1. Trang chủ
  2. » Luận Văn - Báo Cáo

TẢI TRỌNG TÁC ĐỘNG

16 400 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 16
Dung lượng 1,06 MB

Nội dung

Tất cả những công trình thực tế luôn chịu sự tác động của tải trọng động, phụ thuộc vào thời gian làm gia tăng đáp ứng động . Vấn đề quan trọng nhất đối với những công trình biển là tải trọng động do sóng gây ra

Chương 1 TẢI TRỌNG TÁC ĐỘNG 1. Giơi thiệu : Tất cả những công trình thực tế luôn chịu sự tác động của tải trọng động, phụ thuộc vào thời gian làm gia tăng đáp ứng động . Vấn đề quan trọng nhất đối với những công trình biển là tải trọng động do sóng gây ra . 2. Phương trình Morison : Để tính toán tải trọng do sóng lên kết cấu cứng phải thừa nhận giả thuyết tải trọng của sóng là hàm tuyến tính của tổng lực cản và lực quán tính khi dòng chảy xuyên qua công trình . Hợp lực đối với chiều dài vi phân ds của thanh hình trụ nằm trong chất lỏng phương trình Morison cho bởi : ∫ = += η ρρ 0 2/1 dFF dsUACdsUDUCdF mD  Trong đó : F – Hợp lực tác dụng lên hình trụ η - Chiều cao mực nước tức thời ρ - Trọng lượng riêng của nước U – Vận tốc của phần tử nước U  - Gia tốc của phần tử nước, vuông góc với trục của phần tử kết cấu . D – Chiều rộng hoặc đường kính của mặt cắt hình trụ A – Diện tích mặt cắt ngang của mặt cắt hình trụ ds – Chiều dài vi phân của hình trụ theo phương đứng C D – Hệ số cản C m - Hệ số quán tính Để tìm được hợp lực F cần phải xác định các đặc trưng về vận tốc, gia tốc của phần tử nước, các hệ số cản C D và hệ số quán tính C m . 3 . Tải trọng sóng : Tải trọng sóng được tính toán từ phương trình chuyển động của Morison , nếu giả thuyết rằng chuyển động không ảnh hưởng đến bản thân kết cấu . Điều này có nghĩa là đặc trưng kích thước của kết cấu không vượt quá 0.2 lần chiều dài sóng . Đối với những kết cấu lớn , tham số của sóng đối với kết cấu phải kể đến lý thuyết nhiễu xạ của sóng . Khi : D/L>1 điều kiện phản xạ hầu như hoàn toàn D/L>0.2 , nhiễu xạ bắt đầu gia tăng D/L<0.2 , Công thức Morison mới có ý nghĩa . D/W>0.2 , lực quán tính chiếm ưu thế D/W<0.2 , lực cản chiếm ưu thế Trong đó : D – Chiều rộng hoặc đường kính cấu kiện L – Chiều dài sóng W – Chiều rộng quỹ đạo hạt nước cho bởi L d H W π 2 tanh = Trong đó : H – chiều cao sóng Chương mở dầu 1 d – chiều sâu nước Một số giả thuyết khi sử dụng phương trình Morison : 1 – Vận tốc và gia tốc tức thời theo lý thuyết sóng tuyến tính và kích thước của kết cấu không ảnh hưởng đặc trưng của sóng . Giới hạn kích thước của kết cấu để sử dụng phương trình Morison là : D/L≤0.2 Ở đây : D – Chiều rộng các thành phần kết cấu L – Chiều dài sóng Chiều dài của sóng được xác định từ các đặc trưng của sóng như chiều cao sóng H, chu kỳ sóng T và chiều sâu nước d. 2 – Hệ số C D và C m xác định từ thí nghiệm . Thành phần lực cản là do lưu chất tác dụng lên công trình và lực cản được xác định từ dòng chảy đều . Hệ số cản phụ thuộc vào hệ số Reynold . Trong thực hành giá trị của Reynold được lấy là giá trị trung bình và được dùng tính toán tại mọi điểm của sóng . Hệ số C m được lấy tuỳ thuộc vào hình dạng của kết cấu . Giá trị của C m tra bảng Bảng 1.1 Hệ số cản của một số kết cấu thông dụng Hình dạng mặt cắt C D Hình dạng mặt cắt C D 2.0 1.9 Chương mở dầu 2 OR 0.6 1.3 33.0.0 = b r 0.5 1.3 2.0 1.3 1.5 0.5 Bảng 1.2 Hệ số quán tính của một số kết cấu thông dụng Dạng mặt cắt C m 2.0 2.5 2.5 1.6 2.3 2.2 3 – Dạng chuẩn của phương trình Morison giả thuyết rằng kết cấu là cứng khi lực tác dụng . Tuy nhiên nếu kết cấu có đáp ứng động hoặc có một phần nổi chuyển động kích thích với vận tốc U b , và gia tốc b U  đối với vận tốc và gia tốc của phần tử nước . Trong trường hợp này dạng động học của phương trình có thể viết : ( ) ( ) ( ) ( ) bbmbbD UMAdsdsUUACdsUUUUDCF  −+−+−−= ρρρ 2/1 Trong đó : U b - Vận tốc gia tăng do mặt cắt của kết cấu b U  - gia tốc tương ứng của mặt cắt kết cấu M – Khối lượng của mặt cắt kết cấu 4 – Phương trình Morison sử dụng giá trị C D cho lực dọc trục kết cấu và chỉ áp dụng cho những cấu kiện có lực ma sát nhỏ . 4 . Lý thuyết sóng tuyến tính Chương mở dầu 3 b A=D 2 r b r b b 17.0 = b r Các phương trình chủ đạo và điều kiện biên được tuyến tính hoá bằng cách dùng 3 giả thiết : i) Vận tốc u và đường mặt sóng η là các giá trị nhỏ . ii ) Dòng chảy hai chiều . iii) Độ sâu không thay đổi . Phương trình mặt sóng có dạng : η(t) = asin(kx-wt) hoặc       −= T t L xH t πη 2cos 2 )( trong đó : H : chiều cao sóng , H = 2* a k: số sóng , k = 2π /L w : tần số sóng , w = 2π/T T : Chu kỳ sóng . Tốc độ sóng cho bởi : 2/1 2 tanh 2       = L gL c π π d: chiều sâu nước và 2/1 2       = π o o gL c Nếu L d L d L d ππ 22 tanh, 25 1 →≤ thì gdc = Khi c= L/T và c o = L o /T , thì L/L o =tanh(2π/L) Ở đây 2 2 56.1 2 T gT L o == π trong đó T : tính bằng giây(s) L : Tính bằng (m) Vận tốc và gia tốc theo phương đứng và phương ngang tại một điểm theo thời gian t cho bởi:       −       + =       −       + = T t L x Ld Ldy T H v T t L x Ld Ldy T H u π π π π π π π π 2sin /2sinh /)(2sinh 2cos /2sinh /)(2cosh Chương mở dầu 4       −       + ==       −       + == T t L x s Ld Ldy T H t v v T t L x Ld Ldy T H t u u π π ππ δ δ π π π π δ δ 2cos /2sinh /)(2sin2 2sin /2sinh /)(2cosh 2 2 2 2 2   Trong vùng nước sâu d/L≥ 0.5, vận tốc trở thành       −       + ==       −       + ==       −         =       −         = T t L x s Ld Ldy T H t v v T t L x Ld Ldy T H t u u T t L x L y T H v T t L x L y T H u o o π π π π δ δ π π π π δ δ π π π π π π 2cos /2sinh /)(2sin 2 2sin /2sinh /)(2cosh 2 2sin 2 exp 2cos 2 exp 2 2 2 2   Ap suất dưới mặt nước cho bởi phương trình sau :       +=       −       + =+ Ld Ld T LH gP T t L x s Ld LdyH y g p /2sinh /2 1 2 1 8 1 2cos /2cosh /)(2cosh 2 2 π π ρ π π π ρ Tổng năng lượng của sóng trên một đơn vị chiều rộng đỉnh sóng 8 2 gLH E ρ = Lực trên một đơn vị chiều dài đỉnh sóng :         += Ld Ld T LH gP /2sinh /2 1 2 1 8 1 2 π π ρ 5 .Lý thuyết sóng phi tuyến : Khi chiều cao sóng tương đối lớn, không thể bỏ qua các số hạng phi tuyến trong lý thuyết sóng tuyến tính (sóng có biên độ nhỏ ). 5.1. Lý thuyết sóng Stokes : Lý thuyết sóng Stokes được áp dụng trong vùng nước sâu Phương trình mặt sóng có dạng :       −             +       −             +       −= T t L x L d f L a L t L x L d f L a T t L x at π π π π πη 6cos4cos2cos)( 3 2 32 2 2 Với : L d L d L d L d f π ππ 2sinh2 2cosh4cosh2 3 2       + =       Và : L d L d L d f π π 2sinh2 2cosh81 16 3 6 6 3 + =       Chương mở dầu 5 Khi đó :             += L d f L a aH 3 2 32 2 2 π L dgL c πβ π 2tanh)1( 2 2 += L dgT L πβ π 2tanh)41( 2 2 += Với : L d L d a L a π π π β 2sinh16 4cosh14 4 2 2 +       = Có thể viết η(t) dưới dạng sau :       −+       −+       −= T t L x A L t L x A T t L x At πππη 6cos4cos2cos)( 321 Phương trình vận tốc hạt nước cho bởi : ( ) ( )       − + +       − + = T t L x L dy F T t L x L dy F c u ππππ 4cos4cosh2cos2cosh 21 ( )       − + + T t L x L dy F ππ 6cos6cosh 3 ( ) ( )       − + +       − + = T t L x L dy F T t L x L dy F c v ππππ 4sin4sinh2sin2sinh 21 ( )       − + + T t L x L dy F ππ 6sin6sinh 3 Trong vùng nước sâu :       −       ′ =       −       ′ = T t L x L S A c v T t L x L S A c u πππ πππ 2sin2exp2 2cos2exp2 1 1 Ở đây S ’ quĩ đạo hạt nước phái trên đường mực nước S ’ = y , với S= d phía trên đáy biển . 5.2 . Lý thuyết sóng đơn : Có dạng của các sóng cnoidal là hàm tuần hoàn nhưng có xu hướng trở thành một sóng không tuần hoàn khi có một đỉnh sóng k → 1. Sóng giới hạn này được gọi là sóng đơn . Chương mở dầu 6 d Đáy biển H η y x Sơ đồ định nghĩa của một sóng đơn Các kết quả chính của lời giải bậc 1 của lý thuyết sóng đơn 2 2 )( 4 3 sec       −= ctx d H hH η Trong đó : H – Là chiều cao của sóng η - Cao trình mặt nước d – Chiều sâu nước c – Vận tốc sóng cho bỡi )( dHgc += Vận tốc và biên độ của nước cho bỡi         + + =         + + = 2 2 )/cosh()/cos( )/sinh()/sin(1 )/cosh()/cos( )/cosh()/cos(1 dMxdMS dMxdMS N c v dMxdMS dMxdMS N c u 5.3. Lý thuyết sóng Cnoidal: Lý thuyết sóng Cnoidal được áp dụng khi 1/50 <d/L<1/10 . Lý thuyết này quan tâm đến số hạng bậc hai,do đó cho kết quả chính xác hơn . Chi tiết lập thành bảng ở phần sau 5.4. Bảng cơng thức tính tốn các đặc trưng của vận tốc và gia tốc sử dụng trong phương trình Morison : Tính tốn cho sóng hình sin và sóng Cnoidal . BẢNG TÍNH TỐN LỰC SĨNG Qui ước c = Pha vận tốc c g = Vận tốc nhóm E = Mật độ năng lượng Σ = Tổng các thành phần (=Σ(m)) E f = Năng lượng của dòng F m = Động lượng của ứng suất tán xạ F p = Ap lực của ứng suất tán xạ F w = Tổng ứng suất tán xạ (= F m +F p ) g = Gia tốc trọng trường d= chiều sâu nước từ mực nước trung bình tới đáy biển ∆h = Độ hạ của sóng H = Chiều cao sóng k = Số sóng (=2π/L) K = Số hạng thứ nhất của một elliptic hồn chỉnh K(=m) ) L = Chiều dài sóng m = Thơng số của hàm elliptic m 1 = Hệ số elliptic bổ sung (=1 – m) Chương mở dầu 7 MEL = Mức năng lượng MWL = Mực nước trung bình (y= 0 tại MWL) p = Ap lực sóng p + = Ap lực giới hạn (= p+ρgz) T = Chu kỳ sóng u = Vận tốc hạt nước theo phương ngang U = Hệ số Stokes (=HL 2 /d 3 ) v = Vận tốc hạt nước theo phương đứng α = Biên độ theo phương ngang hạt nước β = Biên độ hạt nước theo phương đứng η = Chiều cao đường mặt thoáng ρ = Trong lượng riêng của nước SÓNG HÌNH SIN Các thông số: Cho d và T, xác định L,c Tính 22 56.1 2 TT g L o == π Tính d/L o tìm tanh kd Xác định L =L o tanh kd , kiểm tra * Xác định c = L/T (Cho giá trị của d,L: tìm d/L o từ d/L trong bảng 1 và do đó xác định T) Vùng nước nông : Cho H a và T(hoặc L a ) ở chiều sâu nước d a Xác định h b và L b ở chiều sâu nước d b Xác định L 0 từ Và H a /H o từ bảng 1 và tìm H o Xác định L b từ và tìm H b , kiểm tra* *Tính U ≡ HL 2 /d 3 Nếu U<15 :Ap dụng lý thuyết sóng hình Sin (ST) Nếu U>15 và d/ L o < 0.1 : Lý thuyết sóng Cnoidal (CT) cho kết quả tin cậy hơn Nếu U>15 và d/L o >0.1 : CT vô nghĩa và ST cũng không tin cậy BẢNG CÔNG THỨC Chương mở dầu 8 1 2 1 1 Số hạng Đơn vị( SI) Biểu thức chung Nước sâu Nước nông L d (Trong khoảng ) 0< L d <: 0.50< L d <: 0< L d <0.050 0 L d (Tron g khoảng ) 0< 0 L d <: 0.50< 0 L d <: 0.50< 0 L d <0.050 c (m/s) kd gL tanh 2 π       = ππ 22 0 gT gL gd c g (m/s) 0.5(c(1+G) 0.5c o c E (J/m 2 ) 2 8 1 Hg ρ 2 0 8 1 Hg ρ 2 8 1 Hg ρ E f (W/m) ( ) GcHg + 1 16 1 2 ρ 0 2 0 16 1 cHg ρ cHg 2 8 1 ρ F m (N/m) ( ) GHg + 1 16 1 2 ρ 2 0 16 1 Hg ρ 2 8 1 Hg ρ F p (N/m) GHg 2 16 1 ρ 0 2 16 1 Hg ρ F w (N/m) )21( 16 1 2 GHg + ρ 2 16 1 o Hg ρ 2 16 3 Hg ρ G kd kd G 2sinh 2 ≡ 0 1 ∆h (m) G d H 16 2 0 h H 16 2 p max (N/m) P + max -ρgy P + max,0 -ρgy yg H g ρρ − 2 P + max (N/m) kd dykH g cosh )(cosh + ρ + )exp( 2 0 0 yk H g ρ 2 H g ρ u max (m/s) kd dyk T H sinh )(cosh + π + )exp( 0 0 yk T H π c d H 2 v max (m/s) kd dyk T H sinh )(sinh + π + )exp( 0 0 yk T H π       + d y c d H 1 2 α (m) kd dyk H sinh )(cosh 2 + + )exp( 0 0 yk T H d LH π 22 β (m) kd dyk H sinh )(sinh 2 + + )exp( 0 0 yk T H       + d yH 1 2 Ghi chú : + Dấu cộng sử dụng cho trường hợp y< d/2 SÓNG CNOIDAL Các thông số 1.1 Cho d ,H và T, xác định L,c Tính H/d và T (g/d) 0.5 Tìm L/d từ bảng 3 và từ đó tìm được L Xác định c = L/T Chương mở dầu 9 2 1 1.2 Cho d, H và L , xác định c,T Kiểm tra * tính U≡HL 2 /d 3 Tìm A từ bảng 2 Xác định c = (gd(1+AH/d)) 0.5 và T=L/c Vùng nước nông Cho H a và T(hoặc L a ) ở chiều sâu nước d a Xác định H b và L b ở chiều sâu nước d b Xác định L 0 sử dụng 1.1 , hoặc T và L o sử dụng Tính U a và tìm B a từ bảng 2 Tính H o =4H a (B a L a /L o ) 0.5 Tính d b /L o và H o /L o Kiểm tra * : Xác định H b /H o từ bảng 4 và từ H b xác định được L b dùng 1.1 * Nếu d/L o >0.10(hoặc d/L>0.13) lý thuyết Cnoidal ít có ý nghĩa và lý thuyết sóng hình Sin được áp dụng cho trường hợp này . CÔNG THỨC CƠ BẢN Số hạng Đơn vị A mK E m A 3 1 2 −−≡ B’               −−       −+−≡ 2 111 1 2 2 )42(3 3 11 K E m K E mmm m B c (m/s)       + d H Agd 1 E f (W/m) ρgH 2 Bc F m (N/m) 2ρgd∆h Chương mở dầu 10 1 [...]... (0,m) ηmin+H 1 E  H  1 −  − 1 m K     U= (m) (m) (m) θ 1 x θ = 2K  −  T L  II - Tác động do dòng chảy : Trong phần này tập trung ở hai dạng dao động cơ bản phụ thuộc vào hình dạng của công trình và chế độ chảy rối mà đáp ứng động phụ thuộc chính vào dòng chảy Lực do dòng chảy tác động lên hình trụ tròn trên một đơn vị chiều dài : 2 1  π D F = C D ρ V 2 D + C mV 2 4 Trong đó : Cm... sâu nước ,tính từ chiều dài ngàm của cọc 3 Qui luật dao động do xoáy cuộn gây ra : Dao động có thể theo phương của dòng chảy hoặc theo phương vuông góc với dòng chảy, phụ thuộc vào tỷ số V / ND Dao động theo phương của dòng chảy xảy ra khi giá trị V / ND nhỏ hơn theo phương vuông góc với dòng chảy 3.1 Dao động theo phương dòng chảy : Dao động theo phương của dòng chảy trong khu vực không ổn định... là một hàm của khối lượng và hệ số cản theo phương vuông góc dòng chảy Đỉnh của dao động theo phương vuông góc dòng chảy 6 5 V ND 4 Dao động bắt đầu theo phương vuông góc dòng chảy 3 Bắt đầu dao động theo phương dòng chảy 2 0 Khu vực mất ổn định thứ hai 104 105 Hệ số Renold Re 106 107 Hình 1.5 : Dòng chảy bắt đầu dao động theo phương dòng chảy và vuông góc dòng chảy trong khu vực mất ổn định thứ hai... cong ổn định của King –1970 Dao động theo phương của dòng chảy khu vực mất ổn định thứ hai bắt đầu xảy ra khi V / ND = 2.2 Điều kiện không có kích thích trong dạng gốc dãi cung là 2m δ 〉 1.8 ρ D2 Chương mở dầu 12 Tùy thuộc vào sự giảm biên độ 2m δ / ρ D 2 cho cả hai khu vực mất ổn định thể hiện trên hình 1.3 của King- 1974 3.2 Dao động theo phương ngang : Dạng dao động dãi cung sẽ bị khống chế đối... mở dầu 14 2.5 Khu vực mất ổn định thứ nhất 2.0 Khu vực mất ổn định thứ hai Dao động V/ND 1.5 Không dao động 1.0 0 0 η 0.5 1.0 2mδ ρ D2 1.5 2.0 Hình 1.2 : Khu vực mất ổn định của dòng chảy là hàm của hệ số cản và khối lượng theo phương dòng chảy 2.0 Khu vực mất ổn định thứ nhất giá trị thấp 2.0 0.15 1.5 Theo phương chuyển động 1.5 0.10 Khu vực mất ổn định thứ hai giá trị cao 1.0 1.0 0.05 0 1.0 1.5 2mδ... hệ số CL’,CD và CD’ C L' = CD = C D' FL ' Hệ số dao động của lực nâng 1 / 2 ρV 2 A FD Hệ số lực cản trung bình 1 / 2 ρV 2 A FD ' = 1 / 2 ρV 2 A Hệ số lực cản Trong đó : ρ - Khối lượng riêng của nước A – Diện tích của mặt cắt 2 Đáp ứng của kết cấu do xoáy cuộn : Hiện tượng cộng hưởng xảy ra khi tầng số dao động của lực nâng f L bằng với tầng số dao động tự nhiên N ,khi đó fL = N và hệ số Strouhal = 0.2... CD là hệ số cản và hệ số nâng tương ứng  V, V tương ứng là vận tốc và gia tốc của dòng chảy 1 Dòng chảy xung quanh hình trụ : Khi dòng chảy chuyển động bao quanh hình trụ,ở phía sau hình trụ sẽ xuất hiện một dòng xoáy Dòng xoáy này tạo ra lực dao động theo phương vuông góc dòng chảy gọi là lực nâng FL, có tần số fL Ngoài ra theo phương của dòng chảy có lực cản FD Xoáy cuộn xung quanh hình trụ tròn... Dạng dao động dãi cung sẽ bị khống chế đối với mặt cắt dạng hình tròn khi thoã mãn điều kiện 2m δ 〉 10 ρ D2 Thể hiện trên hình 1.4 tùy thuộc vào 2m δ / ρ D 2 4 Dao động không liên kết trong nhóm : Theo kết quả thực hiện của King (1975) dao động theo phương ngang dòng chảy ở hạ lưu hình trụ sẽ cản trở khi thoã mãn điều kện : 2mδ/ρD2 >30 Sau đây là một số biểu đồ về đáp ứng của cọc trong dòng triều được... cuộn : Hiện tượng cộng hưởng xảy ra khi tầng số dao động của lực nâng f L bằng với tầng số dao động tự nhiên N ,khi đó fL = N và hệ số Strouhal = 0.2 ⇒ fLD/V=0.2 ⇒ V CRIT ≈ 5 ND Theo phương của chuyển động fD’D/V=0.4 ⇒ V CRIT ≈ 2.5 ND Thông số để xác định độ lớn biên độ khi xảy ra xoáy cuộn - Hệ số độ giảm LOGA của kết cấu δ - Hệ số giảm vận tốc V/ND - Hệ số khối lượng m / ρ D 2 Trong đó m khối lượng . o o π π π π δ δ π π π π δ δ π π π π π π 2cos /2sinh /)(2sin 2 2sin /2sinh /)(2cosh 2 2sin 2 exp 2cos 2 exp 2 2 2 2   Ap suất dưới mặt nước cho bởi phương. πη 6cos4cos2cos)( 3 2 32 2 2 Với : L d L d L d L d f π ππ 2sinh2 2cosh4cosh2 3 2       + =       Và : L d L d L d f π π 2sinh2 2cosh81 16 3

Ngày đăng: 16/04/2013, 10:36

TỪ KHÓA LIÊN QUAN

w