Nguồn: diemthi.24h.com.vn ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2012 -2013 Môn thi : TOÁN (ĐỀ 28) Câu I: (2 điểm) Cho hàm số: ( ) 3 2 3 1 9 2y x m x x m = − + + + − (1) có đồ thị là (C m ) 1) Khảo sát và vẽ đồ thị hàm số (1) với m =1. 2) Xác định m để (C m ) có cực đại, cực tiểu và hai điểm cực đại cực tiểu đối xứng với nhau qua đường thẳng 1 2 y x= . Câu II: (2,5 điểm) 1) Giải phương trình: ( ) ( ) 3 sin 2 cos 3 2 3 os 3 3 os2 8 3 cos sinx 3 3 0x x c x c x x+ − − + − − = . 2) Giải bất phương trình : ( ) 2 2 1 2 1 1 log 4 5 log 2 7 x x x + − > ÷ + . 3) Tính diện tích hình phẳng giới hạn bởi các đường y=x.sin2x, y=2x, x= 2 π . Câu III: (2 điểm) 1) Cho hình lăng trụ ABC.A’B’C’ có đáy ABC là tam giác đều cạnh a, cạnh bên hợp với đáy một góc là 45 0 . Gọi P là trung điểm BC, chân đường vuông góc hạ từ A’ xuống (ABC) là H sao cho 1 2 AP AH = uuur uuur . gọi K là trung điểm AA’, ( ) α là mặt phẳng chứa HK và song song với BC cắt BB’ và CC’ tại M, N. Tính tỉ số thể tích ' ' ' ABCKMN A B C KMN V V . 2) Giải hệ phương trình sau trong tập số phức: ( ) 2 2 2 2 2 2 6 5 6 0 a a a a a b ab b a a + − = + + + + − = Câu IV: (2,5 điểm) 1) Cho m bông hồng trắng và n bông hồng nhung khác nhau. Tính xác suất để lấy được 5 bông hồng trong đó có ít nhất 3 bông hồng nhung? Biết m, n là nghiệm của hệ sau: 2 2 1 3 1 9 19 2 2 720 m m n m n C C A P − + − + + < = 2 ) Cho Elip có phương trình chính tắc 2 2 1 25 9 x y + = (E), viết phương trình đường thẳng song song Oy và cắt (E) tại hai điểm A, B sao cho AB=4. 3) Cho hai đường thẳng d 1 và d 2 lần lượt có phương trình: Điểm thi 24h Xem tra điểm thi tốt nghiệp THPT Đề thi đáp án tốt nghiệp THPT Đề thi tốt nghiệp trung học phổ thông các năm Xem tra đáp án đề thi tốt nghiệp THPT Nguồn: diemthi.24h.com.vn 1 2 : 2 3 x t d y t z t = + = + = − 2 1 2 1 : 2 1 5 x y z d − − − = = Viết phương trình mặt phẳng cách đều hai đường thẳng d 1 và d 2 ? Câu V: Cho a, b, c 0 ≥ và 2 2 2 3a b c+ + = . Tìm giá trị nhỏ nhất của biểu thức 3 3 3 2 2 2 1 1 1 a b c P b c a = + + + + + ĐÁP ÁN ĐỀ SỐ 28 Câu NỘI DUNG Điểm Câu I. b) 9)1(63' 2 ++−= xmxy Để hàm số có cực đậi, cực tiểu: 09.3)1(9' 2 >−+=∆ m 03)1( 2 >−+= m );31()31;( +∞+−∪−−−∞∈⇔ m Ta có ( ) 14)22(29)1(63 3 1 3 1 22 ++−+−++− + −= mxmmxmx m xy Gọi tọa độ điểm cực đại và cực tiểu là (x 1 ; y 1 ) và (x 2 ; y 2 ) 14)22(2 1 2 1 ++−+−=⇒ mxmmy 14)22(2 2 2 2 ++−+−= mxmmy Vậy đường thẳng đi qua hai điểm cực đại và cực tiểu là 14)22(2 2 ++−+−= mxmmy Vì hai điểm cực đại và cực tiểu đối xứng qua đt xy 2 1 = ta có điều kiện cần là [ ] 1 2 1 .)22(2 2 −=−+− mm 122 2 =−+⇔ mm −= = ⇔=−+⇔ 3 1 032 2 m m mm Theo định lí Viet ta có: = +=+ 3. )1(2 21 21 xx mxx Khi m = 1 ⇒ ptđt đi qua hai điểm CĐ và CT là: y = - 2x + 5. Tọa độ trung điểm CĐ và CT là: 0,25đ 0,25đ 0,5đ Điểm thi 24h Xem tra điểm thi tốt nghiệp THPT Đề thi đáp án tốt nghiệp THPT Đề thi tốt nghiệp trung học phổ thông các năm Xem tra đáp án đề thi tốt nghiệp THPT Nguồn: diemthi.24h.com.vn = ++− = + == + 1 2 10)(2 2 2 2 4 2 2121 21 xxyy xx Tọa độ trung điểm CĐ và CT là (2; 1) thuộc đường thẳng xy 2 1 = 1=⇒ m thỏa mãn. Khi m = -3 ⇒ ptđt đi qua hai điểm CĐ và CT là: y = -2x – 11. Tọa độ trung điểm CĐ và CT là: = ++− = + −= + 9 2 10)(2 2 2 2 2121 21 xxyy xx Tọa độ trung điểm CĐ và CT là (-2; 9) không thuộc đường thẳng xy 2 1 = 3 −=⇒ m không thỏa mãn. Vậy m = 1 thỏa mãn điều kiện đề bài. 1) Giải phương trình: 033)sincos.3(833cos36cos.32cos.sin6cos.sin2 033)sincos.3(82cos.33cos.32)3(cos2sin 232 3 =−−++−−+⇔ =−−+−−+ xxxxxxxx xxxxxx 0)sincos3(8)sincos3(cos.6)sincos3(cos2 2 =−+−−−−⇔ xxxxxxxx = = = ⇔ =−+ =− ⇔ =+−−−⇔ )(4cos 1cos 3tan 04cos3cos 0sincos3 0)8cos6cos2)(sincos3( 2 2 loaix x x xx xx xxxx Ζ∈ = += ⇔ k kx kx , 2 3 π π π 2) Giải bất phương trình: ) 7 1 (log)54(log 2 1 2 1 2 2 + >−+ x xx (1) Đk: −> +∞∪−−∞∈ ⇔ >+ >−+ 7 );1()5;( 07 054 2 x x x xx )1()5;7( ∞+∪−−∈⇒ x Từ (1) 7 1 log2)54(log 2 2 2 + −>−+⇒ x xx 0,25đ 0,25đ 0,25đ 0,25đ Điểm thi 24h Xem tra điểm thi tốt nghiệp THPT Đề thi đáp án tốt nghiệp THPT Đề thi tốt nghiệp trung học phổ thông các năm Xem tra đáp án đề thi tốt nghiệp THPT Nguồn: diemthi.24h.com.vn Câu II. 5 27 5410 491454 )7(log)54(log 22 2 2 2 2 − <⇔ >−⇔ ++>−+⇔ +>−+⇔ x x xxxx xxx Kết hợp điều kiện: Vậy BPT có nghiệm: ) 5 27 ;7( − −∈x 3) Ta có: x.sin2x = 2x ⇔ x.sin2x – 2x = 0 ⇔ x(sin2x – 2) =0 ⇔ x = 0 Diện tích hình phẳng là: ∫∫ −=−= 2 0 2 0 )22(sin)22sin.( π π dxxxdxxxxS Đặt − − = = ⇒ −= = x x v dxdu dxxdv xu 2 2 2cos )22(sin ∫ ++−−= 2 0 2 0 2 2 2 2cos 2 2 2cos. ( π π dxx x x xx S 2 0 2 2 4 2sin 24 π ππ ++−=⇔ x x S 44424 222 πππππ −=+−=⇔ S (đvdt) Gọi Q, I, J lần lượt là trung điểm B’C’, BB’, CC’ ta có: 2 3a AP = 3aAH =⇒ Vì ''AHA∆ vuông cân tại H. Vậy 3' aHA = HASV ABCCBABCA '. ''' =⇒ Ta có 4 3 2 3 . 2 1 2 aa aS ABC == (đvdt) 0,5đ 0,25đ 0,25đ 0,25đ 0,25đ 0,25đ 0,25đ 0,25đ Điểm thi 24h Xem tra điểm thi tốt nghiệp THPT Đề thi đáp án tốt nghiệp THPT Đề thi tốt nghiệp trung học phổ thông các năm Xem tra đáp án đề thi tốt nghiệp THPT 45 E K J I A B C C' B' A' P H Q N M Nguồn: diemthi.24h.com.vn Câu III. 4 3 4 3 .3 32 ''' aa aV CBABCA ==⇒ (đvtt) (1) Vì ''AHA∆ vuông cân ( ) CCBBHKAAHK ''' ⊥⇒⊥⇒ G ọi E = MN ∩ KH ⇒ BM = PE = CN (2) mà AA’ = 22 ' AHHA + = 633 22 aaa =+ 4 6 2 6 a CNPEBM a AK ===⇒=⇒ Ta có thể tích K.MNJI là: 1 . 3 1 1 6 ' 2 4 4 MNJI V S KE a KE KH AA = = = = 2 6 6 . . ( ) 4 4 MNJI a a S MN MI a dvdt= = = 2 3 1 6 6 ( ) 3 4 4 8 KMNJI a a a V dvtt⇒ = = 3 3 2 3 ' ' ' 3 1 8 8 3 2 8 8 ABCKMN A B C KMN a a V a a V − ⇒ = = + 2) Giải hệ phương trình sau trong tập số phức: =−+++ = + −+ 06)()( 5 6 222 2 2 aabbaa aa aa ĐK: 0 2 ≠+ aa Từ (1) 06)(5)( 222 =−+−+⇔ aaaa =+ −=+ ⇔ 6 1 2 2 aa aa Khi 1 2 −=+ aa thay vào (2) +− = −− = ⇔ =++⇒ =−−−⇒ 2 .231 2 .231 06 06 2 2 i b i b bb bb 0,25đ 0,25đ 0,25đ 0,25đ 0,2 5đ Điểm thi 24h Xem tra điểm thi tốt nghiệp THPT Đề thi đáp án tốt nghiệp THPT Đề thi tốt nghiệp trung học phổ thông các năm Xem tra đáp án đề thi tốt nghiệp THPT Nguồn: diemthi.24h.com.vn +− = −− = ⇔=++ 2 31 2 31 01 2 i a i a aa Khi 6 2 =+ aa = −= ⇔ 2 3 a a Thay vào (2) −− = +− = ⇔ =−+⇔ =−+⇒ 2 51 2 51 01 0666 2 2 b b bb bb Vậy hệ pt có nghiệm (a, b) là: +−−− −−−− 2 31 ; 2 231 , 2 31 ; 2 231 iiii −−+− −−+− 2 31 ; 2 231 , 2 31 ; 2 231 iiii −− +− −− − +− − 2 51 ;2, 2 51 ;2, 2 51 ;3, 2 51 ;3 = <++ − + − 720 2 19 2 9 1 12 3 2 n mn m m P AcC Từ (2): 761!6720)!1( =⇔=−⇔==− nnn (3) Thay n = 7 vào (1) )!1( ! . 2 19 9 !8!2 !10 )!2(!2 ! − <++ − ⇒ m m m m 09920 19990 2 19 2 9 45 2 )1( 2 2 <+−⇔ <++−⇔ <++ − ⇔ mm mmm m mm 119 <<⇔ m vì 10 =⇒Ζ∈ mm Vậy m = 10, n = 7. Vậy ta có 10 bông hồng trắng và 7 bông hồng nhung, để 0,25đ 0,25đ 0,25đ 0,25đ Điểm thi 24h Xem tra điểm thi tốt nghiệp THPT Đề thi đáp án tốt nghiệp THPT Đề thi tốt nghiệp trung học phổ thông các năm Xem tra đáp án đề thi tốt nghiệp THPT Nguồn: diemthi.24h.com.vn Câu IV: lấy được ít nhất 3 bông hồng nhung trong 5 bông hồng ta có các TH sau: TH1: 3 bông hồng nhung, 2 bông hồng trắng có: 1575. 2 10 3 7 =CC cách TH2: 4 bông hồng nhung, 1 bông hồng trắng có: 350. 1 10 4 7 =CC cách TH3: 5 bông hồng nhung có: 21 5 7 =C cách ⇒ có 1575 + 350 + 21 = 1946 cách. Số cách lấy 4 bông hồng thường %45,31 6188 1946 6188 5 17 ≈=⇒ = P C 2) Gọi ptđt // Oy là: x = a (d) tung độ giao điểm (d) và Elip là: 25 25 25 1 9 1 925 222 22 aay ya − =−=⇔ =+ 2 2 2 25 5 3 25 25 .9 ay a y −±=⇒ − =⇒ Vậy −− − 22 25 5 3 ;,25 5 3 ; aaBaaA −= 2 25 5 6 ;0 aAB 9 125 9 100 25 9 100 25 3 10 25 425 5 6 || 222 2 =−=⇔=−⇔=−⇔ =−=⇒ aaa aAB 3 55 ±=⇒ a Vậy phương trình đường thẳng: 3 55 , 3 55 = − = xx 3)đường thẳng d 2 có PTTS là: += += += '51 '2 '21 tz ty tx ⇒ vectơ CP của d 1 và d 2 là: 1 2 (1;1; 1), (2;1;5) d d u u= − = r ⇒ VTPT của mp( α ) là 1 2 . (6; 7; 1) d d n u u α = = − − r r r 0,25đ 0,25đ 0,25đ Điểm thi 24h Xem tra điểm thi tốt nghiệp THPT Đề thi đáp án tốt nghiệp THPT Đề thi tốt nghiệp trung học phổ thông các năm Xem tra đáp án đề thi tốt nghiệp THPT Nguồn: diemthi.24h.com.vn Câu V: ⇒ pt mp( α ) có dạng 6x – 7y – z + D = 0 Đường thẳng d 1 và d 2 lần lượt đi qua 2đ’ M(2; 2; 3) và N(1; 2; 1) ( ,( )) ( ,( )) |12 14 3 | | 6 14 1 | | 5 | | 9 | 7 d M d N D D D D D α α ⇒ = − − + = − − + ⇔ − + = − + ⇔ = Vậy PT mp( α ) là: 3x – y – 4z + 7 0 = Ta có: P + 3 = 2 2 3 2 2 3 2 2 3 111 a a c c c b b b a + + ++ + ++ + 24 1 1212 24 6 2 2 2 2 3 b b a b a P + + + + + =+⇔ 24 1 1212 2 2 2 2 3 c c b c b + + + + + + 24 1 1212 2 2 2 2 3 a a c a c + + + + + + 3 6 3 6 3 6 216 3 216 3 216 3 cba ++≥ 6 222 3 82 9 )( 222 3 22 3 =++≥+⇒ cbaP 2 3 22 3 22 9 22 3 22 9 6 3 =−=−≥⇒ P Để P Min khi a = b = c = 1 0,25đ 0,25đ 0,25đ 0,25đ 0,25đ 0,25đ Điểm thi 24h Xem tra điểm thi tốt nghiệp THPT Đề thi đáp án tốt nghiệp THPT Đề thi tốt nghiệp trung học phổ thông các năm Xem tra đáp án đề thi tốt nghiệp THPT . Nguồn: diemthi.24h.com.vn ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG NĂM 2012 -2013 Môn thi : TOÁN (ĐỀ 28) Câu I: (2 điểm) Cho hàm số: ( ) 3 2 3 1 9 2y x m x x m = − + + + − (1) có đồ thị là (C m ) 1). trình: Điểm thi 24h Xem tra điểm thi tốt nghiệp THPT Đề thi đáp án tốt nghiệp THPT Đề thi tốt nghiệp trung học phổ thông các năm Xem tra đáp án đề thi tốt nghiệp THPT Nguồn: diemthi.24h.com.vn 1 2 :. là: 0,25đ 0,25đ 0,5đ Điểm thi 24h Xem tra điểm thi tốt nghiệp THPT Đề thi đáp án tốt nghiệp THPT Đề thi tốt nghiệp trung học phổ thông các năm Xem tra đáp án đề thi tốt nghiệp THPT Nguồn: diemthi.24h.com.vn = ++− = + == + 1 2 10)(2 2 2 2 4 2 2121 21 xxyy xx Tọa