1. Trang chủ
  2. » Đề thi

Đề thi thử THPT quốc gia môn Toán chọn lọc số 24

6 331 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 1,25 MB

Nội dung

KỲ THI THỬ TUYỂN SINH QUỐC GIA NĂM 2015 Môn: Toán (đề 24) Thời gian làm bài: 180 phút (Không kể thời gian giao đề) Đề thi được soạn theo cấu trúc mới nhất 2015!(Kèm đáp án chi tiết tại)! https://www.facebook.com/profile.php?id=100005223169289 Câu I (2 điểm) Cho hàm số 1 ( ) 1 x y C x    . 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số (C). 2. Tìm trên (C) những điểm M , sao cho tiếp tuyến tại M lập với hai tiệm cận một tam giác có chu vi nhỏ nhất. Câu II (1 điểm) Giải phương trình: 1 17 sin2 tan 2cos 2 sin cos 2 x x x x x            Câu III (1 điểm) Tính tích phân: I =   4 0 66 cossin 4sin  dx xx x Câu IV (1 điểm) Cho hình lăng trụ đứng ABC.A’B’C’ có  0 , 2 , 120 AC a BC a ACB   và đường thẳng ' A C tạo với mặt phẳng   ' ' ABB A góc 0 30 . Tính thể tích khối lăng trụ đã cho và khoảng cách giữa hai đường thẳng ' , ' A B CC theo a. Câu V (1 điểm) Cho ba số thực dương a, b, c thoả mãn abc = 1. Chứng minh rằng: 2 2 2 1 ( 2)(2 1) ( 2)(2 1) ( 2)(2 1) 3 a b c ab ab bc bc ac ac          Câu VI (1 điểm) Trong mặt phẳng với hệ toạ độ Oxy cho tam giác ABC vuông tại A, các đỉnh A, B thuộc đường thẳng y = 2, phương trình cạnh BC: 023  yx . Tìm toạ độ các đỉnh A, B, C biết bán kính đường tròn nội tiếp tam giác ABC bằng 3 . Câu VII (1 điểm) . Trong không gian với hệ toạ độ Oxyz, cho hai đường thẳng d 1 : x y z 1 1 2 1 2     và d 2 : x y z 2 1 1 1 2      . Lập phương trình đường thẳng d cắt d 1 và d 2 và vuông góc với mặt phẳng (P): x y z 2 5 3 0     . Câu VIII (1 điểm) Giải phương trình 2 2 2 4 4 2 8log 9 3 2log ( 3) 10 log ( 3) x x x       Câu IX (1 điểm) Giải bất phương trình:     2 3 1 3 2 3 4 x x x x x         ( ,x y  R ). CHÚC CÁC EM THÀNH CÔNG ! Ghi chú: - Thí sinh không được sử dụng bất cứ tài liệu gì! - Cán bộ coi thi không giải thích gì thêm! Hướng dẫn Câu I: 1 a) Txđ   / 1 D   . b) Sự biến thiên:  Chiều biến thiên: ' 2 2 0 ( 1) y x D x       , suy ra hàm số nghịch biến trên ( ;1) và (1;+ )   .  Cực trị: hàm số không có cực trị.  Giới hạn và tiệm cận: 1 1 lim , lim x x y y         nên đt 1 x  là tiệm cận đứng ; lim 1 x y   nên đt 1 y  là tiệm cận ngang.  Bảng biến thiên: x  1   y' - - y 1   1 c) Đồ thị 2 0 0 0 1 Gs ; ( ) 1 x M x C x          . Pt tiếp tuyến tại M: 0 0 2 0 0 1 2 ( ) ( 1) 1 x y x x x x        . Gọi A là giao điểm của tiếp tuyến với tiệm cận đứng. B là giao điểm của tiếp tuyến với tiệm cận ngang. Khi đó:   0 0 0 3 1; , 2 1;1 1 x A B x x          . Gọi I là giao điểm của 2 tiệm cận, (1;1) I . Ta có: 0 0 4 , 2 1 1 IA IB x x     , 2 2 0 0 2 2 0 0 16 4 (2 2) 2 ( 1) ( 1) ( 1) AB x x x x         . Khi đó chu vi của AIB  là     2 0 0 2 0 0 4 4 2 1 2 1 1 1 c x x x x         . Áp dụng Bđt AM – GM, ta có 2.2 2 2 4 4 2 4 c     . Vậy, c nhỏ nhất bằng 4 2 4  , khi         0 1 0 2 0 0 2 2 0 2 0 4 2 1 1 2; 2 1 1 1 2 1 2 4 1 2;1 2 1 1 x M M x x x M M x x                                Câu II (1đ) Đk cos 0 sin cos 0 x x x       . Ta có 17 cos cos sin 2 2 x x x                    . Pt sin 0 (1) sin 2sin cos 2sin 1 2cos 2 0 (2) sin cos 2 cos sin cos 2 cos x x x x x x x x x x x x                Xét pt (1) t/m đk nên nghiệm ,x k k     , của (1) cũng là nghiệm pt đã cho. (2) 2 sin cos 2 2 cos (sin cos ) 2 2 cos 0 x x x x x x       sin cos 2 sin 2 x x x    (3) Nếu sin 0 x  , (3)  cos 0 x  , vô lý. Nếu sin cos 0 x x   là nghiệm  2 sin 2 0 x  , vô lý. Vậy nghiệm của pt (3) cũng là nghiệm của pt đã cho. Mặt khác (3) sin sin 2 4 x x            2 2 2 44 5 2 5 2 2 12 3 4 x k x x k k xx x k                         Vậy, pt đã cho có các nghiệm 5 2 , 2 , 4 12 3 k x k x k x           , với k   . Câu III : Câu IV : Trong (ABC), kẻ CH AB    H AB  , suy ra   ' ' CH ABB A  nên A’H là hình chiếu vuông góc của A’C lên (ABB’A’). Do đó:        0 ' , ' ' ' , ' ' 30 A C ABB A A C A H CA H      .  2 0 1 3 . .sin120 2 2 ABC a S AC BC     2 2 2 0 2 2 . .cos120 7 7 AB AC BC AC BC a AB a        2. 21 7 ABC S a CH AB    Suy ra: 0 2 21 ' sin30 7 CH a A C   . Xét tam giác vuông AA’C ta được: 2 2 35 ' ' 7 a AA A C AC   . Suy ra: 3 105 . ' 14 ABC a V S AA    . Do   '/ / ' '/ / ' ' CC AA CC ABB A  . Suy ra:           21 ' , ' ', ' ' , ' ' 7 a d A B CC d CC ABB A d C ABB A CH    . Câu V Ta có VT = 2 2 2 ( 2)(2 1) ( 2)(2 1) ( 2)(2 1) a b c ab ab bc bc ac ac         = 1 1 1 2 1 2 1 2 1 ( )(2 ) ( )(2 ) ( )(2 ) b b c c a a a a b b c c         Vì a, b, c dương và abc = 1 nên đặt , , y z x a b c x y z    với x, y, z > 0 Khi đó VT = 1 1 1 ( 2 )( 2 ) ( 2 )( 2 ) ( 2 )( 2 ) y z z y z x x z x y y x x x x x y y y y z z z z         = 2 2 2 ( 2 )( 2 ) ( 2 )( 2 ) ( 2 )( 2 ) x y z y z z y z x x z x y y x         Ta có 2 2 2 2 2 9 ( 2 )( 2 ) 2 2 4 2( ) 5 ( ) 2 y z z y yz y z yz y z yz y z            Suy ra 2 2 2 2 2 ( 2 )( 2 ) 9 x x y z z y y z     (1) Tương tự có 2 2 2 2 2 ( 2 )( 2 ) 9 y y z x x z x z     (2); 2 2 2 2 2 ( 2 )( 2 ) 9 z z x y y x y x     (3) Cộng (1), (2), (3) vế theo vế ta được VT 2 2 2 2 2 2 2 2 2 2 ( ) 9 x y z y z x z y x       Lại có 2 2 2 2 2 2 2 2 2 x y z y z x z y x      = 2 2 2 2 2 2 2 2 2 1 1 1 ( )( ) 3 x y z y z x z y x         = 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 3 (( ) ( ) ( ))( ) 3 .9 3 2 2 2 x y y z z x y z x z y x               (BĐT Netbit) Suy ra VT 2 3 1 . 9 2 3   (đpcm) Câu VI Câu VII Viết lại x t d y t z t 1 1 1 1 1 2 : 1 2            , x t d y t z t 2 2 2 2 2 : 1 2           . (P) có VTPT n (2;1;5)   Gọi A = d  d 1 , B = d  d 2 . Giả sử: A t t t 1 1 1 (1 2 ; 1 ;2 )    , B t t t 2 2 2 ((2 2 ; ;1 2 )    AB t t t t t t 2 1 2 1 2 1 ( 2 1; 1; 2 2 1)          . d  (P)  AB n ,   cùng phương  t t t t t t 2 1 2 1 2 1 2 1 1 2 2 1 2 1 5           t t 1 2 1 1         A(–1; –2; –2)  Phương trình đường thẳng d: x y z 1 2 2 2 1 5      . Câu VIII Câu IX . KỲ THI THỬ TUYỂN SINH QUỐC GIA NĂM 2015 Môn: Toán (đề 24) Thời gian làm bài: 180 phút (Không kể thời gian giao đề) Đề thi được soạn theo cấu trúc mới nhất. bộ coi thi không giải thích gì thêm! Hướng dẫn Câu I: 1 a) Txđ   / 1 D   . b) Sự biến thi n:  Chiều biến thi n: ' 2 2 0 ( 1) y x D x       , suy ra hàm số nghịch. https://www.facebook.com/profile.php?id=100005223169289 Câu I (2 điểm) Cho hàm số 1 ( ) 1 x y C x    . 1. Khảo sát sự biến thi n và vẽ đồ thị hàm số (C). 2. Tìm trên (C) những điểm M , sao cho tiếp tuyến

Ngày đăng: 31/07/2015, 14:42

TỪ KHÓA LIÊN QUAN