Oral vaccination of mice against tetanus with recombinant Lactococcus lactis Nat Biotechnol, 1997 15(7): p 653-7 Bermudez-Humaran, L.G., et al., A novel mucosal vaccine based on live Lactococci expressing E7 antigen and IL-12 induces systemic and mucosal immune responses and protects mice against human papillomavirus type 16-induced tumors J Immunol, 2005 175(11): p 7297-302 Lee, M.H., et al., Expression of Helicobacter pylori urease subunit B gene in Lactococcus lactis MG1363 and its use as a vaccine delivery system against H pylori infection in mice Vaccine, 2001 19(28-29): p 3927-35 Mannam, P., K.F Jones, and B.L Geller, Mucosal vaccine made from live, recombinant Lactococcus lactis protects mice against pharyngeal infection with Streptococcus pyogenes Infect Immun, 2004 72(6): p 3444-50 Hanniffy, S.B., et al., Mucosal delivery of a pneumococcal vaccine using Lactococcus lactis affords protection against respiratory infection J Infect Dis, 2007 195(2): p 185-93 Wang, Z.H., et al., Mucosal and systemic immunity in mice after intranasal immunization with recombinant Lactococcus lactis expressing ORF6 of PRRSV Cell Immunol, 2014 287(2): p 69-73 Heras, B., et al., DSB proteins and bacterial pathogenicity Nat Rev Microbiol, 2009 7(3): p 215-25 Raina, S and D Missiakas, Making and breaking disulfide bonds Annu Rev Microbiol, 1997 51: p 179-202 178 References 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 Nakamoto, H and J.C Bardwell, Catalysis of disulfide bond formation and isomerization in the Escherichia coli periplasm Biochim Biophys Acta, 2004 1694(1-3): p 111-9 Hiniker, A and J.C Bardwell, In vivo substrate specificity of periplasmic disulfide oxidoreductases J Biol Chem, 2004 279(13): p 12967-73 Bessette, P.H., et al., In vivo and in vitro function of the Escherichia coli periplasmic cysteine oxidoreductase DsbG J Biol Chem, 1999 274(12): p 7784-92 Stenson, T.H and A.A Weiss, DsbA and DsbC are required for secretion of pertussis toxin by Bordetella pertussis Infect Immun, 2002 70(5): p 2297-303 Matias, V.R and T.J Beveridge, Native cell wall organization shown by cryo-electron microscopy confirms the existence of a periplasmic space in Staphylococcus aureus J Bacteriol, 2006 188(3): p 1011-21 Heras, B., et al., Staphylococcus aureus DsbA does not have a destabilizing disulfide A new paradigm for bacterial oxidative folding J Biol Chem, 2008 283(7): p 4261-71 Paik, S.H., A Chakicherla, and J.N Hansen, Identification and characterization of the structural and transporter genes for, and the chemical and biological properties of, sublancin 168, a novel lantibiotic produced by Bacillus subtilis 168 J Biol Chem, 1998 273(36): p 23134-42 Bazan, J.F., Unraveling the structure of IL-2 Science, 1992 257(5068): p 410-3 Simpson, R.J., et al., Characterization of a recombinant murine interleukin-6: assignment of disulfide bonds Biochem Biophys Res Commun, 1988 157(1): p 364-72 Ng, D.T and C.A Sarkar, Nisin-inducible secretion of a biologically active single-chain insulin analog by Lactococcus lactis NZ9000 Biotechnol Bioeng, 2011 108(8): p 1987-96 King, C.A., R Anderson, and J.S Marshall, Dengue virus selectively induces human mast cell chemokine production J Virol, 2002 76(16): p 8408-19 Yanisch-Perron, C., J Vieira, and J Messing, Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors Gene, 1985 33(1): p 103-19 Imaizumi, A., et al., Effect of heptakis (2,6-O-dimethyl) betacyclodextrin on the production of pertussis toxin by Bordetella pertussis Infect Immun, 1983 41(3): p 1138-43 Schotte, L., et al., Secretion of biologically active murine interleukin10 by Lactococcus lactis Enzyme Microb Technol, 2000 27(10): p 761-765 Holo, H and I.F Nes, High-Frequency Transformation, by Electroporation, of Lactococcus lactis subsp cremoris Grown with Glycine in Osmotically Stabilized Media Appl Environ Microbiol, 1989 55(12): p 3119-23 Russell, P.K., et al., A plaque reduction test for dengue virus neutralizing antibodies J Immunol, 1967 99(2): p 285-90 179 References 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 Irons, L.I., L.A Ashworth, and P Wilton-Smith, Heterogeneity of the filamentous haemagglutinin of Bordetella pertussis studied with monoclonal antibodies J Gen Microbiol, 1983 129(9): p 2769-78 Shannon, J.L and R.C Fernandez, The C-terminal domain of the Bordetella pertussis autotransporter BrkA forms a pore in lipid bilayer membranes J Bacteriol, 1999 181(18): p 5838-42 Khong, W.X., Chow, V.T.K., Alonso, S., Exploring the Versatility of the Autotransporter BrkA for the Presentation of Enterovirus 71 Vaccine Candidates at the Surface of Attenuated Bordetella pertussis Procedia in Vaccinology, 2010 2: p 66-72 Watanabe, M., B Connelly, and A.A Weiss, Characterization of serological responses to pertussis Clin Vaccine Immunol, 2006 13(3): p 341-8 Waldo, G.S., et al., Rapid protein-folding assay using green fluorescent protein Nat Biotechnol, 1999 17(7): p 691-5 Rezaiki, L., et al., Respiration metabolism reduces oxidative and acid stress to improve long-term survival of Lactococcus lactis Mol Microbiol, 2004 53(5): p 1331-42 Pancholi, V and V.A Fischetti, Isolation and characterization of the cell-associated region of group A streptococcal M6 protein J Bacteriol, 1988 170(6): p 2618-24 Ribeiro, L.A., et al., Production and targeting of the Brucella abortus antigen L7/L12 in Lactococcus lactis: a first step towards food-grade live vaccines against brucellosis Appl Environ Microbiol, 2002 68(2): p 910-6 Rallu, F., et al., Acid- and multistress-resistant mutants of Lactococcus lactis : identification of intracellular stress signals Mol Microbiol, 2000 35(3): p 517-28 Sriraman, K and G Jayaraman, HtrA is essential for efficient secretion of recombinant proteins by Lactococcus lactis Appl Environ Microbiol, 2008 74(23): p 7442-6 Sim, A.C., et al., Induction of neutralizing antibodies against dengue virus type upon mucosal administration of a recombinant Lactococcus lactis strain expressing envelope domain III antigen Vaccine, 2008 26(9): p 1145-54 Cainelli Gebara, V.C., et al., Adjuvant and immunogenic activities of the 73kDa N-terminal alpha-domain of BrkA autotransporter and Cpn60/60kDa chaperonin of Bordetella pertussis Vaccine, 2007 25(4): p 621-9 Baud, C., et al., Role of DegP for two-partner secretion in Bordetella Mol Microbiol, 2009 74(2): p 315-29 Burns, D.L., et al., Analysis of subassemblies of pertussis toxin subunits in vivo and their interaction with the ptl transport apparatus Infect Immun, 2004 72(9): p 5365-72 Vido, K., et al., Roles of thioredoxin reductase during the aerobic life of Lactococcus lactis J Bacteriol, 2005 187(2): p 601-10 van de Guchte, M., et al., Lysozyme expression in Lactococcus lactis Appl Microbiol Biotechnol, 1992 37(2): p 216-24 180 References 250 251 252 253 254 255 256 257 258 259 260 261 262 263 Goldberg, M.E and Y Guillou, Native disulfide bonds greatly accelerate secondary structure formation in the folding of lysozyme Protein Sci, 1994 3(6): p 883-7 Duwat, P., et al., Respiration capacity of the fermenting bacterium Lactococcus lactis and its positive effects on growth and survival J Bacteriol, 2001 183(15): p 4509-16 Duwat, P., S.D Ehrlich, and A Gruss, The recA gene of Lactococcus lactis: characterization and involvement in oxidative and thermal stress Mol Microbiol, 1995 17(6): p 1121-31 Cremers, C.M and U Jakob, Oxidant sensing by reversible disulfide bond formation J Biol Chem, 2013 288(37): p 26489-96 Steidler, L., et al., Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10 Nat Biotechnol, 2003 21(7): p 785-9 Carvalho, A.L., et al., Metabolic and transcriptional analysis of acid stress in Lactococcus lactis, with a focus on the kinetics of lactic acid pools PLoS One, 2013 8(7): p e68470 O'Sullivan, E and S Condon, Intracellular pH is a major factor in the induction of tolerance to acid and other stresses in Lactococcus lactis Appl Environ Microbiol, 1997 63(11): p 4210-5 Sriraman, K and G Jayaraman, Enhancement of recombinant streptokinase production in Lactococcus lactis by suppression of acid tolerance response Appl Microbiol Biotechnol, 2006 72(6): p 1202-9 Cortes-Perez, N.G., et al., Construction and characterization of a Lactococcus lactis strain deficient in intracellular ClpP and extracellular HtrA proteases Microbiology, 2006 152(Pt 9): p 26118 Taylor, J.M., et al., Effects of a Th1- versus a Th2-biased immune response in protection against Helicobacter pylori challenge in mice Microb Pathog, 2008 44(1): p 20-7 Steitz, J., et al., Genetic immunization with a melanocytic self-antigen linked to foreign helper sequences breaks tolerance and induces autoimmunity and tumor immunity Gene Ther, 2002 9(3): p 208-13 Sanders, J.W., G Venema, and J Kok, A chloride-inducible gene expression cassette and its use in induced lysis of Lactococcus lactis Appl Environ Microbiol, 1997 63(12): p 4877-82 Bode, C., et al., CpG DNA as a vaccine adjuvant Expert Rev Vaccines, 2011 10(4): p 499-511 Longhi, M.P., et al., Dendritic cells require a systemic type I interferon response to mature and induce CD4+ Th1 immunity with poly IC as adjuvant J Exp Med, 2009 206(7): p 1589-602 181 ... 70 2. 2 .2. 3.1.3 Coomassie Blue staining 71 2. 2 .2. 3.1.4 Electroblotting 71 2. 2 .2. 3.1.5 Immunoblotting 71 2. 2 .2. 3 .2 Flow cytometry 72 2 .2. 2.4 Animal work 73 2. 2 .2. 4.1 Mouse strains 73 2. 2 .2. 4 .2 Intranasal... Bacterial strains 67 2. 2 .2. 1 .2 Culture conditions 68 2. 2 .2. 2 Bacterial transformation 69 2. 2 .2. 2.1 Preparation of electrocompetent cells 69 2. 2 .2. 2 .2 Electroporation 69 2. 2 .2. 2.3 Double homologous... response 21 1.5 LIVE BACTERIAL VECTORS FOR ANTIGEN DELIVERY 22 1.5.1 Rationale for using a live bacterial vector 22 1.5 .2 Attenuated pathogens 24 1.5 .2. 1 B pertussis as a live vector for nasal delivery