1. Trang chủ
  2. » Đề thi

Đề ôn thi THPT quốc gia môn Toán số 5

6 248 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 315 KB

Nội dung

GV: Nguyễn Kiên Trung . Đơn vị: Trường THPT số 2 An Lão (trung bình – khá – giỏi) SỞ GD&ĐT BÌNH ĐỊNH ĐỀ THI THỬ TN THPT – NĂM HỌC 2014 - 2015 Trường THPT Số 2 An Lão Môn Toán – Khối 12 Thời gian 180 phút ( Không kể thời gian giao đề) Câu 1(2 điểm): . Cho hàm số: 2 1 1 x y x + = - , Có đồ thị (C). a, Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b, Viết phương trình tiếp tuyến của (C) tại điểm trên (C) có tung độ bằng 5. Câu 2(2 điểm): a, Giải phương trình : sin2x + (1 + 2cos3x)sinx - 2sin 2 (2x+ 4 π ) = 0 b, Giải phương trình: 4 4 2 4 2 17.2 1 0 x x- - - + = Câu 3(1 điểm) : Tính tích phân: 0 (2 1) sinI x xdx p = - ò Câu 4 (1 điểm): Cho hình lăng trụ đứng .A BC A B C ¢ ¢ ¢ có đáy ABC là tam giác vuông tại B, BC = a, mặt ( )A BC ¢ tạo với đáy một góc 0 30 và tam giác A BC ¢ có diện tích bằng 2 3a . Tính thể tích khối lăng trụ .A BC A B C ¢ ¢ ¢ . Câu 5(1 điểm) : Cho x,y,z là các số thực dương . Chứng minh rằng : P = 3 3 3 3 3 3 3 3 3 2 2 2 4( ) 4( ) 4( ) 2( ) x y z x y y z z x y z x + + + + + + + + ≥ 12 Câu 6(2 điểm): a, Cho đường tròn (C) có phương trình : 2 2 4 4 4 0x y x y+ − − + = và đường thẳng d có phương trình : x + y – 2 = 0. Chứng minh rằng d luôn cắt (C) tại hai điểm phân biệt A,B . Tìm toạ độ điểm C trên đường tròn (C) sao cho diện tích tam giác ABC lớn nhất. b, Trong không gian với hệ toạ độ Oxyz cho điểm A(1;2;3)và hai đường thẳng có phương trình : 1 1 2 ( ): 2 2 1 x y z d + − = = − ' 2 ' 4 ( ) : 2 3 x t d y z t  =  = −   =  Viết phương trình đường thẳng ∆ đi qua điểm A và cắt cả hai đường thẳng d 1 , d 2 . Câu 7(1 điểm) : Giải phương trình sau đây trên tập số phức: 2 2 2 5 0z z- + = . Hết. 1 ĐÁP ÁN – THANG ĐIỂM Câu Đáp án Điểm Câu 1 (2 điểm) a. (1.0 điểm) Hàm số 2 1 1 x y x + = -  Tập xác định: \ {1}D = ¡  Đạo hàm: 2 3 0, ( 1) y x D x - ¢ = < " Î -  Hàm số luôn NB trên các khoảng xác định và không đạt cực trị.  Giới hạn và tiệm cận: ; lim 2 lim 2 2 x x y y y - ¥ + ¥® ® = = =Þ là tiệm cận ngang. ; 1 1 lim lim 1 x x y y x - + ® ® = - ¥ = + ¥ =Þ là tiệm cận đứng.  Bảng biến thiên x –  1 + y ¢ + + y 2 - ¥ + ¥ 2  Giao điểm với trục hoành: cho 1 0 2 y x= = -Û Giao điểm với trục tung: cho 0 1x y= = -Þ  Bảng giá trị: x –2 0 1 2 4 y 1 –1 || 4 5  Đồ thị hàm số như hình vẽ bên đây: 0,25 0,25 0,25 0,25 b. (1.0 điểm) 0 0 0 0 0 0 2 1 5 5 2 1 5 5 2 1 x y x x x x + = = + = - =Û Û Û - 0.25 0.25 2  0 2 3 ( ) 3 (2 1) f x - ¢ = = - -  Phương trình tiếp tuyến cần tìm: 5 3( 2) 3 11y x y x- = - - = - +Û 0.5 Câu 2 (2.0 a. (1.0 điểm) Giải phương trình Sin2x + (1+2cos3x)sinx – 2sin(2x + 4 π )=0 ⇔ sin2x + sinx + sin4x – sin2x = 1 – cos(4x + 2 π ) 0,25 ⇔ sinx + sin4x = 1+ sin4x 0,25 ⇔ sinx = 1 0,25 ⇔ x = 2 π + k2 π , k ∈ Z 0,25 b. (1.0 điểm) 4 4 2 4 2 16 4 2 17.2 1 0 17. 1 0 4 17.4 16 0 16 16 x x x x x x- - - + = - + = - + =Û Û (*) 0,25  Đặt 4 x t = (ĐK: t > 0) phương trình (*) trở thành 0,25 (nhan) (nhan) 2 1 4 1 0 17 16 0 16 2 4 16 x x t x t t t x é é é = = = ê ê ê - + = ÛÛÛ ê ê ê = = = ê ê ê ë ë ë 0,25  Vậy, phương trình đã cho có hai nghiệm: x = 0 và x = 2. 0,25 Câu 3 (1.0 điểm) 0 (2 1) sinI x xdx p = - ò  Đặt 2 1 2. sin cos u x dx dx dv xdx v x ì ì ï ï = - = ï ï Þ í í ï ï = = - ï ï î î . Thay vào công thức tích phân từng phần ta được: 0 0 0 (2 1) cos ( 2 cos ) (2 1) 1 2 s in (2 1) 1 2.0 2 2 I x x x dx x p p p p p p = - - - - = - - + = - - + = - ò 0.5 0.5 3 Cõu 4 (1.0 im) Do BC A B BC A B BC A A ỡ ù ^ ù  ^ị ớ  ù ^ ù ợ (hn na, ( )BC A BB A   ^ ) V ã ( ) ( ) ( ) ( ) BC A B A BC BC A B A BC ABA BC A BC A BC ỡ ù ^ è ù ù ù   ^ èị ớ ù ù  = ầ ù ù ợ l gúc gia ( )A BC v ( )A BC  Ta cú, 2 2. 1 2. 3 . 2 3 2 A BC A BC S a S A B BC A B a BC a  D  D   = = = =ị ã ã 0 0 . cos 2 3. cos 30 3 . sin 2 3. sin 30 3 A B A B A BA a a A A A B A BA a a   = = =    = = = Vy, l.truù 3 1 1 3 3 . . 3 3 2 2 2 A B C a V B h S A A A B BC A A a a a   = = = ì ì ì = ì ì ì = (vtt) ( ) ( ) 3 2 ABC 1 1 1 a 3 V S .d G;ABC . AB .d G;AB 3 3 2 36 = = = . 0.25 0.25 0.25 0.25 Cõu 5 (1.0 im) Ta cú: 4(x 3 +y 3 ) (x+y) 3 , vi x,y>0 Tht vy: 4(x 3 +y 3 ) (x+y) 3 4(x 2 -xy+y 2 ) (x+y) 2 (vỡ x+y>0) 3x 2 +3y 2 -6xy 0 (x-y) 2 0 luụn ỳng Tng t: 4(x 3 +z 3 ) (x+z) 3 4(y 3 +z 3 ) (y+z) 3 3 3 3 3 3 3 3 3 3 3 4( ) 4( ) 4( ) 2( ) 6x y x z y z x y z xyz + + + + + + + 0,25 Mt khỏc: 3 2 2 2 1 2( ) 6 x y z y z x xyz + + 0,25 3 3 1 6( ) 12P xyz xyz + 0,25 Du = xy ra 2 2 2 1 1 x y z x y z x y z y z x xyz xyz = = = = = = = = Vy P 12, du = xy ra x = y = z =1 0,25 4 Câu 6 Chương trình chuẩn a. (1.0 điểm) (C) có tâm I(2;2), bán kính R=2 Tọa độ giao điểm của (C) và (d) là nghiệm của hệ: 2 2 0 2 2 0 4 4 4 0 2 0 x y x y x y x y x y  =    = + − =    ⇔   + − − + = =     =    Hay A(2;0), B(0;2) 0,25 Hay (d) luôn cắt (C ) tại hai điểm phân biệt A,B 0,25 Ta có 1 . 2 ABC S CH AB= V (H là hình chiếu của C trên AB) ax CH max ABC S m ⇔ V Dễ dàng thấy CH max ( ) ( ) 2 C C C x = ∩  ⇔  >  V 0,25 Hay V : y = x với : (2;2) d I ⊥   ∈  V V V (2 2;2 2)C⇒ + + Vậy (2 2;2 2)C + + thì ax ABC S m V 0,25 b. (1.0 điểm) Nhận xét: M ∉ (d1) và M ∉ (d2) Giả sử ( ) ( 1) ( ) ( 2) d I d H ∩ =   ∩ =  V V Vì I ∈ d1 ⇒ I(2t-1; -1-2t; 2+t) H ∈ d2 ⇒ H(4t’; -2; 3t’) 0,25 5 H 4 A B I y x M 2 2 O C 1 2 (1 4 ') 23 3 2 (2 2) 10 , 0 1 (3 3 ') 23 18 3 ( ; ; ) 5 5 10 cbt t k t TM kHM y t k t k R k t k t T − = −   =   ⇔ ⇔ + = + ⇔ = −   ∈ ≠    − = −  ⇒ − − uuur uuuur 0,5 Vậy phương trình đường thẳng đi qua 2 điểm I và H là: 1 56 2 16 3 33 x t y t z t = +   = −   = +  hoặc là: 5 8 17 0 12 9 16 18 0 x y z x y z + − + −   + − + =  0,25 Câu 7 (1.0 điểm)  Ta có, 2 2 ( 2) 4.2.5 36 (6 )i= - - = - =D 0.5  Vậy, phương trình (*) có 2 nghiệm phức phân biệt: ; z 1 2 2 6 1 3 2 6 1 3 4 2 2 4 2 2 i i z i i + - = = + = = - 0,5 6 . Trường THPT số 2 An Lão (trung bình – khá – giỏi) SỞ GD&ĐT BÌNH ĐỊNH ĐỀ THI THỬ TN THPT – NĂM HỌC 2014 - 20 15 Trường THPT Số 2 An Lão Môn Toán – Khối 12 Thời gian 180 phút ( Không kể thời gian. 0, 25 0, 25 0, 25 0, 25 b. (1.0 điểm) 0 0 0 0 0 0 2 1 5 5 2 1 5 5 2 1 x y x x x x + = = + = - =Û Û Û - 0. 25 0. 25 2  0 2 3 ( ) 3 (2 1) f x - ¢ = = - -  Phương trình tiếp tuyến cần tìm: 5 3(. biến thi n x –  1 + y ¢ + + y 2 - ¥ + ¥ 2  Giao điểm với trục hoành: cho 1 0 2 y x= = -Û Giao điểm với trục tung: cho 0 1x y= = -Þ  Bảng giá trị: x –2 0 1 2 4 y 1 –1 || 4 5  Đồ thị hàm số

Ngày đăng: 31/07/2015, 16:11

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w