1. Trang chủ
  2. » Đề thi

Đề thi thử THPT quốc gia môn Hóa học số 17

22 382 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 22
Dung lượng 853,57 KB

Nội dung

http://tuyensinh247.com/hoc-truc-tuyen-mon-hoa-c49.html  1/22 SỞ GD – ĐT VĨNH PHÚC TRƯỜNG THPT YÊN LẠC ĐỀ KHẢO SÁT CHẤT LƯỢNG LẦN 2 LỚP 12 NĂM HỌC 2014 – 2015 MÔN HÓA HỌC Thời gian làm bài:90 phút; (50 câu trắc nghiệm) Mã đề thi 485 (Học sinh không được sử dụng tài liệu, kể cả bảng tuần hoàn các nguyên tố hóa học)  sinh: : Cho: H = 1; C = 12; N = 14; O = 16; F = 19; Na = 23; Mg = 24; Al = 27; Si = 28; P = 31; S = 32; Cl = 35,5; K = 39; Ca = 40; Fe = 56; Ba = 137; Zn = 65; Cu = 64. Câu 1:  A. NaCl và AgNO 3 . B. NaAlO 2 và HCl. C. NaHSO 4 và NaHCO 3 . D. AlCl 3 và CuSO 4 . Câu 2:    2 .  A. 0,45. B. 0,25. C. 0,65. D. 0,35. Câu 3:  A. HClO 4 <HClO 3 <HClO 2 <HClO B. HClO 2 <HClO 3 <HClO 4 <HClO C. HClO< HClO 2 < HClO 3 < HClO 4 D. HClO 3 <HClO 4 <HClO < HClO 2 Câu 4:    A. NH 4 Cl + NaOH o t  NaCl + NH 3 + H 2 O. B. CH 3 COONa (r) + NaOH (r) o CaO,t  Na 2 CO 3 + CH 4 . C.  2 SO 4  o t  NaHSO 4 + HCl. D. 2H 2 O 2 o t  O 2 + 2H 2 O. Câu 5: Cho  2N 2 (k) + 3H 2 (k) p, xt   2NH 3 (k)  3  2  2 là 0,10mol/l.  A. 3600. B. 360000. C. 36000. D. 360. Câu 6:  H 2 N-CH 2 -CO-NH-CH-CO-NH-CH-CO-NH-CH 2 -CH 2 -CO-HN-CH 2 -COOH CH 3 C 6 H 5 A. 3. B. 2. C. 4. D. 1. Câu 7:  2 O 3 ,CuO, Fe 2 O 3   A. Al 2 O 3 , Cu, Fe, Mg B. Al, Cu, Fe, MgO C. Al, Cu, Fe, Mg D. Al 2 O 3 , Cu, Fe, MgO http://tuyensinh247.com/hoc-truc-tuyen-mon-hoa-c49.html  2/22 Câu 8: Một dung dòch có chứa 2 cation Fe 2+ (0,1 mol) Al 3+ (0,2 mol) và 2 anion Cl - (x mol) và SO 4 2- (y mol). Khi cô cạn dung dòch thu được 46,9 gam muối khan .Tìm x và y A. 0,1 và 0,2 mol B. 0,3 và 0,2 mol C. 0,2 và 0,3 mol D. 0,2 và 0,4 mol Câu 9:  3  4  A.  B. khơng  C.  D.  Câu 10:  1. PO 4 3- 2. CO 3 2- 3. HSO 3 - 4. HCO 3 - 5. HPO 3 2- A. 3, 4, 5. B. 1, 2, 5. C. 2, 4, 5. D. 1, 4, 5. Câu 11:  3     3  A. 7,8g B. 12,48g C. 3,12g D. 6,63g Câu 12:  3 O 4 , Fe 2 O 3   2 SO 4 Cu(NO 3 ) 2 1M   3 ) 2  A. 500ml; 2,24lit B. 50ml; 1,12lit C. 50ml; 2,24lit D. 25 ml; 1,12lit Câu 13: gam CO 2 và 3,6 gam H 2   A. 32 gam. B. 4 gam. C. 24 gam. D. 16 gam. Câu 14: : Zn 2+ , Sn 2+ , Ni 2+ , Fe 2+ , Pb 2+ .                   A. Pb 2+ > Sn 2+ > Fe 2+ > Ni 2+ > Zn 2+ B. Sn 2+ > Ni 2+ > Zn 2+ > Pb 2+ > Fe 2+ C. Pb 2+ > Sn 2+ > Ni 2+ > Fe 2+ > Zn 2+ D. Zn 2+ > Sn 2+ > Ni 2+ > Fe 2+ > Pb 2+ Câu 15: Cho 0,02 mol -  A. HOOC-CH 2 CH 2 CH(NH 2 )-COOH. B. CH 3 CH(NH 2 )-COOH. C. H 2 N-CH 2 CH(NH 2 )-COOH. D. HOOC-CH 2 CH(NH 2 )-COOH. Câu 16:      A. CH 3 COOH, C 2 H 6 , CH 3 CHO, C 2 H 5 OH. B. C 2 H 6 , CH 3 CHO, C 2 H 5 OH, CH 3 COOH. C. C 2 H 6 , C 2 H 5 OH, CH 3 CHO, CH 3 COOH. D. CH 3 CHO, C 2 H 5 OH, C 2 H 6 , CH 3 COOH. Câu 17:  A. H 2 CO 3 , H 2 SO 3 , HClO, Al 2 (SO 4 ) 3 . B. H 2 S, CH 3 COOH, HClO, NH 3 . C. H 2 CO 3 , H 3 PO 4 , CH 3 COOH, Ba(OH) 2 . D. H 2 S, H 2 SO 3 , H 2 SO 4 , NH 3 . Câu 18:  CH 3 X Br 2 /as Y Br 2 /Fe, t o Z dd NaOH T NaOH n/c, t o , p  A. p-CH 3 C 6 H 4 Br, p-CH 2 BrC 6 H 4 Br, p-HOCH 2 C 6 H 4 Br, p-HOCH 2 C 6 H 4 ONa. B. p-CH 3 C 6 H 4 Br, p-CH 2 BrC 6 H 4 Br, p-CH 2 BrC 6 H 4 OH, p-CH 2 OHC 6 H 4 ONa. C. CH 2 Br-C 6 H 5 , p-CH 2 Br-C 6 H 4 Br, p-CH 3 C 6 H 4 OH, p-CH 2 OHC 6 H 4 ONa. D. CH 2 BrC 6 H 5 , p-CH 2 Br-C 6 H 4 Br, p-HOCH 2 C 6 H 4 Br, p-HOCH 2 C 6 H 4 ONa. Câu 19:  2   2 và H 2  A. 18,96 gam B. 16,80 gam C. 20,40 gam D. 18,60 gam Câu 20: X, Y,   3     ,    Z = 1,875M X .        A. (OH) 2 . B. 1 anken duy n. C.             . D.   1     . [...]... 11,7 gam H2O Số mol của axit linoleic trong m gam hỗn hợp X là A 0,010 B 0,005 C 0,020 D 0,015 LỜI GIẢI: Các axit đều đơn chức nên số mol axit bằng số mol NaOH n(axit) = nNaOH = 0,04.1 = 0,04(mol) >> Truy cập http://tuyensinh247.com/hoc-truc-tuyen-mon-hoa-c49.html để học hóa tốt hơn 19/22 Ta nhận thấy đốt cháy axit panmitic (C16H32O2) hay axit stearic (C18H36O2) đều cho số mol CO2 bằng số mol H2O Còn... sai, bị oxi hóa => Đáp án C Câu 34: Trong các phản ứng sau, phản ứng nào HCl đóng vai trò là chất oxi hoá? A 16HCl + 2KMnO4  2MnCl2 + 5Cl2 +8H2O + 2KCl B 4HCl +2Cu + O2 2CuCl2 + 2H2O C 4HCl + MnO2 MnCl2 + Cl2 + 2H2O D 2HCl + Fe  FeCl2 + H2 >> Truy cập http://tuyensinh247.com/hoc-truc-tuyen-mon-hoa-c49.html để học hóa tốt hơn 15/22 LỜI GIẢI: Đóng vai trò là chất oxi hóa => giảm số oxi hóa => ý D... cho số mol H2 bay ra bằ ng số mol NaOH cầ n dùng để trung hòa cũ ng lươ ̣ng X trên => 2 nhóm OH và 1 nhóm gắn vào vòng => Đáp án B >> Truy cập http://tuyensinh247.com/hoc-truc-tuyen-mon-hoa-c49.html để học hóa tốt hơn 13/22 Câu 29: Cho 0,1 mol mỗi chất gồm: Zn, Fe, Cu tác dụng hết với dung dịch HNO3 dư thu được dung dịch X và 2,688 lít hỗn hợp gồm NO2, NO, N2O, N2 Trong đó số mol NO2 bằng số. .. mol AgCl= 21,525/(108+35,5) = 0,15 mol => số mol NaCl = 0,15 mol => số mol CnH2n+1Cl = 0,15 mol => M(CnH2n+1Cl) = 13,875/0,15 = 92,5 => 14n+1 + 35,5 = 92,5 => n = 4 => CT của Y là C4H9Cl => Dẫn xuất halogen bậc 2 chỉ có 1 chất => Đáp án B >> Truy cập http://tuyensinh247.com/hoc-truc-tuyen-mon-hoa-c49.html để học hóa tốt hơn 20/22 Câu 47: Hòa tan hoàn toàn 17, 88g hỗn hợp gồm 2 kim loại kiềm A, B và... (9) axit no, đơn chức, mạch hở; (10) axit không no (có một liên kết đôi C=C), đơn chức; (11) este no, đơn chức, mạch hở; (12) glucozo dạng mạch hở; frutozo dạng mạch hở; Số dãy đồng đẳng mà khi đốt cháy hoàn toàn đều cho số mol CO2 bằng số mol H2O là A 7 B 5 C 6 D 8 LỜI GIẢI: Các ý thỏa mãn là: 3 5 6 8 9 11 12 => Đáp án A Câu 23: Hòa tan hoàn toàn 5,18 gam hỗn hợp gồm Al2O3, Fe2O3, CuO, ZnO trong 500... hóa tốt hơn 19/22 Ta nhận thấy đốt cháy axit panmitic (C16H32O2) hay axit stearic (C18H36O2) đều cho số mol CO2 bằng số mol H2O Còn đốt cháy axit linoleic (C18H32O2) cho số mol CO2 lớn hơn số mol H2O Gọi x là số mol axit linoleic thì số mol CO2 lớn hơn H2O là 18x - 16x = 2x => 2x = 15,232/22,4 - 11,7/18 = 0,03 => x = 0,015 => Đáp án D Câu 45: Hòa tan hết m gam hỗn hợp Fe, Zn bằng dung dịch H2SO4 10%... http://tuyensinh247.com/hoc-truc-tuyen-mon-hoa-c49.html để học hóa tốt hơn 12/22 tăng áp suất thì cân bằng sẽ chuyển dịch về bên làm giảm số mol khí, tăng nhiệt độ thì cân bằng sẽ chuyển dịch về hướng thu nhiệt => 1 và 3 => Đáp án A Câu 26: Khi nhỏ từ từ dung dịch chứa x mol NaOH vào dung dịch hỗn hợp gồm 0,8 mol HCl và 0,6 mol AlCl3, kết quả thí nghiệm được biểu diễn trên đồ thị sau: Tính khối lượng kết tủa thu được tại thời điểm số mol NaOH tiêu... khan Số mol HNO3 bị khử trong phản ứng trên là A 0,09 mol B 0,06 mol C 0,08 mol D 0,07 mol LỜI GIẢI: Khố i lươ ̣ng muố i nitrat kim loa ̣i = 6 + 0,02 x 8 x 62 + 0,02 x 3 x 62 = 19,64 gam -> m NH4NO3 = 25,4 - 19,64 = 5,76 gam -> n NH4NO3 = 5,76/80 = 0,072 mol -> n HNO3 bị khử = 2n N2O + n NO + n NH4NO3 = 0,132 => Đáp án D >> Truy cập http://tuyensinh247.com/hoc-truc-tuyen-mon-hoa-c49.html để học hóa. .. HNO3 dư thu được dung dịch X và 2,688 lít hỗn hợp gồm NO2, NO, N2O, N2 Trong đó số mol NO2 bằng số mol N2 Cô cạn dung dịch X thu được 58,8 gam muối Số mol HNO3 tham gia phản ứng là A 0,868 B 0,893 C 0,832 D 0,845 LỜI GIẢI: Dễ tính nFe=nMg=nCu=0,1 mol Số mol hh khí=0,12 mol Khối lượng muối của KL=57,8 gam nNH4NO3=0,0125 mol Bảo toàn e ta có: 3nFe+2(nMg+nCu)=10nN2+3nNO+nNO2+8nN2O+8nNH4NO3... các số nguyên tố i gia n ) của phản ứng trên bằng A 22 B 38 C 29 D 30 LỜI GIẢI: 8Al + 3NO3- + 5 OH- + 2H2O -> 8AlO2 - + 3NH3 => Đáp án C Câu 22: Cho các hợp chất hữu cơ thuộc các dãy đồng đẳng sau: (1) ankan; (2) ancol no, đơn chức, mạch hở; (3) monoxicloankan; (4) ete no, đơn chức, mạch hở; (5) anken; >> Truy cập http://tuyensinh247.com/hoc-truc-tuyen-mon-hoa-c49.html để học hóa tốt hơn 11/22 (6) . VĨNH PHÚC TRƯỜNG THPT YÊN LẠC ĐỀ KHẢO SÁT CHẤT LƯỢNG LẦN 2 LỚP 12 NĂM HỌC 2014 – 2015 MÔN HÓA HỌC Thời gian làm bài:90 phút; (50 câu trắc nghiệm) Mã đề thi 485 (Học sinh không được. Mã đề thi 485 (Học sinh không được sử dụng tài liệu, kể cả bảng tuần hoàn các nguyên tố hóa học)  sinh: :. src=" 6gIA2 GFpEQTBi+O5z+/PeFZXntvX7tRmyl1pjIli9F+fzJmyQF0AADszLYIgGM6Gf/l0wa/S1zzJb8/Vry507NDeyZHMF5/I6grUBQAw8Glxan/2ylyz46HOHMpNjpi+WKsSB7/4qP7z+XrbUxnjhej3RzMnRyKXcKMuAICdkBbL+7Yvz9YuzW4YGMPZ8P/+nYJnuElm3FiKby/Fs5Vk0wmN8UL0u/uiQ0PRoT2hqEBdAAA7LS2Wx8d/887DJm/58rH80SGbu1uNjQf1BmOzkWxogRkDwf+rA4C0aD8tgiDIR8Gp/c1Onn3tTs3z3KJ8FIzmwvX/Jy1QFwDAzk+LZc8daLazYqYcz5StlQB1AQBIi83SIgiC0VzYfOv2Tz8wfQHqAgCQFpulxbIvPtFscdTVhfp81fQFqAsAQFpslhZBEIzmwvFCs3HFmx/WPfOgLgAAabFJWiz78pPN3uDKXK0Se/pBXQAA0mKztAiC4OhQtNn0hd0XoC4AAGnRmubTF5dma7HNF6AuAABp0YrDe6LhbLOrGa7dt/sC1AUAIC1aGViEwQsHm73LxbumL0BdAADSojUn92WaTF8s1pL3HtjcDeoCAJAWrYwtwuAPH2/2vj++a283qAsAQFq05vcea3Zv90w5nl4yfQHqAgCQFi3IR8Hpph/kJ7OmL0BdAADSojXPHWj2ca6X4vmqzd2gLgAAadGCfBSc2t/so71xz/QFqAsAQFq05rkDzXZfXF2oV2y+AHUBAEiLVozmwsmRZoHx5oc7avqiVE/eLcVXF+rz1UQ4sWtlPQUAIC269JC+8Hj26sKGl3Nfmq09dyCbH/BfdVbi4I17tWv364u1R3aSjBeiPzuUGy+EfjLZVcxdAIC06JbxQjheaDbY+PVifaCf9ply8t3r5StztTVpEQTBTDk+N1X+0Yy7yVEXAIC06JAvP9nsU1y8O8CD78uztXNT5fVdsdqVudpFtweiLgAAadERR4eiJtMXi7XkvQcDuUdhppxcau3WjitztZmy+QvUBQAwCKZKWx6dn9rfo7RY9oXHm+3t/vEA/mq/Egffu7mFotvSG4O6AAD65nP7M1t6+4li9MLBnh7rcnJfZji74ebmmXI8vTRg0xdv3Ks1XxC1xmItKdVNX6AuAIDUK2Y22Tm92nA2PHMoF/X2HKMoDJr3zE9mB2z64tr9LW9GrzqjFnUBAAyEP2p5LuLrR/LFTB/OSP3McLMJluuleL46ML/aL9WTLU1cLLu5JC9QFwDAIHh6b/bhwn4AACAASURBVEsv6Kf2Z/t1/UI+Ck433enxxr2Bmb64/bCdENqTcfEF6gIAGIiX8zA4tX+T6YvhbNjj7RZrPHeg2We/ulAflPutH7a1g+LQHnWBugAABsR/Gt1kb/cLB7NRX8e3+WiTBHrzw8GYvjgy1M7wqWjuAnUBAAyK8ULY5Fym4Wx4cl+m7w/yuQPNHsOl2dpATF/ktj562nRmCdQFAJAuf/j4hkPYZ0czUQp+dT6aCydHmgXGrxfr6X+ei5lmIdcw7b74hLpAXQAAA+X3Httw4H68mJZX/C883mycffFuLR6Es6O+fiTf+hv/yadyeQMu1AUAMFjyUTCxQUU8WUjLK/54odntHIu15L0HA7A6arwQtrjY6fRY9kTRcAt1AQAMoP/c6NTX8UKUqt+df/nJZuPyH98djL3dLxzMNg+M4Wz4tSP558esiUJdAACD6fCeBq/sBwvpOq3o6FDUZPpiphxPD8LFc1EYfGk8e/Z4oeEejFP7s9+aKJi1YBcKkyTxLADAjnF5tnZp9pFf/784nvv8/kyqHuTVhfqF29WN/utEMfrGVjY29N3yReM3l+I9mfDQntDhs+xmkhoAdpTPrjt5diiTugd5cl+mybFL10vx8nh9UIzmwuXjsE4UI2mBugAAdo7126b3pG+8G4VB84vD37hX860EdQEA9N8XHs+k/0F+ZrjZg7y6UB+Im/UAdQEAO9yagfvDehpXGeWj4HTT85Te/ND0BagLACAFA/fmV2KnxHMHmtXFpdma6QtQFwBA/z27fwDqYtMK+vVi3bcS1AUA0GeH90QrhzK9s5jeKYAvPtFs+uLi3Vrs5HxQFwBAn1/gw+DZ0Y+nBe6W0ztCXz7IdaP/ulhL3ntgdRSoCwCg3z7328VRM+U4zTMAzRdx/fiuvd2gLgCAfitmPrn4YqGW3rw4OhStuaBjtZlyPL1k+gLUBQDQb390MDs5kvmLpwujuVRfIP3lJ5vtvnjtjukLGBhZTwEA9MZ8NenxKP9EMTpRHIDfJB4dioaz4eIGEywz5bj3Tx3QHnMXANAL00vxd94rX571a/jGXjjY7Deeb9zzvIG6AACCIAiCd0vx+RuVIAguzdYERkMn92VWjtBd7+pCvVR3Ni2oCwDY9S7P1r5/s7LyR4HReESy6gjdhn4252Y9UBcAsOvT4tK6lhAYDT13oNniqEuztYqzo0BdAMCuNb0UX9qgIgTGevkoOD3WLDB+8ZHpC1AXALBb02J5r8VGBMZ6n2t6s96/flCLbb4AdQEAu1DztBAYDRUz4eTIhoGxWEuu3Td9AeoCAHafJicgCYwmvvhEs8VRP/1AXYC6AIDd5/jeVl9kBcZqo7lwYuMbAGfK8fSSzd2gLgBglxnLb+FuaYGx2n9uurf7tTueKFAXALDLHNhKXQiM1Y4OReOFZtMXM2Wbu0FdAMBu8lgu3Oq7CIwVX36y+e4LzxKoCwDYTUayYRvvJTCWHd4TNdkWf3WhPl81fQHqAgDUhcBoZYASBi8cbDZ98Us364G6AIBdNT5um8AIguDkvkyT6YtLs7WKs6NAXQDA7tHkZFWB0UqePTva7OruNz+0hAzUBQDsGsVMuJ13FxjPHcg2f35imy9AXQDALvHM8HZfZ3d5YOSj4HTTuy+u3bf7AtQFACAwWvO5/c0WR128a/oC1AUA7A5HhjrzOrubA6OYCSdHNgyMxVpy66HN3aAuAACB0ZovPtFscdRrd+ztBnUBALvAaKPruk/tzwqMrT6NTaYvZsrx9JLpC1AXALArHR4KXz6WFxhb8mzT3Rc/cbs5qAsA2A3W/9L9w0pydCgSGFtydCgaL2w4aLleiuerNneDugCA3We2kiwPlwXGlnz5yWYryt64Z/oC1AUA7HTrr7y4W/74t+wCY0uODkXD2Q1vJ7y6UDd9AeoCAHadmXK8esQsMFr3wsFm0xe//MjNeqAuAGBHa3jlRWXVEUcCo3Un92WaTF9cmq1VnB0F6gIAdrBco1faB/VH1vAIjFZHLeEm0xdvfmj3BagLANi5ipkGv2tfqK3dISAwWvSZ4UzzpyK2+QLUBQDsYOsX83zUaP+xwGhFPgpOjzWbvrh23+4LUBcAsHMd37v21fbDSuNfsAuMVjx3oFldXLxr+gLUBQDsXHvXLY6arWw4/hUYm2o+ffHsaCYK/dCBugCAHerw0NrR7sqVFwKjPf/xsca7L06PZZ9vum4KUBcAsNOsvvJCYLRhNBdOjmSkBagLANh1Nr3yQmC04YtPZKUFqAsAIAjWXXmRwsB4a64+vZTe2+lWT19IC1AXALBbjOZauvIiVYFxebb2+kz1/I1KmgPj2f0ZaQHqAgBofOVFSgLj8mzt0m/fK82BcXQoOnMoJy1AXQDA7rJ+C/LSVu5862VgrE6L9AfG+icWUBcAsOvc3OJ4vTeBsT4t0h8YgLoAgN3lmeG1L7il+pYvlO52YGyUFgIDUBcAkGrXS+2M1LsXGM3TQmAA 6gIA0 qLhlRdx0s6H6kZgtJIWAgNQFwCQXi0eStvtwGg9LYIgGM6Gj+dD3ztAXQBA3zS88mI7OhUYW02Ls8fzxYy6ADbkiGgA6I+bS/Forv0DVZcD4/yNSnuBseZ/SAugI8xdAEAvdONmhm3OYEgLQF0AwA7xzmIHtkdvJzCkBaAuAGAgNTw2qiO6GhjSAlAXAJA6Q+sWRk096NjRrl0KDGkBqAsASKODhbWvuYvtnkjbm8CQFoC6AICUKjR6yS3VUxoY0gJQFwCQXiPZBiP1aqevve5IYEgLQF0AQLpfcRuN1Rc6ujiqU4EhLQB1AQBpN1Fc+7L7UTXpxifaZmD8bK7umwWoCwBItfUTAh9Wki59rm1etHe55Yv2ANQFAPTB+isvZrtWF0EQTJXa39UhMAB1AQCptv7Ki86eGbXa5dnape3lgcAA1AUApNf6Ky+ul+JufKLtp4XAANQFAKRawysv4k7PXnQqLQQGoC4AIL0aXnnR2UNpO5sWAgNQFwCQ1hfdRndIlDu3NqobaSEwAHUBACk1vm511N0O5UX30kJgAOoCANLoYKErd2BvKS2Gs20+BoEBqAsASJGx/NqR/TuL25272GpanD2ed9EeoC4AYOAdyHd47qKNtChmQjd5A12S9RQAMIji5OPTlm4urf3d/5GhKBcFxUyYwof9WG7to7q6UD9zKNfLtFj+43JgnL9RaS8wgiB4fswoAlAXAAxyUdx6GE+V4htL8ab30A1nw+N7o2eGoyND0Ug2jNLRGiPZjj2O7aSFwADUBQC71/RS/PZc/epCvfV3WawlVxc+fpfhbPjCwezJfZm+N8beRjMq89VkNLe1R7b9tBAYgLoAYHeJk+Da/frFu7XF7V05t1hLLtyuXszW/vDx7O89lsn3b9dhRz51p9JCYAAdFyZJ4lkAIIWuLnSgKxp6+Vj+6FDfCuPcVGXm0TsuvnYkf6LY6uPpbFqsmF6K2wuMIAhOj2UFBrDMmVEApM58NTk3Vblwu9qNtAiC4PyNSh9PPVp/5cXDeqtfZpfSIvjtDEZ7X5FTpAB1AUAaxUnw1lz9O++VZzp0g3WTAfErNytxP+bvj6ybNrm11NLj6F5aCAxAXQCw01Ti4NVblddnqr35dNdL8d++Vy7Ve10YQ5m1f/OghcfQ7bTYfmAAqAsA0mKmnHz3ennTc2Y7a7GWnJvq9QzGwcLaF9+pB3Ea0mI7gWHrBaAuAEiL6aX43FS5S7ssNg2MV2/1NDDWxUXQ/AvvZVq0FxjSAlAXAKQoLdo+ragjrpfiH7xf7dmna3ih3kYLtHqfFlsNDGkBqAsA0uLdUp/TYtnVhfq7vVqU1fBGv2qcorRoPTCkBaAuAEiL6aX4+zcrKXkw//R+tdKrTR8T6263uFdJUpUWrQSGtADUBQApSos0zFqsWKwl/3ynR+uj1mfAmisv0pAWzQNDWgDqAoC0KNWTf/xNNW2P6upCfb7ai/3d66+8eGcxTmFabBQY0gJQFwCkRZwEr0xX+3JC1KZ+2JPpi/VXXqQ2LdYHhrQAmvCvAwC9dvFure2ruMcL0e+PZoYyH//6fyQbLsXJ8pbohVpy52Hy8/n6du75vl6Kp5fio0Pd/e3b+rmLqwv1M4dy6UyL1YExVYqlBdBEmCSJZwGAnpkpJ+emylt9r4li9NyB7KE9YSuD6Uoc3FiKf9xuw0wUo28c6e591fPV5DvvrX0STo9lU5sWAC3y6wcAeidOgu9t8ZCo8UL0Z4dy44UtDKPzUXCiGJ04np9eil+7s+XGuF6KS/WkqwP30VyDDy4tgB3AvgsAeufa/Xrr2y2Gs+HXjuTPHs9vKS1WOzoUffPT+TOHcsPZrX2En83Vu/1UbPUhSQtAXQDAJypxcOF2q3umJ4rRXz5dOFHc7utUFAaTI5mzx/NbGs2/PV+Pu7xw+Pjedr40aQGoCwAIgiD4xUetTgicHsu+dDgfdW4IXcyEf/l0YaLlVlmsJbcedvdqvb1bLwRpAagLAPjYz+dbqoszh3LPj2WjTg+hozB46XD+dMvnHU2VulsXh4e29hVKC0BdAMDHZspJK7urXxzPTY5kuvWaFwbPj2Vb/Phvz3d368VjuS10grQA1AUAfOJX9zcfrJ8ey35+f6bbj+RPP5VrZYnUYi3p6r3dIy3vA5EWgLoAgE/EyebHrU4Uo95c07a8RKqVTd43l7q4OGo0F7ayTEtaAOoCAB5xr5JsOoZ+6XC+Z48nCoOvt3Bf3juL3d168fxYtnlgSAtAXQDAWnc323Hx9SP5qLdD6PHC5lMHVxe6futFk8CQFoC6AIAGbi01m7uYHMm0fV/edvzB49lN10d1detFk8CQFoC6AIDG7lWazV388ZO5/rwEhsGffCq32SNPevBI1gSGtADUBQBs6PrGd0ecHsvm+/dadKIYjReaffrbS3FvHslKYEgLYKBlPQUAdFWp3uzX/5/r/hG0zX35yez5G5WN/uuNXtXFcmAMZcKTI5G0AAaXuQsAuqu68fh8ciTT95H00aFm0xfXS3EvH8zn92ekBaAuAKAd/+GxTBoexhceb/YwKrFvFIC6ACAd9m78y/hjQ6l4GTq5r1ldPKgnvokA6gKAVNho0/Z4Icqn41UoCoMmd1/05tgoAHUBAO373X0peg367MbTFw/NXQCoCwBS7kA+RduXxwvhRjfrfWjuAkBdAJAeDQfuj+XSdTjSs6ONpy9m1QWAugAgPY7vbfByM5JNV10cLzZ+TSxZGQWgLgBIj2eGB+Dl5vCexg+yx1deAKgLAGjmYGEAXm6iMJgoelkEUBcApNt4YTDun/6/0nG7H4C6AIBmTu3Ppv9BbjTH0oOtF3ESxPZ3AOoCAFpxcmTtK85CLXWj6Sc2OCS32uWdF3ESvHqr8rP5up8TQF0AwOYO74nWnEs7lb7d0lEYjPd8i8hyWlwvxf/6Qc30BaAuAKClgfuaCyVuLKXxLKZP7+31K+NCLVk+lmqxltx66HwqQF0AQAueO/DI1ot0nvR6eKjXG9BHV90q+Nqdmp8TQF0AwObyUXB67JHAmCmnbiVQw43d93p1XfdMOZ6vWh0FqAsAaMGa6Ytf3U/dPubhRkdbPezymVGTI5+sGXvzQ3u7AXUBAC3IR8GL47mVP16aTd0+5mKmD1dzrD7x9spcrWLzBaAuAKAVnxvNrD48KoX7mHt/bNSaLSi/XjR9AagLAGjlhScMvn4kv/LHt+dSN5I+2O+bxS/etbcbUBcA0JrxQrh8dfdwNvwv49ld/mys38a9WEuml6yOAtQFALTmhYPZ8UJ09ni+L/scmntmuKcvju8sNgiJn8yavgDUBQC0+PITBulMi977+XyDtWHXS46mBdQFAAy+gz3c1T1fTWbKjRdB/fIje7sBdQEAA66XR0a9cW/DFVCXZh1NC6gLAKA1M+Xk6kKzCQpH0wLqAgDYXJwE/+/tavO3cTQtoC4AYLDt7cle84t3axvtuFjhaFpAXQDAYMt3/7Xx6kL9ylxL8xKOpgXUBQCwoeml+MJma6JWOJoWUBcAQGPz1eT8jcqW3uVeRV0A6gIAeFSpnvzPLabF6bHsiaIXa0BdAACPpsW5qcpibQsTEafHss+PZT11gLoAAKQFoC4AAGkBoC4AQFoAqAsAkBbSAlAXAIC0AFAXANCKx3KhtABQFwDQASPZrdWFtADUBQDQAdICUBcAgLQAUBcAIC0A1AUASAtPHaAuAGDHqsTSAkBdAOx0l2dr00ux56HbHtSTLb29tABQFwCDlxaXZmvnb1QGIjBK9aSyOzpIWgCs5l83gIFJi+X/ff5G5eVj+aND6fr10Ew5ufEg/vl8faa8tiomRzLPDEcTxaiYCXfY90VaAKgLgAEzX01W0iJtgREnwbX79Yt3a01G2FcX6lcX6kEQjBeiPzqYfXpvFA1aZYw2uqtbWgCoC4DB8+aH9fV/mYbAmCkn37u5heH1TDn+/s3KcDb8w8eznxvNRIM8kyEtABqy7wIg1SpxcGWu1vA/9XEPRpwEP5qpnZsqb2l4vWyxlrw+U/27f6/MlJN0PucLm31R0gJAXQAMpDc/rDX5r30JjEocvHqrslHztGimHJ+bKl+ercXpS4yPqom0AFAXADtNnARrdlz0PTBK9eS718vXS535jJdma6/eqpTqyaB8R6QFgLoAGFTX7tdbebOeBUacBK9MV9tYDdXE9VJ8biq9q6SCIBjOhtICQF0ADLY4CS7ebXX1UW8C4wfvV9cfOLt9i7Xk3FQ5tfd4HN8bSQsAdQEw2N57EG9pLNvtwHhr7uODZbvk/I1KVz9+624trX3apQWAugAYbD++u+Vt090LjJly8vpMtdtf8oXb1cuztb4/8w8e3QdytywtANQFwCCbXorbW4PUjcCIk+B7Nyu9+cIvzdbSEBiPllUsLQDUBcAAe+1O+yPsjgfGtfv1zu7k3jQwfjSTxpNqpQWAugAYPPPVZJubpzsYGJU4uHC72uNn4Mpc7dVblX4FxtSDNp86aQHgH0GA1HnjXgeWBp2/UXn5WP7o0HZ/i/Trxc13Wg9nw2dHM5/dlylEQRAEC7VkqhS/Pb+tGY/rpfjVW5WXDuejsNfPf3sPW1oABEEQJkniWQBIj/lq8p33yp36aNsPjHNTlSYTKeOF6MtPZg/viRo2wHw1+eGd6nau3psoRr0PjL/+1UNpAdAeK6MA0uWXH3XyVNZtLpFqvkZrciTzzU/njw5FG43+R3PhN47kv3Yk3/YDWJ7B6OUSqTY+l7QAUBcAaVSJg0udPjFpO4Fxc+N3PHMod+ZQrpVZhRPF6K9OFFZuvE55YCxscVmUtABQFwAp9eaHDdJiciTTr8B4ZzHeKC229KiKmfAvny5MFNt80en9DIa0AFAXAIMtTtZOXJzan/3vz+w5cyj315/d8/Kx/Hih/X+02wuMhpdnn9qfbSN4ojB46XD+1P42x+IpDAxpAaAuANLr2v1PhvLD2fAvni58aTyb/+2/00eHorPHt7WHYauBMV9tMJafKEYvHGxzSB2FwZfGs6fHUh0Y9yotfQJpAaAuANIrToKLdz+ZuDh7PD+aa7BRYZt7GLYUGA23c7e416KJ58eyL47nUhsYD+ubf3RpAaAuAFLt1sN45ZqFM4dyxcyGQ/hiJjx7PN+DwLi7Li9Oj2WbPLDWfX5/5uVjbU7C9H2JlLQAUBcAaffanY8nLsYL0aa7Gra5SbrFwPhw3Rqhz+3PdOrrPToUpTMwPmy6MkpaAKgLgLSrxMHv7vv4H+Q/P9zSqqHlTdJdDYzZR8fZkyOZjkxcpDwwZjeuC2kBoC4ABkA+Cp4fy/4/n9lz9nih4XaLvgRG6dEdCF98ovMD69TOYEgLAHUBMOD/IofBeCHc6rt0LzCulz75T+OFqPXsGejAuFtOpAWAugDYvU3S7SVSQfDJwq0dHxgzjfaySwsAdQEgMDoWGJ/dl+nql5DaJVLSAkBdAAiMDgfGcPcH2GkIjDUfQVoAqAsAgdGBwKg82hqdPS0qzYGx8gRKCwB1ASAwOhMYD1YdGLXp/Rs7JjBWnkBpAaAuAOjRJu+dHRjfOJKXFgDqAoCuBMaRoV6/WPQ4MK4u1Ht2bwaAugBg1wXGLz+qr/xxKNOHL2H7gVFpbQ7m8mztwu1qLy/mA1AXAOyuwLg0W+v7l7DNwPju9fKa68bXiJPglZuV5a/0eim+dr/uxwZAXQDQlcBIg+0ExmIt+fa75bfmGq96miknf/fvlZX7yE+PZXu5eR1gpwqTxEwwwE4WJ8Grtz4ZRrfh7PHCeCHs45cwvRSfv1Fp+92Hs+FXnsqNZD/+Espx8NMPalcXPpmpcEIUgLoAoEeB8bUj+RP9ngDZZmA0IS0AOsjKKIBd8G/99pZIff/mYB9TKy0A1AUAKQqMQb8HQ1oAqAsABEa3AkNaAKgLAARGBwJDWgCoCwAERgcCQ1oAqAsABEYHAkNaAKgLAARGg8A4cygnLQDUBQACowMmRzKnW64FaQGgLgAQGM08P5adHMlICwB1AYDA6IBn92ekBYC6AEBgdMDhPdFwNpQWAOoCAIHRgQd/fG8kLQDUBQACo1ukBYC6AEBgbFmpnkgLAHUBgMDoQFpcL8XSAkBdACAwtutnc3VpAaAuABAY21WqJ5dma9ICQF0AIDC2JU6CV6ar0gJAXQAgMLbr1VuVmXIsLQDUBQACY1suz9ZWNnNLCwB1AYDAaD8tVrZbSAsAdQGAwGhTJQ7enq9LC4AUCpMk8SwApE0lDh7Uk4Va8lE1CYLgYCEqRMFINozCvj2kOAlevVVZc7NE614+lj861LFfaZXqybmpyrOjGWkBoC4A2ND0Uvz2XP3qQr3hfx0vRL+7L/rsvsx4oQ+dkarAqMRB3gQ8gLoAoOFY+Rcf1f/1g9piraV/loez4QsHsyf3ZXo8m5GqwABAXQCw1rul+J/er7bYFX1vjL4EhpkKAHUBwOYj9R+8X91oHVSLxgvRN47mipmwlw97O4HxtSP5E1vZI355tvb2fP3s8Xwvv0YA1AXAICnVkwu3q22P0dc4cyg3OZIZlMBo8aynOAku3q1dmasFQTCcDb81UTCDAaAuAGiQFuemKm2shmri1P7sCwezPVsl1e3AqMTBP/ym4so8AHUBwCbj8r/798pMufPXzE0Uo68+le/ZL/i3GRhNHu2avSjSAkBdAND5EfmmhrNhL7cobPPLWd6YvrKmK06CWw/j1+7UVqeXtABQFwA09tZc/fWZalc/xWAFxrLJkUypnqz/INICQF0A0Fipnnz73XIPPtEgBsZ60gJgsDh6A6CnLtyu9uYTLdaSc1OVUr1Hv0KKwuClw/mJYidfVqQFgLoAYEPTS3H3tlvssMCQFgDqAoBmfjJb6/FnHNDAkBYAA8q+C4Aema8m33lvkx0XkyOZZ/dnRrJhEAS5KChmwply8qv79Uvby5LB2oMhLQDUBQCbuDxbaxIJ44Xozw/nRnPhRuP1f/ugtp3GGJTAkBYA6gKAzf2P/1Pe6GbuyZHMn34qt+kd26V6cuF2dTs3S/Q4MP72vfKWLiOXFgCDzr4LgF6YKScbjbNPj2XPHNo8LYIgKGbCbxzJvziea+8x9H4PxtnjeWkBoC4A6LAbDxpPOEwUo60OqT+/P3P2eGE4284URI8Do5gJzxxqqYWkBYC6AKBVv1qsr//L4Wz41afybXy08UJ49nh+IALj5L7MeCGSFgDqAoCOabhZ4r8dy+fb/We4mAnPHm/z7NdeBkYUBn/WdPpCWgCoCwC2YL7aYBx/5tCGJ0S1HhhtXy7Ry8BoMnUhLQDUBQBbc6+ydhA/nA1P7st04B/xbdxe1+MlUtICQF0A0AEP143gXziYjTp0MOyABoa0AFAXADRQ2ez+iVtLa4fvHZm4GJTAuLkUSwsAdQHA5kr15LvXy5eb3qL94NGx++mxjk1cpD8w4iS4eLcmLQDUBQCbp8W5qcpiLbk0W2sSGFOPXnbx3IGujK3TGRjX7tdXXyMoLQDUBQANxEmwnBbLf2wSGKuH1+OFKN+1f3rTFhilerJ64kJaAKgLABpb81v55oGx4vdHM119VOkJjDgJXpmurjxF0gJAXQCwoTXbCVoMjGN7u/4PbxoCI06CV29VZsqxtABQFwBsYnopXjNx0WJgDPdkjN33wPi3D2or15NLCwB1AUAzr91pNkHRJDCKmbA3j7C/gXH8t59XWgDsKmGSJJ4FIG3mq8nNpfidxbhUT57IR4eHwoli1LNx+aaml+LzNyqbvtnKwPqvf/Vw+W8mRzJnDuV6+VCXVyitTCNsyXA2PHs83/bTPr0UT5ViaQGgLgD6plRPLtyuNhwNnzmUO7kvE6UgMS7crl5dqLfylsuB0ce62H5gfOWp3NGhVidALs/WbizFLx3OR6GfZYDdyMooIEXeLcXffre80Tj4wu3qq7cqcb9/JTJfTVpMi2DdEqkjQ334V3ebS6TO36hML21eJnESXJ6tXZqtXS/Fafg2AaAugF1tein+/s1NlhtdL8XX7tf7+zjfuFfb0ttfWlUXQ5n+PObtBEYQBOdvVJofhFWJg1dvVVa+0mNDkbkLAHUB0DelevKPv6m28pYXble7caV0iypx0PrERbr+ud9eYFyarZ2bqsxXGzzzVxfq371edkIUAEEQeAEAUuHC7epGB7yud70UT470ZxbgzQ9rg/skLwdG23swZsrxd94rn9qfPTz0ycTETz+or1xqIS0A8BoA9F8lDrY03r21lEyO9OdxXprdVl3065F3KjCCILgyV7sy1/g/SQsArIwC+u9OeWsj3XuVuC+Pc/sTF1fmNrnJu2eB0fYSqY1ICwDUBZAKU6U4/Q8yToK35zuw46L5Td4DGhjSAgB1AaTFgfzWDhj67HAfNl1cu19vfWfIrgoMaQGAugBSZM8Wb4M+trfX/3bFSXDxbid7YMcEhrQAQF0AfblhUQAAIABJREFU6fLEVuYuhrPhE/leX6bw3oO4UxMXOykwpAUA6gJInZFsOF5o9Z+jrx/J9/6mth+vm7iYHMmcOZQ7tX9bY+uBDgxpAcB6YZIkngWg7+aryXfeK2/6Zi+O5z6/v9ebLqaX4vM3PrlEfLwQffnJ7NGhj4fjlTj49WL9wu1q2x8/DcP0OAn+9r1y6/Mz0gIAdQGk2tWFTcboZw7l+nKJ3rmpysqFcaf2Z184mF0/eVKqJ69MV2fKbR5+lYbBeqmefPvd8qA8WgDSycooIC0mRzJ/8XSh4RKp8UL0F08X+pIWM+VkpRkmilHDtAiCoJgJv/np9jcwpGGJVDETnjmUkxYAbIe5CyBd4iRYqCU3l+KlerBUT44Xo8fzYTET9uvxXLhdvbrw8TUXf3Wi0PyRxEnwg/c/efut6vvAvRIHf/POQ2kBQNu8SADpEoXBaC4czWXS8GBK9WQlFU6PZTeNnCgMzhzKjeXDS21NRCy/Vx+H7/koOLU/e2WuJi0AaPN13FMAsJFiJjx7vHB6LDucDZ870OrA+vmx7Ol2R+F9XyJ1eCiUFgC0zUsFQDPjhXC8sOWB9fLbD+gMhrQAoG3mLgC6YkBnMD6sJNICAHUBIDC2qxKvnW+RFgCoCwCB0Y5ffFSXFgCoC4BNVOIg7tP524MSGKV68q8f1KQFAOoCYJNx83evl1+9VREYG4mT4MLt6mItkRYAqAuAZmlxbqqyWEuul2KBsZEfvF+9XoqlBQDqAmBDcRIsp8XyHwVGQ5dna6svDZQWAKgLgAbeexCvpIXA2CgtVs6JkhYAqAuADf34boPhuMBY7XgxkhYAdEqYJIlnAdiRppfi8zcqG/3XiWL00uF8FPbnsa2eMdiqjmfA9FI8VYqlBQDqAmBD56YqM+W4yRsIDADoLCujgJ1pvpo0T4vAEikAUBcArXjjXkuD710YGKW6KWsA1AVAy+arycoRqwJjtcuztW+/W55eiv2QAKAuAFryy4/qW3r73RAYcfLJTo/zNyrzVTMYAKgLgM1U4qCN3dIDHRiv3NzkkcdJ8Oqtyup7LUZzoR8VADrOmVHATrOds5gG9xSp8UL054dzDZthein+x99UV24VdN4UAOoCoCWVOPibdx5u5yMMbmAsl8N/fCyz8sdyHPz0g9rqLSjSAgB1AdCqqwv1C7er2/wgAx0YzdtDWgDQVfZdADtHnAQX73ZgXD64ezCkBQDqAqAzrt2vr+wuEBjSAgB1AdC+jkxc7LzAkBYAqAuArZleijs1cbGTAkNaAKAuALbstTtrJy4mRzJnDuVOj2WHs+1v0B7owJAWAPSYM6OAnWB6KT5/o7LyxzWXP8RJcO3+ts6SGsRTpKQFAOoCoB2v3KxcL8XL/3t5ymL925TqySvT1ZlyPIiBsfoLlBYApJaVUcDAm68mKyPv8UL0p5/KNXyzYib85qfzE8U2/93r7xKprz6Vb319l7QAQF0AtOmNe5+sGvrzw7km0wtRGLx0ON/2ToY+BkY+Cr7yVE5aAKAuALqoVE+uLtRXBtYrey2aBMZ2tkr3MTCODkWTIxlpAYC6AOiWYib8qxOF02PZ8UL03IFWB9YDGhhfeDwrLQBIM7u6gd1rzUlTW9KvTd7/4/+UG17rIS0ASANzF8DudXQoevlYvr337e8mb2kBgLoAEBjbUomD9RMX0gIAdQEgMLZsriotAFAXAC0o1ZN+LTQalMD41f26tABAXQBsnhbnpip93MmQ/sCYryaXZmvSAgB1AdBMJQ7OTVUWa0l/t0qnOTDiJPjhnaq0AEBdAGwiH32yWVlgNPSD96vXS7G0AEBdAGxuOBv2Zpg+iIFxeba2+j5yaQGAugBo5mAh7MEwfRAD4625+sp2C2kBgLoA2MT0Uryy7EdgrHFyJFqe2JEWAKRfmCSJZwHoo+XTotZfErdsohi9dDgfhX3LnvM3Ku29bwcfeameXFuIP78/46cFAHUBsKF3S/H3b1Z6Nkwf3MAAAHUBsKFSPfmXmU82KwsMAFAXAFsWJ8HP5uuvz1QHaJjey8B4a67+5J7w6JB9cQCoC4DNhun/+JvqRrssdnBgfPWpfH6zXoiT4N8+qC2fEPXysbzAAEBdADRWiYN/vlNtcSnUzguM4Wx49ni+mAmbpMWrtyquzANAXQBs4t1S/E/vtzllsWMCIwiCF8dznxvNrH/wa6Z0pAUA6gKggdWrfRoazobH90bPDEdBENxaSh7Uk7vlZKYc79TAGM6GLxz8uBwey4WFKLx4t7r6ug9pAYC6AGicFqtX+6wfZE8Uo4aLheIkuFdJbjyIfz5fb1gaAx0YTUgLANQFQAMbXZM3Xoi+/GS29S3LM+XkV/fr62c/dl5gSAsA1AX/P3v3Hd/UdfcP/F7tLV1P2ZaXvCfDGA/MMpsQRsgmCUlJoTRp0yZpm7ZJk/SXNm15XmkaGqBkEQgkkEEII4QRwIDBxgMPbMt7L2xLlrWle+/vj/vEj2tGDJj9ef+RV9C40jlXiPvROed7AOAKosWlFh78KIYlzg3Q33V7hh7z5l6Oj27AQLQAAACkCwCAiyeBCydE/WjRpBEaXCB+K2xUN1oBA9ECAACQLgAALm5zy/BoMbpJgGGJOhsTIePdCntgX3vAQLQAAACkCwCAizvWM7xCVJKKvyRAeCskgVswYCBaAADAnQQbwQLAaOpyssOihV7Ou7OjBUEQIVLesmARogUAAADSBQCMGoYltrS4hkWLm7404saIkvOmX2FOQLQAAACkCwCASyow0cOKRC0NFN4N0YIz1Uegl4/0SxXRAgAAkC4AAC7JSrP7utzDosW1V4i6vSzUChEtAAAA6QIA4FoVGOlhtyQo+XdbJ2iE5I/Oj0K0AAAApAsAgMthWOKM6b/SRRol4JF3Y1eMUfMRLQAAAOkCAODqtTqYYSsuElT4ekG0AAAApAsAgCt35oJpUTrJXfr1ohGSiBYAAHDXwj91ADAKysz/lS6SVPybMi3KSrPtDrbdzvS42Abb8OEUhYAMl/F8RGSsku8vvqHvD9ECAACQLgAARsTF3MxXZ1ii1cGcMzPnBobXwx3G4mG5FHSkx6MQkKkafoaXQMS77r2BaAEAAEgXAAAjZaPZmxgq8oyeq3i6xcMe6fGcMdFz/AQJytEcaTnV50G0AAAApAsAgKt03jU8XZSZ6aWBwuv0ciY3W9JPH+nxXPuhLB72y3Z3sZwerQ3FTW526BtDtAAAAKQLAIAr47jY2IWLIUZ30pGLIZrszKFuT5dzlGdi1VuZt+qcq8NF17j3H8MS33S6ES0AAADpAgBglJ3q84zWtXWXky0y0Vc3A2qELB52fYPr+QjxtYxg7Oxw11sZRAsAAEC6AAAYZUd6PGPU/EuVZx0JF0Oc7acLTfSoD1ZcKmB80up6Ilh0dU8/1uMZLJyFaAEAAEgXAABXyU988SlQn7a6nwgRXul0I2659hkjPazK7Q1Qb2WO9VzNkEu+8f/WgSBaAADA3YxkWRa9AADXwuRm365zXurepYHCJBV/JMe5ATOgRuJXEeIrHXKx0uz6BpfFwyJaAAAA0gXSBQBcE4Yl/mxwXOYBejlvmo9AK+ZduM6bW6tda2FueqgYlKTiX0XBKyvNnjMzEyk+Pg8AAIB0AQBwTTa3uAYXNF+Gv5gXr+R5ichqC0NcsMP3reMqhi8AAACAwLoLABgVsQr+SNJFl5O5MUu0r9GpPnqeP74eAQAArhgPXQAA1y5acUd9meQZPQyGdQEAAJAuAOCm0AjJES7dvl2YPYgXAAAASBcAcJPM8L3lphIpBGSSiq+XX80X3XkX0gUAAMAVw8RiABgd3PDFTV+onaTiRyt4wVKeSkAO3XjbxRA2mj3vYnd1uC0jGJdotzNRcvz+AgAAcGVQMwoARs3gtg83+HX9xbwUDT9UxvMX/3ihJ4Ylvuv2/GgB3KurSwsAAIB0gXQBAKPm8jvrXY9QkaDiXel24ARBdDnZLS2XC0JIFwAAAEgXAHDz1ViZrS2u63d8hYCc4i24ulAxlIsh3ql3XipgIF0AAABcBay7AIBRFiXnLQ0UftnuHvUjT/cRxCr5I5n+NBIiHrEoQHhdgxAAAADSBQDAtUpS8dVC8sMm12gdLZXi6yQ83mhvnx0l5+nlvIvuA+gjwl7dAAAAVwwzowDgerHS7P4uz1VXkdLLeRleglApT8S7vm9yTc1FFoosDRTeYTt4AAAA3AAYuwCA60XOJ5cGCpPV/EPdni4nM5KnKARkgpKfoOJdj5GKS73Ji97uJ0Y5WgAAAKQLALjFRMl5UeEik5st6aeb7MyF05CSVHwfERko5QVKyGtcqH11FALywrXdlBAzowAAAJAuAOCWpBGSU33+9wvHSrNuhhi2291NFC7jDZu+5S++vtOxAAAAkC4AAEaHnE8St/aKhjAZsgUAAMDVwL+gAHC363YOnxaVoMJ3IwAAwNXA2AXA3cXFEDaabbH/3+IHtZD0Ft2cBQ+3AivNDltxrhCQIVKkCwAAAKQLALi0Zjtzxkhfpj5sGiW4kcWabhHtjuEDF1O88cUIAACAdAEAF+NiiLP9dE6v58KySMPkGT15RoIgiOk+ggwvwV2yrLm0f3jcGqvGNhcAAABIFwBwgTIz/WW7+0qfdaTHc6THczdkDBdDDBvMSVLxUS0KAADgqmGvboA7E8MSOzvcV71PNkchIB8PFvmL79iZUl+2/1cXKQTkL/VipAsAAICrhn9FAe5ALob4pNV1jdGCIAiLh13f4DzW42HuxF8haqzMsC6a4ydAtAAAAEC6AID/Y6XZd+qdF26JfdWO9Hg+aXXdYQHD5Ga3triG3uIv5iWpsOICAAAA6QIAfsCwxOZm948u4L5S9VbmrTqnlb5DEoaVZt9vcg278YkQIT4/AAAASBcA8H/R4pNW17DdG0aLxcOub3CZ3Ld9wGi2M+sbXMMC2E9CRXftjh8AAABIFwBwEecG6FGcEHXRgPF2nbPZzlzvhjTbmTIzfT3mYtVYmQ+bhkeLpYFCbJ8HAAAwKlAzCuAOYaXZNTXOG/NaPwkVXb/L8WY782GTiyAIhYB8MGjUrvtdDLG78yJFtKb7CKb6oDY3AAAA0gUADDGsuOrtGzD+p9Y5dGzBX8y7L1B4LVVxGZY4N3DxfT8QLQAAAJAuAGA4k5t9u855g1/0OgUMK81euC7CX8xL0fDHqq9sqzsrzZ4zM5fapxzRAgAAAOkCAC7iBg9c3JSAwdHLeePUfD8xjxKSF00aLoaw0WyLnSnuv9wqlPn+wokU6s8CAAAgXQDABdfiP7riIknFz/IWiHkEQRAaIUn88Lt+oYm+xhpTNz5gDFIIyHDZf710g4350Wq8o7ucAwAAAJAuAO4o+UZ6X5f7Uvfq5byFWiGXKC6qzEx/1+25li0ybmLAuFL+Yt4TIUIUnwUAAEC6AICLW99wyT0uklT8JQFC3o9dS7sY4vB5T57Rc2cHjDRKMMdPwEOyAAAAQLoAAAAAAIBbHGYeAwAAAADA6LgtqzFWV1cfPXq0ra1t1apVfn5+AgFqSgIAAAAA3Hy35dhFZWVlWVmZl5eXXC4nScyhBgAAAAC4Jdx+v/q73W6WZfV6/YIFC9RqNU4hAAAAAADSxVWy2Wx+fn4URYWEhNyYV3Q6nT09PQKBwMfHh8//ke23aJqmaZrH4/H5/GHjKizLOp3O7u5uhUKhVquHHcput3s8HolEIhQKuVs8Ho/D4bDb7SRJyuVysVjM4/EGD8UwzNAV+SRJcgekaXrY7RaLRSwWi0SiwacDAAAAACBdECzLtra2trW1CQSCtra2sLCw6/1ybre7vr7+0KFD/v7+8+fPVygUl3/KwMBAb2+vWCwODAwcmi4YhnE4HLW1tXv37k1JSZk8ebJUKh2812KxtLe3ezyekJAQgUDAMIzRaDSZTEajsa+vjyAIX19fiqJ8fHzkcjmPx6Np2mKxmEwms9lMEIRCodBoNBRFEQTR399vNBotFgtJkiqVSqPRtLa2ikQiLy8vjUaDNSoAAAAAcP3wX3vttdvo7Xo8nrfeeuu9994rLi52OBxZWVkEQVy/pRc0TTc1NW3YsOGDDz4Qi8XTpk0bGgkumkaKiop27tzZ3t4+btw4kiQH35vT6aypqXnrrbc2b94cHh6ekpIiFosHg8fBgwcbGhr8/PyCgoJYlu3r61u/fv3OnTvPnz+vVqv7+vo+++yzvXv3KpXKwMBAsVjscrlqamq2bNny+9///tNPP+3r6wsODg4KCiIIorS0dN26da+//vrnn3/udruDgoJCQ0N3797d2trq7e2tVCqxUgUAAAAAkC4IgiAOHz4sk8kefPDBcePGVVdXh4eHq1SqH52tdNW4n/9FIlF5ebmvr292dvbl0wVN0wcOHPjPf/5z/vz5hx56aOjkKD6fr1KpxGLx6dOnx4wZk5qaOpgudu/e3d7eHhsbm5SURBBEd3f36tWr3W73Qw899MADD8TGxsbHx8+YMaOnp+frr7/u7+9PSEiQyWTe3t6BgYE5OTk6ne6hhx7Kysri+sHPz4+m6YaGBqVS+eKLL8bFxUml0rCwsLy8vLNnzyYmJkokEnzuAQAAAOB6uM0m4gcHB0+ZMiUtLW369OlPPfXU9d4KkCRJoVCoVCpFItFIHm8wGFpbW3k8XlVVVV5ens1mG3ookUikUqkGl1UQBOHxeDo6Onbs2KFWq+Pi4kQiUXd39zvvvFNSUjJ58uTU1FSNRiOXyxUKhY+Pz3333adQKPbt27dnzx4ejycSidRqtUAgEIlE3KoMbqhELBZzfxQKhVw04vF4Xl5esbGxFotl+/bt+NADAAAAwHVyK87Cd7lcXV1dpaWlbrdbJBJ5e3vrdDpu2g+Px6upqcnPzxcIBIGBgVFRURcduOBmNLW2tsrl8tDQ0FOnTvX29sbExMTExJAkaTAYqqqqVCrV5MmTvb29ubXOLperpaWlurq6v79fLpdHRkZGR0dzB+fxeCOcTVRSUiKRSO67776PP/74q6++ioyMlMvl/xXm/vtQNptt165ddrvd19dXpVK5XK7m5ubPP//cz88vKiqKW0cxKDQ0NCoqqqys7MiRI/fcc49KpeKONnT+1WCSGXY7n8+PjY0tKir69ttvFy9ePJLl6QAAAAAAt326YBimu7v7888/1+v1IpGoqampubmZJElfX1+DwZCfn69UKoVCYXt7e0FBQVJS0oIFCxQKxbDL65aWln379pWVlQUGBmZkZDQ3NxcUFJw8eTIrKysoKKi+vr6+vv7cuXM2my07OzswMLC/v7+iouLMmTOhoaFCobCysrKkpCQ1NXXWrFkjX6XQ29t7/vz5gICAiIiI3Nzcb7/9dtmyZd7e3pca92BZdmBgYMeOHdHR0V5eXjweb2BgoLa2tqmpKSMjQ61WDyvxxOfzQ0JCxGJxXV1dY2NjcnLyFXWsv78/RVGNjY35+fmzZ89GugAAAACAUXfLzYxyu90NDQ1btmxJTEycNWtWYmKiTCaz2+19fX0fffSRwWCIjo5esGBBampqT0/PmjVrysvLh05A4lit1srKyuLi4traWofDkZKSkpCQcOLEif3797e3t2u12szMzK6urj179jQ0NNA0XVtbu3379o6OjvT09HvvvTcmJqasrOz9999vbGykaXqE7/zs2bMymSwqKiosLGz27Nm1tbVFRUVcxadLtbS3t7e4uNjb25srRWWxWFpaWgiC8PX1vWgm0Wg0SqXSarVyD+P09/fX1tYWD1FbW9vf3z/suRKJRKPRkCSZk5Pjdrvx0QcAAACAUXfLjV24XC6j0djR0XHmzBmGYeLi4gICAoxGY0NDw4cffrhx48aQkBChUBgfH79o0aKtW7fu3r1bq9WGh4cPPUhCQkJSUlJzc3NoaOjChQtZltXpdLt375bJZMnJyWPHju3v7z98+HB5eXl/f7/Vai0uLj548OCWLVvUarVIJJo8ebLBYHjvvff27Nnz9NNP/+h7ZlmWpuljx45FRUWFhIRIpdK0tDSZTLZ///6xY8f6+/tfdADEbrc3NzdbrVaKoriV1jRNO51OgiAEAsFF96YQCAQCgYCm6aHxoLOz89SpU93d3YO31NTUdHd3h4aGDnu6VCoVi8UVFRUej4d7OZfLxTCMWCy+cHcOAAAAAIDbPl3I5fLg4GAfH59Vq1bNnTv38ccfnzRpklQq/eqrr6xWq5eXF3chrlAoQkNDtVptYWHh/fffPyxdEATB5/PFYvFgXSaZTMYtgOZuIUlSKpXSNM0wTGtra0VFhdvtDggI4OYLeXl5hYaGcvWdnnzyyR99zwzDnD9/vqmpic/nc4slent7o6OjT5482dDQMGbMmMG3MSxH9fT0cBf93Oty67AJgrBYLFwAGMbtdrvdbrFYrNFoBm+MiYl5/PHHZ8yYMXjLd99919fX53K5hj1dKBQKBIKenh6WZbl5WQ0NDWazOTo62t/fn7ietX0BAAAA4G5wy82MIkkyNjZ227ZtjzzySH5+/qpVq15++eXy8nKTyUQQhMPhYBjmf4ORQODr63vtZaMcDofFYmFZ1m63Dx6Nm0c0wmlRLpdr586dMTExg7v7yeXyxYsXkyR56tSpmpqaHw0n3P9QFBUbG0sQRGNjo91uv/CRvb29ZrPZy8srPj7+6vp2cFl5X1/fvn37Pv3003Xr1j322GMOh+N6F+ACAAAAgDverTgziquh9OKLL86bN2/btm0FBQU8Hm/s2LHcZbfZbB7cMJtlWb1eL5PJruUVlUqlt7e30+k0GAx+fn7cggeWZcVicWRk5I+ufmYYxul0njlzZvny5XFxcdxm2AzDpKWlHTx4sLCwMCMjIzEx8cIncvtnEwRht9u5kQpuY4pJkyZVVFR0dXW53e5h5WsNBoNYLE5PT+eeeKW4sRpvb2+SJPl8flZW1sSJE0+dOrVp0yar1crVrsVfCQAAAAC4arfc1aTL5WptbT1x4kRQUNDMmTOXLFkSGhpqsVjGjBkTEhJy8uTJtrY2lmU9Ho/FYunr65s2bZqPj89FL/oZhhn8Pf7CH+a52UEEQWi12oSEBLlcvmvXLqvVyrKsy+Uym80kSc6cOVMoFHLHYVl2cJBhqIGBgfz8fD8/P51O5+/v7+3t7e3t7ePjo9PpJk+ebDKZiouL29raBt8V+wOpVBoSEiKTyYxGo8PhIAiCz+cHBgY+++yzCoXi+++/NxgMQ1/o8OHDTU1NqampCxYs4FKHx+O56BvjUsSFt9tsNqfTyVXalclkQUFBgYGBoaGhaWlpcrkc0QIAAAAArtGtWJG2vb19y5YtUqk0PDzc7XaHh4fr9fqIiIif/OQnR44c+e677ywWC5/Pr6ioyM7OnjhxolqtHnaQzs7OpqamtrY2b2/v2tparVZbUlLS39/f3t5eV1fn7e3d2dnZ0NDQ3d3d0NCQmpo6fvz4BQsW5OTkfPPNNwkJCQMDA11dXVOmTBk7dqzD4aiurjYajZ2dnVVVVePGjZNKpYPrE4xGY15e3pYtWyiK6u3tDQgI4Da4YBjGaDQKhUKbzZaTkxMcHDx79myKoioqKiwWS1NTU11dXVxcnK+vb3Jycm9vr8Vi4Q6oVCpnzpzZ2tpqMBi+/fbbjo4OPz8/bh+MoqKi5OTkqVOnxsXFud3uzs7O06dP9/X12e32c+fORUdHh4SEEATR2NhYXl7e0dFBkuSZM2dEIpGfn59QKHS73Waz2ePxZGVlCYVCkUjkdDqrq6u5wIaxCwAAAAC4A9OFQCBQq9UURTU3NxME4XQ6x44dm5GRoVKpnn76aYFAYDabq6qq5HI5SZKrV6/W6XRDpw9xbDabVqsdN26cTqczm80+Pj4WiyUzM1Mmk5Ek6XA4nE6nXq9XKBQKhcLhcOj1+ieffJJl2ebmZu5CPCgoaMKECWq12mQyCQSC9PR0pVLpcDiGLbZ2Op1Wq5UbByAIYnCdBsuyTqdTq9XOnDnT5XLZbLb+/n5uz+/s7Ozg4GCHw0HTtEKhWLp06bFjx0wmE8MwPB6Pz+er1eoVK1Z89913DQ0NNTU1ZrOZSxdBQUFTp06NiorigoHVarVarZMmTSIIQiKRDOYTi8UilUpTU1MFAoHdbudGYwiC6O3t7e/vDwoKysjI4HqMm9NlNBobGxsLCwuzsrIGp5wBAAAAAFwF8lZbyzs4o6mnp8dkMmk0mqEb0rEs29XVZTabpVKpVqu9MFdcNW6KUWtrq91u9/LyoiiKW0FxXbnd7u7u7l/96ldLly6dP38+VzBqkMPhMBqNfX19AoFAp9NJJJKr3gKPZdnjx48fP35crVY/++yzQ+8yGAzbt2/n8/mrVq266BwzAAAAAIDbNV3chb788svW1taUlJSMjIxR30KbO792u33r1q39/f0rVqzgaua63W6Px0OSZFtbW05OjkKhmD179oVzzAAAAAAAkC5uJw6H4/vvvx8YGEhISLhodalrTBdut3vXrl08Hm/8+PGhoaHc4op9+/bl5uaKxeKAgACGYR577DFuTz2cDgAAAABAurhpuKULvr6+13JpbjKZuru7SZIMDAzk1oWPYrqora2laZqiKIqiBueY9fb2ctW3KIoSi8V+fn4EdtMDAAAAAKSLm6uhoWHDhg1PPvlkeHg4t4/41eF2vZBIJKO4mIRLFyaTidu2fGj+4QrvsiwrFAoxZAEAAAAAo0KALrgWJpOpqKho+/btKpVq+fLlOp3uqg8llUqvS3wkSW6hxYW3i8VinEEAAAAAGEXY3+CaNDQ07N+/v7W1dceOHXV1ddymeAAAAAAASBdwZWw2W1lZ2f79+2maLi0tPXXqVFdXF7oFAAAAAJAu4IoZDIYTJ060trZyf/z666/Ly8sHN9QDAAAAAEC6gJHKzc09fPjw4B8LCgrOnDmD4QsAAAAAQLqAK1NeXp6Xl9fS0jJ4C03TR4/uRIA/AAAgAElEQVQePXXqFDoHAAAAAJAu4AocPHiwsLCQIAiNRuPn55eYmCiXy0tKSnJzczF8AQAAAABIFzBStbW1J06ccLlcCxYsWLFiRXh4+HPPPbds2TJfX18uYKCLAAAAAOAuhP0ursaRI0fEYvHChQvnz5+v0WgMBsPSpUsnTpwYHh5+9uzZwsLC6dOnq9VqbH0NAAAAAEgXcEksy9I03d3dfd9992VmZgYGBp47d467Kzk5Wa/X5+TkGAyGrq4utVqN7gIAAAAApAu4JIZhrFbrs88+K5VKRSLRsHsVCsX8+fOnTZtmMpnQVwAAAACAdAGXw+PxVCrV5R8jlUolEgn6CgAAAACQLuByRrKUgiRJrLgAAAAAgLsQakYBAAAAAADSBQAAAAAAIF0AAAAAAADSBQAAAAAAANIFAAAAAAAgXQAAAAAAANIFAAAAAAAgXQAAAAAAACBdAAAAAAAA0gUAAAAAACBdAAAAAAAA0gUAAAAAAADSBQAAAAAAIF0AAAAAAMCdRYAuAIA7G03TJSUlZ8+ebWlpUSgUaWlpWVlZ6BYAAACkCwCAkerq6jIYDNXV1QaDoba2trm52Ww2SySSoqIip9M5ZcoUoVCIXgIAAEC6AAC4OI/H09zc3NLS0tLSUl1dXVFRUVdX193drdVqw8LCfHx8WlpacnNznU4nn89PSUlRKpXoNAAAAKQLAID/Yzabe3p6enp6urq6zpw5U1JSUlVVZbfbNRqNVqtNT0+fMGFCampqYGBgcXHxunXrcnJySJJcvXp1SkqKWq1GBwIAACBdAMBdjaZpm81ms9msVmt5eXlubm5eXl5ZWRnLsgqFIigoKCUlZerUqenp6TqdbvBZU6dOVSqVr7766r59+0iSXLlyZUZGhlwuR38CAAAgXQDAXYf9gclkOnTo0JEjRw4fPtzS0uJ2u2UyWUxMzLx58+bNm5eQkHDRQQmRSJSSkrJu3bqnnnpq7969LpeLZdkZM2bweCigBwAAgHQBAHeZ0tLS3NzcEydOFBUV9fb2OhwOiqLmzp07bdq0iRMnhoaGymQyqVQqEoku+a0nEOh0uvfee++3v/1tfn4+TdNOp3PBggXoWwAAAKQLALjzGY3G4uLi4uLioqKihoaG8+fPOxwOjUYzf/78iRMnRkVFabVaHx8fjUYjlUp/9GgkSYpEIr1e/4c//OGdd945ffr0+vXraZpetGgRuhoAAADpAgDuTLW1tVVVVQaDwWAw1NfXt7a2OhwOnU43ffr02NjY8PDwkJCQkJAQjUZzpbVlSZIUCoXjxo1buXKlWCzOycnZsGEDn8+fNm2aQqFAzwMAACBdAMCdwGw2Nzc3NzU1NTc3V1RUVFdXt7S0OJ1OnU6Xnp6u1+tjYmJiY2PDwsKuvdaTSCRKT0/n/v/QoUNr165lWXbSpEleXl44EQAAAEgXAHC7Ov+Durq64uLisrKy2tpaiUTi4+OTkJAQExOTkpKSkpKi1Wovs6DiKojF4oyMDLFY7Ha7d+/eLRKJGIbJysry9vbGSQEAAEC6AIDbhtPptFqtFovFarXm5uaePn26oKCgtbVVIBCoVKqkpKSMjIwpU6YkJib6+Phcv7fBVZH6wx/+MDAwkJOTQxAEwzAzZsxQqVQ4RwAAAEgXAHDrYlmW+UFNTc2RI0eOHDly9OhRi8VCEISvr296evrcuXNnz54dHh4uENygLyihUBgdHf3BBx88/fTTR48etdvtDMMsWrTohr0BAAAApAsAgCvmdrtP/MBgMJjNZpqm/f39ly5dOn369OTkZK1WK5FIxGIxn8+/kW+Mx+NpNJp//vOfr7766qFDh9555x232/3www/jlAEAACBdAMCtpaGhobCwsKioqLi4uK2tzWg0kiQZFhaWmpo6YcIEvV7v7e3t5eWlVCqvtPrTaCFJksfj6XS6559/Xi6X79+/f926dSzLLlmyRCKR4AwCAAAgXQDAzeRwOCoqKqqqqioqKmpqapqamnp6ehiGiY2NnTdvXlRUVGhoqE6nCwoKUiqVJEne9DdMkqRAIIiPj3/qqadEItE333zz7rvvEgQxe/ZsLPIGAABAuiAIgnA6nQMDAw6Hw8/PTygUjvAKxmw2u91uuVyO3ywBrlRnZ2djY2NTU1N9ff25c+fq6+s7OzvlcnloaGhaWhpXUjYmJkar1Y5k57sbTygUjh07liRJhmG+/PLL//znPyzLZmdna7VanFwAAIC7Ol10dnY2NDSYzWY+n28wGGJjY7mMcflnWa3WU6dO9ff3Z2RkBAcH4yMCMJIY393d3dXV1d3dXVFRUVJSUllZ2dHRodFotFrt9OnTExISxo8fn5CQ4Ovre+s3RygUjhkzZtWqVS6Xa+fOnR999BFN07Nnz/b398e5BgAAuEvThdlsPnr0aF5eXlRUVERExLZt27Kzs7Ozs3U63aVGMFiWZVm2srLygw8+sFqtoaGhSBcAl4/iAwMDAwMD7e3tp06dys/PP3v2rNVqlUqlfn5+06dPz8rKysrKCg8Pl8vlt1fThEJhTEzMK6+84nA4Dhw4sGnTJpZlFyxYgI32AAAA7sZ0wbLsiRMnDh8+7O/v//Of/5ymaavVum3bNj6f//DDD1+qyiTLslardffu3YWFhVFRUfhwAFyIYRiapj0eD03TeXl5R48ePXbsWElJicPhEAgEISEhM2fOnD17dkZGRlBQ0O395SgQBAQE/Otf/3r++ef37t27fv16hmEeffTRkc+xBAAAQLq4c9LF4cOHe3t7Z86cSRAESZIZGRnr1q3Lz8+fOHFidHT0pZ740UcfRUZGJiUlORwOfDgALtTd3Z2Tk3P8+PHjx4+3t7fbbDaJRBIXFzdjxowZM2ZERkaq1WqxWHyzSj+NLpIklUrln//8Z6VS+cUXX7zzzjsej2fFihX4GAAAANxd6aK1tbW+vp7H43HzpEmS9PHxUSqVTU1NNTU1F00XNputvLzc5XJFRET4+/s3NTXhwwEwqKioqLCwsKCgoKKiorOzs7+/Xy6XZ2RkpKenJycnh4SEUBRFUZREIrnB+1Rc73RBkqRWq129erVMJtu+fTtXRWrp0qUUReFTAQAAcBelC5PJFBAQoNFouEsEoVCoUChaWlq6uroufLzH4+nu7t69e/fcuXPDwsJEIhE+GQDnz58/d+5cRUUFV/qpra3NYrEolcoJEyaMGTNGr9cHBwcHBQX5+PjIZLI7uB/4fH5ERMSjjz4qEAi2bNmydu1ahmEWLFgQGBiIDwkAAMBdkS5MJpPT6RSJRENLygqFQqfTabVaL3x8Z2fn6dOnQ0NDExISLrUqA+BuwDBMww9qamoMBkNjY2NfX19gYGBiYmJERERERERUVFR0dDRFUXfPXxaBQBATE/PII4/QNP3BBx9s2rSJYZj58+eHhITgMwMAAHDnpwuu+hOPx+PxeEMvmxiGYVn2wihSVVXV0NDw+OOPC4VCh8NB0zTDMC6Xy+12CwQCrOCEO9vJkydZlvXz8+vq6mpvbz979mx5eXltba3D4fDx8QkLC8vOzh4zZszYsWP1er1Kpbo7e0koFEZFRa1cudLhcHz55Zfbtm3jqkihshwAAMCdny4UCoVIJPJ4PB6PZ/BGl8slFAovnMJhMBjy8vKcTmdFRQVBEA6Ho62tzWg0lpaWKhSKxMTEy69PpWnaZDIVFhZOnDhRpVJ1dHSYzeaYmBiCIMrKyux2e1BQkFgsrq+v5/P5SUlJIpGosbGRJMnQ0FCn01lWVsYwTEREhN1ub29vl8lkiYmJBEFUVVVRFOXv79/f328wGAiCSEhI6Ozs7O3t9fLyioyMZBimrKwsNDRUo9F0d3c3NjYKhcKkpCSDwWC1WgMCAoKDg+12e1lZWXJyskQiaW5u7uzsVCgUUVFRZWVlHo8nPDzc19fXaDS2tLQkJSWRJFlTU2M0Gn18fPz8/LjeiI2NValU3Dz7izaKx+MlJydfqlFcZw42ymAwqNVqrVY72Kj4+Piurq6raFRSUpJUKr2wUWFhYX5+fjelUWazuaqqamijKIqKioq6VKOqq6stFstlGhUdHV1aWjq0Uc3NzcnJyYON8vb29vf3v1SjysvLbTbb0EYlJSWJxeILG/XnP/+Zpulx48YVFhaWlZUJhcK+vr7Y2Ni5c+cmJSWp1eqgoKDExMSuri7uYxkVFcWybGlp6dBGCQSC5OTkSzWqpaWlo6PjwkaZTKampqaraJREIqmrqxtsVFNTE8uyYWFhg43S6/VOp/OKzhTXKG4NyYWN0mq1ISEhOp3utddeKy8vLygo2LJlC8MwDzzwgJ+fH/4tAQAA+F/snai2tnbBggUPPPDAqVOnWJblamguWLBg7ty5u3btGvbgHTt2TJo0SfMDruINV4zywQcfNJlMl3+t3NxcoVCo0Wi4H4D//e9/P/jgg9xdGRkZFEWtWbPms88+oygqODi4ra2NZdkXXnjhpZdeYlm2qakpICCAoqgvv/zyzTffpChq6tSp3HPvu+8+bpPgI0eOcOtli4qKfvrTn1IUtXz5cpZlnU7n2LFjDxw4wLLsRx99RFFUTEyMyWSaNWsWRVGvv/46t3eHt7d3TU0Ny7KvvPIKRVFz5849f/58REQERVGbN29mWXbfvn2pqak0TbMs+9hjj1EU9fOf/zw/P5970RMnTnCNeuCBB7g3lpmZyTVq+/btwxr1u9/9jmXZ5ubmYY2aMmXKYKM2bNjAsuzRo0e54xcWFq5cuXJoo8aNGzesUUajcVijvLy8qqurWZb905/+RFHUnDlzenp6IiMjBxv17bffTpgwwePxsCz7+OOPUxS1evXqwUYdP36cZdl33313sFGTJk2iKOof//jHjh07KIrS6XStra0sy7744ou//e1vWZZtaWkJDAykKOqLL77429/+RlHU5MmTBxu1fv16lmWPHTs22KhVq1YNNsrlco0fP/67775jWXbTpk0URUVHR/f19XGNeu2111iW5a7ahzWqt7d3WKNSUlK4Rj3xxBMURf3sZz87c+YM96I5OTksy65bt+7+++/n3lhWVhZFUX//+9+HNer555//5S9/aTabS0tLud2yuYVJMpnMz88vPT39lVdeGT9+/Lp161iWzcnJ4Y5fUFDws5/9jKKoJ554gmVZt9s9fvz4/fv3syz78ccfc1fnfX19s2fPpijq1VdfZVnWYDBQFGUwGFiWffXVVymKmj17dl9fX1RUFEVRH3/8Mcuy+/fvHz9+vNvtHtqogoKCYY1aunTp0Eb97W9/+/zzzymKCgoKamlpYVn2t7/97W9+8xuWZVtbW3U6HUVRO3bs+Pvf/05RVFZWFvfc+++/f1ijzpw5M7RRHo8nJSXl22+/ZVl28+bNFEVFRkb29vbOmTOHoqg//elPg3/r09LSuLXsSUlJ77zzjs1m48ZFAQAAgLxwptAdwOPx/OpXv2pra3viiSeWLFnCsmx7e/tjjz2WkJDwi1/8gvsRdNDAwIDRaHQ6ndwf7Xb7mjVrmpqannvuuYyMDH9//8vXwCkvL3/hhRfWr18fHBwsFArtdrvH41EqlQRB9Pf30zQtlUp5PJ7VaiVJUq1Wc/9PEIRcLqdpur+/f/D/HQ4Hn89Xq9UEQZjNZm7diNvtHhgYIAhCpVI5HA6XyyUSiRQKBcuy/f39MplMJBI5HA6bzcYdf2BggKZpiUQik8m446vVaj6fb7PZuB0JFApFf38/y7JyuVwsFrtcLpvNplarSZIcGBhwu93c65rNZoIglEolN1vM7XZftFEEQWg0mks1imEYu90+2KiBgQGhUHhdGyWTySQSyS3SKKFQqFQqL9Uoi8Xi8XhuZKO44+fl5eXk5BQUFOTm5ra2thIE4e/vn5qaOmvWrMmTJ+v1eqFQ6HK5JBLJbdSoG3amuL/1JpPJZrO99957H374oUgkeuaZZ55++mmFQoGfqwAAAO7MdMGy7M6dO/fu3RsWFvbKK6/QNP3NN99s3br1nnvueeSRR0wm04EDB2Qy2fTp0729vYetx7BarX/84x9rampeffXV9PR0Ho93+XUX586de+mll7hfOvF5glvTwMBAfn7+mTNnzpw5U19f39vb63K5vLy80tPTMzMzY2JitFqtRqNRqVRisRjdNRI0Tbe0tOzYsWPjxo0syz7zzDMPP/wwqkgBAADcmesuSJKcNGmSyWSqqKjYtm0bN8Vi9uzZkydPFggEdXV1b7/9Np/PVyqVmZmZSqVy6OJvgUDALQcXCAR3UuV+uAvV1taeO3euvLy8srKysbGxq6vL7XYHBwdnZmYmJCSEh4cHBgYGBgZu2bIlJCTk/vvvR4+N0Isvvvjwww+PHTv2vvvu4/P5a9eu/eCDD1iWXbJkiV6vR/8AAADSxR3I399/2rRp/v7+3JSnjIyM1NRUnU5HkiRFUZmZmY2Njdz0Bm7GxSCRSDR//vy+vj6dTofPB9x2LBZLXV1dQ0NDXV2dwWCora1tb293u91hYWEzZ87U6/WRkZGRkZEhISHcfCGCIMLCwry8vNB1I7d3796srKwJEyaEhYXdf//9Ho9n48aNn332GcMwixcvjoqKQhcBAADSxR1Ir9frdDqLxeJyuXx8fAZr8+v1+l/+8pc7d+4MCAi4cOM8kUg0b948fDLg9tLV1dXZ2dne3t7Y2FhSUlJRUdHU1CSRSAICAiZOnBgVFZWcnDxmzJiAgIAL5z7dd9996MArsmjRIq4QrUAg0Ol0K1ascDqdn3322RdffMFVkcIIBgAAIF3cmUQi0bAfZQdXWYjFYr1eP/jzLcBtx+l0mkym/v5+k8lUVFR05syZs2fPtrW1SSQSiqJSUlImTJiQkZGRmJjo6+t7meMYDAapVIqN4UbuwQcfDA0N5f6fz+d7eXk9//zzDMN8/vnn27dvZxhm+fLlAQEB2CoHAACQLu58NE2fP3/+3Llzy5cvV6lUQ1dcANwWXD9obGzMyck5ceLEyZMnrVYrj8fz9fXNzMycMWPGjBkzwsLChu5Vfxmvv/56VFTU66+/jr4doWXLlr355puLFy/m/sjj8RQKxYsvvigSiTZt2vThhx8yDPPss88qFAqs3QIAAKSLO73BAkFwcHBgYODgRCmA20tubu7Ro0ePHTtWXl5usVgYhgkODr7nnntmz549YcIErVbLFSRAcr7B5HL56tWrlUrlP//5z7Vr1zIMs2rVKmy0BwAASBd3OJIkSZLEhRfcXpqbm/Py8vLz8/Py8jo7O81mM5/Pj42NzcjIyMzM1Ov1FEWpVCqZTHb5reUv6q9//SsK0V6RL7/88sLis9zmGEuXLpVIJP/4xz/effddbodKrMEAAACkCwC4+dxud9kPqqur29raent7CYJITEwcN25cTExMaGioVqvVarVyufxaAvPXX38dEBDw0EMPoc9HKD4+/qK383g8f3//efPmkST55ptvfvrppwzDPPjgg5d6PAAAANIFAFxfnZ2ddXV1tbW1tbW1BoOhsbGxt7dXLpdHRERwJWUjIiIiIiL8/f0Ht46+Rvn5+SiiekXeeuutOXPmJCQkXHgXn88PCAhYuHCh2+3esGHD119/zQWMxMRE9BsAACBdAMCN4HK52n9QVVV17ty56urqzs5OHx+f4ODgiRMnxsbGJiUlxcXF+fr6jnolIm5nGJyFkevr63O5XJe6l8/n+/j4LF++3OFwbN26dffu3QzDPPbYY7Gxseg6AABAugCA62VgYMBoNJpMps7Ozry8vOLi4rKyMm6HR39//zlz5qSlpWVkZISHhw/b83F0rVy5EufiirzxxhuXfwCPx5PJZCtXriRJcuvWrTt37uQWeQcFBaGeBAAAIF0AwKihadrpdDqdTofDUVJScuLEiRMnTpSWlno8HolEEhwcPHPmzOzs7IyMjBu2W3xfX59AIFCpVDg7I9TZ2alWq6VS6eUfJpfLV65cKZFI1q1bt3nzZq5MLVfUC30IAABIFwAwCoxG45EftLa2OhwOqVQaHR09Z86cuXPnxsXFcduw3Mh9En79619HRka+8sorODsjNGfOnP/3//7fwoULf/SRUql02bJlSqXy9ddfX7t2Lcuyq1evDgsLQx8CAADSBQBcvbNnz+bl5Z0+fbq0tLS7u9tqtapUquzs7MmTJ6ekpISEhCgUCqVSKRaLb/z+a2+88YZIJMI5GjmXy8UwzEgeSZKkXC6fM2eOWCz+4x//uGnTJm4nbyzyBgAApAsAuDK9vb2lpaWlpaUlJSUNDQ2dnZ02m02tVk+bNi0lJSUiIiIwMNDf39/b2/tH59hcV8HBwThZV2Tt2rUXLRh1UTwez8vLa+rUqW+88cZf/vKXXbt20TS9bNmylJQU9CQAACBdAMCP4IrJ1tTUVFdX19bWNjc3WyyWoKCgtLS0qKioiIiI8PBwvV6v0WiuYue762Hr1q0+Pj5z5szBuRuhoqIirVYbEBAw8oDh7e09d+5cu93+n//858CBA9zQBwIGAAAgXQDARZjN5tbW1ra2tra2trKyssrKysbGRofDodVqk5KS9Hp9fHx8YmJieHi4Wq2+1d783r17o6KikC5G7qOPPoqOjr6i2U08Hk+hUDzwwANut3vz5s0HDx5kWVYgECQmJt74uXAAAABIFwC3HJZl+35QV1d35syZs2fPVlVVicViiqIiIiLi4+MnTpyYmpoaEBBwiwxTXFRiYmJQUBBO6MhlZGT4+vpe6bNIkpRKpY8++ihJkps2bdqzZw/DMM8880x4eLhYLEavAgAA0gXA3cjlcjkcDrvdbrVajx8/npube/r06ZaWFpIklUplbGzslClTsrOzExMTvb29b4sWPf3007dy+LkFffjhh1f9XKlU+sgjj8hksrfeemvbtm1cmdqIiAgsrAcAAKQLgLtRfX394cOHuZKy/f39DMP4+vpmZGTMmzdv1qxZ4eHhAoFg1LfTvq6ef/75yMjI1157DSf3xpBIJIsWLdJoNM8///yGDRu4EQxUkQIAAKQLgLuF3W4/derU6dOnc3Nza2trjUajx+Px9vZevHjxlClTEhMT/f395XK5XC4XCoW3V7QgCIJhGJZlcZZHbt68eS+88MLMmTOv7ukkSYrF4oyMjLVr1/7 617/ +6quvGIb5yU9+kpaWhr4FAACkC4A7Vn19fUlJSUlJSWlpaUtLS09PD8MwoaGhc+bMGTduXHh4uJ+fn6+vr0qluq2ntfzmN7+Ry+U43SP30ksvxcTEXMsReDyeUqlMTU1ds2bNX/7yl8OHDzMM43a7s7Ky0L0AAIB0AXDnsNls1UM0NjZ2dnbSNB0REZGVlcXVkw0LC9PpdLdg9aerM27cOJz3KzJ16tRrPwgXMKZNm2axWDZu3HjixAmWZUmSnDRpEnoYAACQLgBub52dna2trS0tLQ0NDefOnTMYDO3t7RKJRKfTTZs2LTIyMj4+PiEhQavV3tyd766H7777Tq1Wp6en42MwQp988klGRkZERMQ1HoebIjV//nyPx/Pxxx8fP36cpmmRSJScnIwqUgAAgHQBcJtxOp09PT29vb3cptrFxcXl5eVtbW1KpZJbqD1mzJjU1NSEhAQ/P787uB/Onj0bGBiIdDFyf/nLX958881rTxccqVS6aNEiPp///vvvHzp0iGGYX/ziF3FxcZiuBgAASBcAtwG73W6z2Ww2W1tb24kTJ06dOlVQUGCxWMRisY+Pz5QpU6ZOnTp16tTw8HCZTHY3dMjvfvc7fCquSGho6Ohe+kskkgULFigUijfffPOLL77g8XirV69OSkq68wbKAAAA6QLgTsDVROL+m5+f//333x8+fPjs2bNWq5UkybCwsMWLF8+fPz8jIyMwMPBu6xyGYUiSvO1KXd1E+/btG/Xukkgk2dnZ3t7eP/3pT7du3ep2u5999tm0tDScFwAAQLoAuOV0dHScPHkyNzc3Nze3vb3dYrGIRKKkpKSpU6dOmzYtIiJCrVbLZDKJRHIXds7zzz8fFhb2q1/9Cp+TEZozZ85vfvOb2bNnj+5hhUJhfHz8Rx999Nxzz3FTpH76059Onz4dHQ4AAEgXALeE4h9UVVV1dHQYjUaRSDRu3LgJEyYkJiYGBwf7+Pj4+vpKpVI+n3/X9lJ3d/cdU//qxmhtbbXZbKN+WJIkpVJpXFzcG2+88Y9//CMvL49hGI/HM2vWLPQ5AAAgXQDctGtlg8FQVVVVVVVVV1fX0tJiMpkUCkV8fHx8fLxerw8NDQ0NDfXz87tLllX8qKeeegrp4oq88sorycnJ1+PIPB5PLBanpaU9++yz77//flFRETdvbdq0aQIBvq5/RGlpaX5+vp+f35QpUzQaDToEAADpAuAqeTyelpaW5ubm5ubm6urqysrKurq67u7ugICAsLAwvV4fFRUVFxcXExPj7e19Nw9TXJTL5fJ4POiHkXv00Uev38G5MrXTp0+nafrjjz8uKChgGEYgEEyYMEGhUKDzL+PYsWMGgyE9PR2LVQAAkC4ArobZbO7p6Tl//nxnZ2dhYWFpaWlVVZXNZqMoSqvVpqenp6SkTJgwQa/Xq1QqdNelbN26NSoqKjMzE10xQt9//31cXFxAQMD1ewmxWDxz5kyRSOTxeHJyckiSXL16dUpKCkaZLoplWZqmjUbjhAkTpk6dil4CAEC6ABgpmqatP6ioqDh16lReXl5paSlJkgqFIigoaNy4cZMnT05PTw8ODsZPmCMRFBTk6+uLfhi5t95669e//vV1TRdcwJg6dapCobDZbFyVqpUrV2ZkZGAfjAsxDDMwMDB27Njo6OigoKAbk2c8Ho/ZbJbL5SKRiMfjDb2LK0/HGXrXhfeOsFwbtwLH7XazLCsSiQQCweBhhx1w6GEZhrno7fjAAADSBQDBMAzDMCzLms3mw4cPHzly5MiRI83NzW63WyaTRUVFzZ07d+7cuYmJiZhvfaXWrFmDTrgie/bsuSRRG6UAACAASURBVDEvJBKJJkyYsHbt2p/85Cd79+51uVwMw8yYMQOz+y68Xu/u7hYIBC6Xy2azXe8pZCzLulyutra2r776atasWTExMUPLzTEM43A43G43N6VNoVAMXtNzYyw2m42maYIg+Hy+RCIRiUSXfy2GYWw2W1dXV1NTE03T4eHh/v7+crmcx+ORJMmyrNPpdLvd3PxGHo/H5/O5COpwOLjPDHe7UCgUi8VYwAMASBcABEEQ5eXlJ0+ePHnyZEFBQU9Pj9Pp1Gg0M2fOnDZtWmZmZlhYmEQikUqlQqEQfQV31He0QBASEvLhhx++8MILeXl5NE07nc57770XPTOU2Wz+/e9/39LSEhMT8+ijj86fP/+6vpzVai0tLd2wYcPBgwfDwsIiIyOH3utwOEpLS3ft2nXo0CGZTLZmzZoxY8YMxg+z2Zybm/v++++rVKo5c+ZMmTIlODj4Mq81MDDw1VdfFRYWenl5JSUlMQyzYcOGgYGBWbNmzZkzR6VSsSzb3Ny8f//+Xbt2mUymSZMmPfLII9xOKXV1dbt27fr2228tFsuiRYsWLFgQHx+P1TsAcL3xX3vtNfTCtTh//vyhQ4eWLFmCXXVHXX9/f25u7ldfffXvf/978+bNhw4dqq2tlclk06ZNe/LJJ1esWLF48eKJEyeGh4drNBqJRCIQCDDofxXeeOONurq6cePGoStGaPny5b6+viEhITfgtUiS5PP5KpUqJiamq6urqKioqalJoVDExsbiRHCMRmNubq5KpVq0aBH3E75Op7uu19A8Hk8gENhstoMHD86dOzcmJmbo+AOPx1OpVDqdzm6379q1q7q6OiUlRaPRcIMGQqFQLpc3NTXFx8enpqaGhIRcajCBYRiz2bxmzZqqqqrU1NSFCxdGR0eHhobGx8ebTKbjx4+3trYmJiZyP6xIpdJTp05ZLJa5c+dOmzaN+/dIJpNZrdbKysrOzs5f/OIXcXFxCoVi2EwtAIBRh7ELuOXU1dVVVlZWVlZWV1fX1dW1t7c7HI6goKAZM2bExcWFh4cHBwcHBwdrNJrLzyiAEcrMzMQq2CuSn5+/ZMmSG/ZyJEkKhcIxY8asWrVKLBbn5ORs2LCBx+NlZ2djDQZBEAKBwNvbOy4uzt/fPyIiwmKxuN3u6/2KSqVSp9NdNBgIBAKKosRi8ZgxYxQKRUFBwbp165555pn4+HiBQCAUCr29vf39/XU6nY+Pz2V28HQ6ndu3bz9w4MA999wzffr08PBw7nZ/f3+CIGpqavbt26fVapctWyaXywMDAxUKhUwm8/PzoyiKe6RSqfTz8+O+KoODg1UqFaZFAQDSBdwtBgYGmpqampqaGhsbKysra2pqWlpanE6nTqfLzMwMDw+Pjo6OjY0NCwvDdfCoy87ORidckRUrVkRFRd3gFxWJROnp6SzLkiR58ODBtWvXEgQxadIkLy+v27EPPR5PR0eHn5+fWCwe4VNsNltnZ2draytBEGKx2Nvb28/PT6VSccsM2tvb6+vrZTKZr6/vRQcuuHXYTU1NRqMxKCiIpuna2lqXy8UtBDeZTA0NDUaj0dfXd8yYMXw+nxsItVgsHR0d3G8cFEXp9XovLy9uwcPlBwG4jBEfH09R1MGDB7VarVgsjo6O5g7L4/G4g3BdYTKZKisruaXb/v7+ISEhcrm8r6/vk08+8Xg8CQkJwwbKIiMjY2JiTp48uWvXrnvvvZcbkSB/MCyacjBkAQBIF3BXOH/+fHd3d3d3d0NDQ3FxcVlZWV1dnVgs9vX1TUxMjImJGTdu3Pjx4wMCAkZ+CQJXKj8/n9ttEF0xQsnJyYM/D9/ggJGRkSEWi10u1549ezZu3MgwTFZWlre3923Xh263+9y5c5WVlcHBwUFBQT9aM5phmNra2uLiYu66vK2tLTQ0dOLEidzqgpKSEoFAYLVaz58/7+Pjk5aWplarh11qu1yu1tbWL7/8srOzMy0tTaFQFBYW1tfX6/X6e+65x2g0lpWV1dTUiMViPp8fHx8vEol6e3srKyvr6+tJkrRYLF1dXVFRUenp6Xq9fiRtFIvFUVFRjz322Msvv7x3716NRqNUKgMDA4dlnvb29mPHjnFZq6mpic/nZ2RkpKWlNTQ0lJeXT5o0yc/Pb9g6foFAwHVaZWVlY2NjXFwc/lYCANIF3L2cTqfFYhkYGLBYLHl5eXl5eQUFBS0tLSKRSKlUJiUlpaenZ2VlJScn+/j4oLtugLfffjsqKur1119HV4zQc8899+abby5evPimBIyUlJSXXnrJYrHk5ORwBYWys7NvxzE9j8ezcePGsLCwmTNnjhkzxsvLS6lUXurBDocjJyensrLy73//u0wm++CDD2w2m91uNxgMX3/9tcPhePnll6VS6ebNm3ft2lVSUvLnP/95WOhyOp01NTV79uyx2WwkSWZmZsbGxjY3N//tb3/zeDyhoaFBQUH9/f3ffPMNn89/+eWX+Xz+6dOnc3JyAgICnnnmGZqm//rXv3744YednZ0rVqwYYdkumUyWmZn59NNPr1279ptvvtFoNA888MDQzEPTdFlZ2dq1a1966aVZs2YdOHDg/fffb29vj4uLq66u9ng8vr6+F53/plarvby8Ojo6qqurB5eVO53Onp6elpaWwYd1d3dbrVb8nQUApAu403B1GDn19fVHf2CxWEiS9PHxSU9PnzNnzqxZs8LDw7Ga4gYTi8WotXVFpFLpTawJKxQKY2NjN27cuHLlyqNHjzocDoZhFi5ceHudRKlUumDBgiNHjuzYsWP79u1Tp05dvnz59OnThUIhn8+/cBqPyWRqaWlpaGjgRi0efPDBqqoqhmHy8vIOHjy4fv16uVwuFAoXLlxYV1e3b9++b7/9dtmyZUOv41Uq1ZQpU/bt21dWVjZ58uQlS5bYbDZ/f/8tW7Z4eXnNnTtXp9OdPn2aGwlxu90Wi2XPnj0Wi+Wpp54SCoVCofDpp58uLi4+fPhwfHx8VlbWCFvK4/Eee+yx9vb2TZs2bdu2LSQkZOLEiYM7VHC7WEgkktjYWJIkQ0JCFAqF0WgcGBgYGBhgWZbrkIt+DEQiEU3TAwMDgze2tLR8/fXXZWVlg7d0dnZWVFRguQUAIF3AnYZhmOPHj584ceL48eNVVVX9/f00TQcEBCxatGjGjBljx47lJiVzcxLQXTfYP//5T3T7Ffnuu+8u8yv7DcDj8by8vN5+++1XXnnl0KFDa9eudbvdDz/88G3Xk88++2xXV9c333yze/fuEydOJCYmPvXUUzNmzPDz8xv2SG9vb51Ot2PHjqVLlz744IOPPPJIQkICVwGCZVmtVssFEh8fH26JQn5+/rJlyy58RT6fL5VKuavtwX0hht7CTTwjCKKsrKypqUmr1Q6OgQQFBYWEhBQWFlZWVo48XXBWrFgxMDDw6aef/s///M+bb745uM+dWCyeO3duRkYGj8f75ptvSkpKampq4uLiSJLkJnfZ7faLLlKnadrj8QgEAi8vr8EQFRYW9uijjy5YsGDwYfn5+e+///65c+fw1xYAkC5uJwMDA/feey9qoV7mSkgikbS3txuNRpIkw8LCUlNT09LSuPWRXl5eCoUCv53fRP/ 6179 0Ot2KFSvQFSN007c25xbpBgUFvfjiiwqFYv/+/X/605/efffdkTxXrVZ/8sknt8imkzqdbunSpZ2dnYcPH+7s7DSbzY2NjTt27Jg9e/bMmTOHLp0XiUT33nuvRCL5/PPPN27ceODAgZ/97GcqlcpsNtM0PXj9zefzlUolt8H5pbpucD3G4FrnwQXWg3vesSxrMpm4be+4Xeq4g3P1lxwOxxWdLIIgKIp65JFHHA7HF1988eqrr8bHx4eFhXH3Go3G48ePnz17dv78+Wq1urKykiAImUzG1Zjq6OgYOjoxqL+/32g0KhSKpKSkwaEJgUAgk8mGTpNTKBQYDQYApIvbjEqlSktL+/e//32pf8yAJEmZTCYWi+VyObcxRV9fX2lpaUNDAzrnVpCXl1dZWXn+/Hl0xQg1NDT4+Pjc3OELjsfj6evrY1m2pqampqZmJE+RyWRvvfWWTCa7RTqzo6Ojr6+Pu6a3Wq01NTUdHR319fWNjY0PPfTQ+PHjuYc5HA6VSpWdnR0aGnrmzJnPPvvs888/nzx5skKhcDqdjY2NAQEBg0NwMpksKCjoGt+YWq2WSCT9/f0dHR0BAQGDt1MUdRXxks/nR0ZGLlmyxGT6/+3dW3Bd9WHo4bWvsq62LNmyJVu+YdkGy4CxIYDBNeUWQmgZkhAKKZ1MMylvTeY0D81LXtopzZn29GSaNJ1MOpOEKTMJyQwkJISCCw6xsQ22MbjxBdnGwkKybN1vW/tyHlaj6shC6Gok7e97yBB7S9p77WV7/fb6X9p/9rOfnT59uq6uLgiCS5cuvfrqq0899dQTTzyxcePGc+fOhbdTCgoKamtrb7jhhsbGxvPnzw8ODg7/CCadTp87d66np2f79u3V1dXuPQLqYl5ZvHjxZz/72fBfOEfjwyQSiaKiosLCwmQy6R/C2eahhx5yECZkYGCgvLx8luw1UVVVdeONN4YX6OO8zK2pqZk9fwxbWlqGbg4EQRDek7n66qtXrVo1fIvSnp6e8POIO+6449prr+3q6nrttddyuVxdXd2rr7768ssv33DDDYlEIp1Od3d3L1iw4NZbbx31x2Wz2fDWRPD7exTD/2P4f69du3bNmjXHjh07ePBguNdkKpXq7OxctmxZfX39qF874gdlMpmhEVBhMNTX1z/88MNnz57ds2dP+IFU+FHLsWPH6uvry8rKLl261NHREf6DkkgkHn/88W9961tvvvnmli1btmzZMvStjh49evz48dra2s985jPhjhmZTCb3eyOeRviShz8TAHUxqxUXF2/btm3btm0OBcCEtLe3t7W1hRfECxYsWLVqVV1d3W233XbHHXds2rRp+A2WVCp16NCh8KP9hQsXrlixor6+ftOmTeXl5YcOHdqzZ8/NN9+8evXq9vb2jo6Oa6+9dvv27SNGqw4ODra0tDQ3N1+6dOmDDz5obW0NF5nIZrPvv/9+a2trMplsbm6+cOFCR0dHY2Pjpk2bdu7ceeHChXBCSFVVVWNjYzwer6+vr6urCwdxpdPpxsbGCxcujFgaoaenp7Gx8fjx401NTadPn66qqlqwYEG4h/cNN9zwF3/xFy0tLeEq27FYbMGCBel0+plnntm4cWNTU1MqlWppaTly5Mj1119///33NzY2njp16sUXXxwYGKioqMjlci0tLXv27CkoKPjjP/7j22+/PZvNtre3Hz9+/OLFi+GzOn/+/LJlyyKRyMWLF0+fPt3c3NzX13fs2LFwMxADpYCZFvvGN77hKABwJYWfsr/yyiv/9m//dvz48eXLl1933XWPPPLIV77ylbvuumvlypUj5mL19fUdOnTozTffjEajg4OD4UYQN954Y7iS7LFjx86dO5dKpY4fP15eXn7//ffX1taOqIu+vr5Tp04dOHAgk8nU1NRUVVX19/cfOHCgra1t6dKltbW1uVzu3XffPXHiRDweX79+/YoVK+rq6pLJ5MmTJ997771sNhvexPiDP/iD8vLypqamvXv39vb2Ll26tLq6urKycvhV+6VLl95+++3Dhw93dnaGv1tYWBjO8SgsLKytrc1ms3V1ddXV1WEwnDx58sCBA+3t7evXr89msxcvXiwpKQnHfV177bW5XO7UqVOnT5/u7+8/d+7cnj17stnsvffee8899yxYsCCTybz33nv79+8/f/58PB4vKyurqqqqqamJRqPvvvvum2++ef78+ZKSksLCwiVLllRUVKgLYKZFRr2lCwAzJ5vNdnZ2fulLX3r99dc3btz4+c9//o/+6I/G2BYwHPnT29t74cKFtra2devWlZaWhrOZw024z5w509fXV1VVVVFRMY0LsOZyue7u7sbGxlQqtXr16pKSkqkPKgtX6E6lUuFCt9lstq+v7+LFi8uWLUskEj09PdlsNtx+e+hLBgYGLl261NTUFATBmjVrhl47gLoAgKCzs/N73/veuXPndu7cuW3btvCz/8u3uRh+RR78/o5HNpuNxWJDSz+FvxXOLghXf5rGFfzCb57JZILfLy019W8+/J/dSCQy9PyHXn4ulxvxg8IXHj6N4a8dQF0AQBCOYioqKqqsrJyWGwIAqAsA8lQ2mx0YGCgoKBjjfgUA6iK/9PT0hJscLVmyZGgzJjKZTHt7e19f36JFi4qKisa+dAhXO+nu7k4kEuXl5eHSikyjcIHOjo6OZDJZWVkZj8fHPlGz2WxHR0dvb29JSUlpaWmeX/nlcrlUKtXa2prL5UpLS8c+IOGh6+rqCrdPLigo8HcCAHnItLBJOnnyZGNjY39/fzgEdtu2bWVlZW7ud3R0HDt2rK2tLR6P53K5FStWrFu3btRmyGazvb29R44c6e/vj0aj4XjidevWrVixwr7d06W9vf3o0aOHDx9ubm4uLCzcuHHjTTfdVFVV9WFHuLe39+jRo+GW6kEQVFVVbdiwYfieA3kllUp98MEHv/nNbxoaGtLp9PLly7ds2XLdddctWLBgRDaEs3Lfeuutnp6eWCwW7jCwdu3alStXWp8HgHxjRdrJuHDhwtNPPx0uHz4wMPDjH/+4tLQ0XNE8nz+t7OnpOXTo0A9/+MNYLFZeXv7qq6+ePXu2oqJi6dKllx+WgYGBgwcP/vjHP47FYtXV1e3t7S+99NLJkyfr6+sLCwt96Dt12Wx2//79P/nJT1588cWTJ0/u37//pZdeqqysrKmpKSsru/zxfX19x48f//a3vx0EwcKFC998881jx46Vl5eHuxTn2zuSy+VaW1uff/75H/7wh//1X/915MiR3/zmN2fOnLnqqquqq6sv30jhzTff/MlPfhIuddrV1fUf//EfJ06c2LRpU0lJiZMZgLxiwOuErzlyudyzzz67f//+TZs2feELX7jzzjt37dr1zW9+88SJE+EH8Hl7ZH73u98999xzFy9e/PKXv3zfffd96lOfamxsfOqppwYHBy9/fHd39z//8z/X1tbeeeedt9566913333fffc9+eSTTU1NwzfuZdL6+/v37du3YcOGp59++oUXXvibv/mbwcHB73//+wcOHBj17Tt79uxPf/rTM2fOPPLIIw888MAnP/nJvr6+f/3Xf02lUnk4fjKdTjc1Ne3Zs+fv/u7vfv3rX//gBz/YtWvX66+/HtbX5an83e9+t6qq6s4779yxY8edd9750EMP/f3f//25c+eczACoCz76Mvrpp58uKytbtWpVEAQLFy685ZZbTpw4sW/fvubm5nw+LEePHt27d++tt94ajk2/5pprCgsLDx48eOTIkcsfH+4A1djY2NvbGwRBJBKJxWKDg4OuxqbL2bNn77777gcffLCmpmbhwoX33nvvZz7zmba2tpaWllEff/LkyV/+8pe7du0Kh0KtX7++oqLijTfeOHDgQDabzbej19HREQTB1772tS1bthQXF9fX13/605++5pprjh49evmDs9lseDL39PQMnczpdDqdTpvYBkC+Me9iYlKp1JkzZ957773NmzcvWrQoCIJEIhGuqPj222/v2LGjpqYmP4/MhQsXGhoauru7h7bILSsrW7RoUWdn5xtvvLF9+/YRj08mk1u3bn355ZdXrFhRXl7e39+/d+/ehx9+eNmyZXaJmharV68Oz88w9hKJxMqVK5cuXTrqNJiLFy82NDS0tbWtWbMmnJVRUlISvi+vv/76tm3b8u1NWbhwYbgmQTKZDGth8eLFNTU1/f39o/w1Go9ff/31//mf/7l8+fLKyspsNrt79+7Pfvaz1dXVTmYA1AVjGRwcbGho6O3tLS0tLS4uDoIgEokkEomysrKmpqbw88781Nra2tLSEo1GKysrw7qIxWKFhYXpdPrs2bOXP76oqOjxxx8/ffr0M8888+67765fv760tPSrX/3q4sWLjVOfFpfPxm5tbd28efOKFSsuf3BbW9sHH3yQy+WWLl0a1kgsFgvnETU0NOThvYtwE+Xhv9LT05NMJm+++ebLH5xMJh999NHTp08/++yzZ86c2bhx44IFC77yla9UVVVZbhWAfONfvonJZDIXL15Mp9OFhYVDq8FEIpGCgoLu7u6BgYG8PTI9PT09PT3xeLy4uHgoD+LxeDab7ezsHPWC7LrrrnvkkUfi8fjPf/7z559/fnBwcPPmzdbYmaHztqur68SJE5/4xCc2bNhw+QP6+vq6urpisVhJScnQBXG4HlpbW5vhPf39/R988EEQBA888MDlvxuPx7ds2fLwww8XFRU9//zzzz333MDAwObNm62wDIC64KOFV1rDN7jI5XL5PJ97+GGJRCLDP6wNJ8F/2OMHBgZKSkp27dq1devW9vb21157bc+ePX19fc6xadfV1fXaa6/V1NRs27Zt2bJlH/b2hUUx/Bfz8K7FqI4fP97e3r558+brr79+jJN5586dN954Y2dn529/+9tXX301nIYBAOqCDxWutTpi/nEul+vt7S0uLi4oKMjbI1NUVFRYWBjuvzv0i+FyQ6Ouf5pKpfbt2/fCCy/s2LHj61//+s6dO996660nn3zy/fffN7F7evX29jY0NOzfv/+xxx5bu3btqLuyLFiwoLi4OLxKHiqNdDqdyWQWLVqU52PVWlpaDh06VF5e/sADDyQSicuPRjqdPnDgwAsvvLBt27avf/3rd9111zvvvPPkk0+eOXNm1AXTAGAeM+9iYhKJxLp16woLCzs7O8NP2XO5XDqd7ujoWLZsWTjPOz9VVlYuWbIkk8lcunQpvDzNZDJ9fX2xWCxcXGuErq6uf/zHf9yxY8fq1avr6uoWLVoUi8X+6Z/+6fDhwxUVFYsXL3ayTYvBwcFTp0698cYb9957bzgfYOgu0/CHLV68eNmyZdlstrW1NbxfEe4Ql81m161bl7eTB3K5XH9//+7du8vKyq699trq6urwdlwkEhl+APv7+7/1rW9t3bp1zZo1V199dfgBxDe/+c1Dhw5VVVUtWbLEeQhA/nDvYsJ1UVdXt3Llyra2tosXLwZBkEqlmpqa+vv7r7/++nDfsfxUVVW1du3awsLChoaG8Pr10qVLbW1tixcvvvHGG0e96j1y5EhpaWlRUVEQBOvWrXvssceWL1/e1NRkcNQ0Onbs2Ntvv71q1apbbrklvLc2ODh4+QfqFRUVa9euXbRo0YkTJ8LfbW9vv3TpUklJya233pq3m9APDAz8/Oc/D4Jgy5Yta9asGeqNEeP9MpnM0aNHCwsLw5UeVq1a9Wd/9mc1NTXNzc3hgssAkD/cu5iY8DPLhx9++OWXXz579uytt97a2dm5b9++zZs3b9u2LZ8/pIxEIlu2bPnEJz7x2muvfelLX0okEseOHRscHNy+ffumTZsGBwd/+tOfZjKZbdu21dXVBUEQj8evvvrq5ubmrq6uIAii0WhBQUFxcfGmTZtKS0udadNi//79v/3tbzOZzIoVKw4fPhwEwfvvvz8wMLB+/frrrruuu7v7mWeeSSaTt9xyS21t7fr16++5556XX3758ccfX7Ro0alTpzo6OrZv375ly5b8XFb14sWLL7300sGDB2+66abW1taOjo7u7u7m5uZYLHbXXXft37+/qamprq7upptuisViGzduvHTpUrhqXLiObVFR0aZNmxYuXOg8BCCvxL7xjW84ChOti+XLlzc3Nzc3Nzc1NZ08efLgwYOf//znb7jhhpKSknw+MuGNiFOnTrW2tjY2Nu7du3fp0qX3339/TU1NZ2fnX//1X// 6178 uLS1du3ZtcXFxNBqtqqo6fPhwOMasoaHh4MGDq1evvueee8rLy63jOXX79u37l3/5l2efffbIkSP79u371a9+9cILL7z88surV6/evn17cXHx+fPnv/a1r73yyitVVVW1tbWVlZXl5eXHjx/v7OxsbGw8ePBgMpl88MEH165dm4fzLt5///3nnnvuH/7hHw4fPnz48OHdu3f/6le/evHFF48fP/65z32urKzs29/+9tNPP93d3b158+aFCxcuWbLkrbfeam9v7+/vP3369L59+2pra+++++7KykonMwB5xb2Lyaipqbn//vsbGxszmUwsFvvkJz+5Y8eOUecu55WysrKtW7dGIpGurq6CgoKtW7euXr16w4YNkUgkmUzu2rUr3Oe4s7Nz6dKlBQUFt99+ezQaDedwx+PxDRs27Nq1a8mSJTYgmxaLFy++4447rr766hEReMsttyxZsiQSiZSUlNxzzz3hUKju7u6KiorNmzf/6Z/+aXd3dyKRuOaaa5YtW1ZfX5+fR6+wsLCuru5P/uRPRvx6eXn5VVddFYvFbrjhhp6enqKiotbW1pqamh07dkQikVQqFZ7MdXV1O3futDUkAHkoYiX7Sevv7w8HVZuCPFw2m+3q6kqlUqWlpUPr/Wez2ZaWll/84hdLlizZtm1bdXX10OM7Ozt7e3vj8Xg4F9YBvGLS6XRLS8vPfvazdevWbd26denSpUEQ5HK57u7u/v7+oqKicBYBo7p48eKePXs6Ojpuu+22tWvXhr/Y3d3d09MTi8XCVQrsCwlAHvK52uQtWLDAblmXi0ajI8aah/uBDA4OLliwoKampqqqavjvlpWVue1z5YVvSiqVKioqqq2traio+O/PGyKR0tJSU1/GFp7P8Xi8qqpq+JJoJSUl+Tw8EgDUBVfoQra/v//QoUO33HJLTU2NGxSzQTab7e7uPnjw4N1337106VJvyoQMDg4eP3585cqVGzZscOgAYDgjo7gSdRH+bzhQxHARb8o8OHpD24Y4dACgLgAAgOlnqUQAAEBdAAAA6gIAAFAXAAAA6gIAAJhJ9rvICz2Z3HdOp7rTo6wPVhKPPLEmWRybP6tqNg/kzvZm32jPNA9kx/9Va4ujf7oy6VQB4/s8FAAAFi1JREFUAJgKK9LmdVrM18AYeuHvdGZ/151p6BlXZvzV+oL5dxAAANQFVy4t5ndghFLZ4Gxfdu+l9NiZcV9V4sZy+y4DAKgLppAW+RAYoWwuaOzPvtOZfb0tPeoR+F9XFThtAADUBVNKi/wJjKHM+Id3By4/OE+sKagqMDgKAGCSrBklLf5Hdzr3ndOpnsz8D85oJLi9YpQlDd5szzh5AADUBVNNi3wLjGvKRjn5X29LZ93MAwBQF0w9LfIqMIpjkbXFo5z/7/ZmnUUAAOqCaUiLvAqMmxePMjjqP1rSTiQAAHUhLaYnLfInMNYVjXL+Nw9k82FgGACAuuAKpUWeBEY0EtxUPsrti4Nt5nYDAKgLafF7VQXRR1cm/3JdwaMrk6NeQAuM0NZFo2yfd6A9Y243AMAk2O9ivqVFSTzyuZpEbeHIbjzamXnm/ODkfsT83gfjf58aZeOLL65KXn4MAQAYm+uneZUW9WWxr64rGPWyuL4s9lfrC6oKJvOOz+87GKNufHHA4CgAAHWRV7K5YHhaPFSdeKg6Ef3wGwzFsciXVydHXYY1nwNj1I0vjnZmUlamBQBQF3n05kWCz9Ukwv/+4qpkfVlsPF/y2AqBMTK6Rj0ghzvcvgAAmBjzLua89/qyQRBMaJJANhf8qDHV0DOZD+fn5RyMkz3Zp86lRvxiVUH0iTVJJxgAwPi5dzHn1RZGJzr/2B2MEVYVjr7xhcFRAADqAoExMcno6BtfnO2TFwAA6gKBMUGjzu3eeyntPAEAUBcIjIlZNtpavQ09WdvqAQCoCwTGxCSjwaibgXSm5QUAgLpAYEzQDYtGWdL3nKkXAADqAoExUeXJUZbZbexz7wIAQF0gMCZoyWh1cabXvQsAAHXBxxEY7YPz7ZP+5gF1AQCgLvg4AuP/vDvwnokKAADqIs/ZlXlaAiMIgu+fTc2zwLAoLQCAupiA9/qyf3uif39bZjY8mZ5M7mN/JvkZGB+2PJRFaQEA1MUE0uL7Z1NBEDzfPPhK68e8N3NPJved06nZ8EzyMDBOdLuBBQCgLqYjLUK7W9O/bE5/XCNhwrToTufCZ5KHgXGyJ/txNUkqGxztzPgbAQBAXUxPWoReb0v/qDF15QNjeFoMpU5eBUYqGzx1LvX9s6n/fWqgeeBKvwHPfTD4Yb9VFo/4mwIAQF1MOC1CDT3ZHzWmruQ878vTYj4FxjjvCey99N+vtDudG3XriRk9GcZ4klFxAQCgLiaXFkOB8X8bBq7M9nAflhbzJjCeOf/R00jaB3O7f/+YXZXxK3ZBn8oGv2xOj30yAACgLiafFqErs//02GkxbwJjd2v6mfODHzbeLJUNvjfsHbl5cfzKdMUrrem/PdH/ettYx7a+LOavCQAAdTGltBgKjG+enMHt4caTFvMmMI52Zr57ZpTNvNsHc0+//z8H4abyeHKGz8psLtjflvnbE/27x3FIK5PGRQEAjFckl8ujtfwnlBbDfXFVsrZwmq95x58WQ3ZVxndWxj/eY5jNBT9qTDX0TL646stiOyriBdEgCIKXLqRHTHj4y3UFixKRmXvy73RlXmhJj/+wz8RbDwCgLvI3LUL3VSVuLJ+2QTKTSIv5FBhjhMdD1YkZetqpbPD0+xN+2n9dtyApLgAAxidfrpummBbBtO61N+m0CObFEKkxbC+fqUkOzQO5/9swMNG0KIlHpAUAgLqY5rQYurKf+l57U0mL+R0YVQXRGRqD1JPJfef0wCSO+e0VcX9HAACoi+lPi9AU99qbelrM48D41LIZuZTP5oIfvDc4ua+9psydCwCACZjnH82OMy3qy2KVyUh1YXRoE7dzfdkgCBr7cu90ZUbEQLjX3udrkhMdMzNdaTEUGEEQfLxzMMLAmJY5GCXxyAzduHihJd08MJmnt7Y4WhyzYBQAwATM51ndH5kWVQXRO5fG1xVFx9i7LZsLGvuzv/hg5BVqSTzyxJrk+K8+pzcthsybSd4PVSdmYmeJVDb42xP9k/taq0UBAEzUvL14GjstSuKRh6oTT6xJri+Ojr0tdDQS1BZGn1iT/Mt1BVUF/3O4JrTX3gylRTBrhkg9sGxKCz2VxCPXlM7IfO6zk92rZOYmgQAAzGPzc2TU2GlRXxb79LLERMc1LUpEvrw6+U5X5pnzExvEPyItSuKRP1qeWJKMDO3qkM0FB9szzzdPcm7AbBgidSE1pXC6vSIenZkhSKe6J1kXj6xI+NsBAEBdfERaTGXbimgkqC+LrSyM/nvjYE8mN56RUSPS4qby+B8uGbkXdTQS3Fgeu25hbBK7McySwOjPTKkurls4UwvR9k7qidWXxWZuRz8AAHUxT9JiWkbShzcx0rngI+9+jEiLsX96Mho8tiL5s6bBEXtXz5XAGFISj0x0A/KZ21NiZWF0osdzbXH0weVuXAAATMa8Glk+Rlq

Ngày đăng: 28/07/2015, 08:19

TỪ KHÓA LIÊN QUAN