2điểm Giải bài toán sau bằng cách lập hệ phương trình: Nhà Mai có một mảnh vườn trồng rau bắp cải.. 2,0 điểm: Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một ca n
Trang 1Đề thi tuyển sinh vào lớp10 của tinh Quảng Ninh
Từ 2006 -2007 đến 2011-2012
(sưu tầm)
SỞ GIÁO DỤC VÀ ĐÀO
TẠO QUẢNG NINH
KỲ THI TUYỂN SINH LỚP 10 THPT
NĂM HỌC 2011-2012
ĐỀ THI CHÍNH THỨC MÔN : TOÁN (Dùng cho mọi thí sinh) Ngày thi : 29/6/2011 Thời gian làm bài : 120 phút
(Không kể thời gian giao bài)
(Đề thi này có 1 trang)
Bài 1 (2,0 điểm)
1 Rút gọn các biểu thức sau:
a) A = ( )2
2 3 2 − 3 +
2.Biết rằng đồ thịcủa hàm số y = ax - 4 đi qua điểm M(2;5) Tìm a
Bài 2 (2,0 điểm)
1 Giải các phương trình sau:
2.Cho phương trình: x2 − 2(m+ 1)x+ 2m− = 2 0 với x là ẩn số
a)Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi m
b) Gọi hai nghiệm của phương trình là x1 , x2 , tính theo m giá trị của biểu thức
E = 2 ( )
x + m+ x + m−
Bài 3 (2điểm) Giải bài toán sau bằng cách lập hệ phương trình:
Nhà Mai có một mảnh vườn trồng rau bắp cải Vườn được đánh thành nhiều luống mỗi luống cùng trồng một số cây bắp cải Mai tính rằng : nếu tăng thêm 7 luống rau nhưng mỗi luống trồng ít đi 2 cây thì số cây toàn vườn ít đi 9 cây , nếu giảm
đi 5 luống nhưng mỗi luống trồng tăng thêm 2 cây thì số rau toàn vườn sẽ tăng thêm
15 cây Hỏi vườn nhà Mai trồng bao nhiêu cây bắp cải ?
Bài 4 (3,0 điểm)
Cho đường tròn (O) đường kính AB và một điểm C cố định trên bán kính OA (C khác A và O) , điểm M di động trên đường tròn (M khác A,B) Qua M kẻ đường thẳng vuông góc với CM , đường thẳng này cắt các tiếp tuyến tại A và B của đường tròn (O) lần lượt tại D và E
a) Chứng minh ACMD và BCME là các tứ giác nội tiếp
b) Chứng minh DC⊥EC
c) Tìm vị trí của điểm M để diện tích tứ giác ADEB nhỏ nhất
Câu 5 (1,0 điểm)
Chữ ký giám thị 1
………
Chữ ký giám thị 2
………
Trang 2Tỡm cỏc bộ số thực (x, y, z) thoả món :
1
29 2 6 3 2011 1016
2
x− + y− + z− + = x y z+ +
………Hết ………
Họ và tờn thớ sinh :……….Số bỏo danh………
SỞ GIÁO DỤC VÀ ĐÀO TẠO
QUẢNG NINH
- -KỲ THI TUYỂN SINH LỚP 10 THPT
NĂM HỌC 2010 - 2011
Đề thi chính thức Môn : toán
Bài 1 (1,5 điểm)
a) So sánh 2 số : 3 5 và 29
b) Rút gọn biểu thức : A = 3 5 3 5
3 5 3 5
Bài 2 (2,0 điểm)
Cho hệ phơng trình : 2 5 1
2 2
x y m
x y
− =
a) Giải hệ phơng trình với m = 1
b) Tìm m để hệ có nghiệm (x,y) thoả mãn : x2 – 2y2 = 1
Bài 3 (2,5 điểm)
Giải bài toán sau bằng cách lập phơng trình và hệ phơng trình :
Hai vòi nớc cùng chảy vào một bể không có nớc thì sau 12 giờ bể đầy Nừu từng vòi chảy riêng thì thời gian vòi thứ nhất làm đầy bể sẽ ít hơn vòi thứ 2 làm đầy bể
là 10 giờ Hỏi nếu chảy riêng từng vòi thì mỗi vòi chảy bao lâu đầy bể ?
Bài 4 (3 điểm)
Cho đờng tròn(O;R) , dây cung BC cố định (BC<2R) và điểm A di động trên cung lớn BC sao cho tam giác ABC có 3 góc nhọn Các đờng cao BD và CE của tam giác cắt nhau tại H
a) Chứng minh tứ giác ADHE nội tiếp
b) Giả sử góc BAC = 600 , hãy tính khoảng cách từ tâm O đến cạnh BC theo R c) Chứng minh đờng thẳng kể qua A và vuông góc với DE luôn đi qua một điểm
cố định
Bài 5 (1,0 điểm)
Cho biểu thức : P = xy(x – 2)(y + 6) + 12x2 – 24x + 3y2 + 18y + 36
Chứng minh P luôn dơng với mọi x;y thuộc R
Trang 3Gợi ý cách giải
I) H ớng dẫn chung:
- T/sinh làm bài theo cách riêng nhng đáp ứng đợc với yêu cầu cơ bản vẫn cho đủ
điểm
- Việc chi tiết điểm số (nếu có) so với biểu điểm phải đợc thống nhất trong H.đồng chấm
- Sau khi cộng toàn bài, điểm lẻ đến 0,25 điểm
II) Đáp án và thang điểm:
Câu I
1,5 điểm
1
(0.5
điểm)
45 > 29 ⇒ 45> 29 vậy 3 5 > 29 0,25
2
(1điểm)
( )
2 2
3 5 3 5
14 6 5 14 6 5
4
28 7 4
Câu II
2 điểm
1
(1điểm)
Thay m = 1 ta có hệ : 2 4 4 2 8
Cộng từng vế ta có phơng trình : 5x = 10 => x = 2 Thay x = 2 vào phơng trình x – 2y = 2 ta có :
2 – 2y = 2 => 2y = 0 => y = 0 0,25 Vậy hệ có nghiệm duy nhất : (x ; y) = (2 ; 0) 0,25
2
(1điểm)
Giải hệ : ( )
( )
2 2
2 2 2
x y
x y
Cộng từng vế ta có : 5x = 10m => x = 2m Thay vào ph/ trình (2) ta có : 2m – 2y = 2 => y = m – 1 Vậy hệ có nghiệm duy nhất : (x ; y) = (2m ; m-1) 0,5 Thay vào hệ thức : x2 – 2y2 = 1 Ta có :
(2m)2 – 2(m – 1)2 = 1
⇔ 4m2 - 2m2 + 4m – 2 – 1 = 0 ⇔ 2m2 +4m – 3 = 0
Có ∆ '= 22 – 2.(-3) = 10 > 0
0,25
⇒m1 = 2 10; m2 = 2 10
Vậy với =− +2 10
m
2 và
− −
m
2 thì thoả mãn hệ thức
0,25
Câu III
2,5 điểm Gọi thời gian vòi thứ nhất chảy riêng đầy bể là x (h) x
>12 vậy một giờ vòi thứ nhất chảy đợc 1
x (bể) Vòi thứ nhất chảy đầy bể ít hơn vỏi thứ hai là 10 giờ nên thời gian vòi thứ hai chảy riêng đầy bể là : x + 10 (h) vậy một giờ
1,0
Trang 4vòi 2 chảy đợc là : 1
10
x+ (bể)
Hai vòi chảy chung 12 giờ đầy bể ,vậy một giờ chảy đợc :
1
12 (bể) Theo bài ra ta có: + =
+
0,75
2 2
12x 12 x 10 x x 10 12x 12x 120 x 10x
x 14x 120 0
0,25
Có ∆ '= 72 –(-120) = 169 > 0 '
169 13
x1 = 7 + 13 = 20 (thoả mãn) ; x2 = 7 – 13 = - 5 (loại) 0,25 Vậy vòi thứ nhất chảy riêng đầy bể là 20 giờ
Vòi thứ hai chảy riêng đầy bể là 20 + 10 = 30 giờ 0,25
Câu IV
3 điểm
Hình vẽ đúng
P
N I
K O
H
E
D
C B
A
0,25
1
0,75
điểm
Từ giả thiết: ãBEC 90 , ã= 0 BDC 90= 0 0,5 Bốn điểm A, K, H, M cùng thuộc một đờng tròn 0,25
2
1,0
điểm
BAC ãBAC ( góc nội tiếp bằng nửa góc ở tâm cùng chắn
Kẻ OI vuông góc với BC => ãBOI= 1BOCã
Vậy ãBAC=BOI 60 => ãã = 0 OBI 30 = 0 0,25
=> OI = 1
3
1,0 đ
Kẻ OA cắt ED tại K Ta có ãEAK HAC (Vì nằm ở hai tam=ã giác vuông có góc nội tiếp chắn ằAB) 0,25
ã =ã
AEK ACB ( Vì tứ giác BEDC nội tiếp ) 0,25
Mà ãANC 90 Nên ã= 0 AKE 90 => OA = 0 ⊥ED Vậy đờng thẳng qua A vuông góc với ED đi qua O cố định 0,5
Câu V
1 điểm
P = xy(x – 2)(y + 6) + 12x2 – 24x + 3y2 + 18y + 36
= xy(x – 2)(y + 6) + 12x(x – 2) + 3y(y + 6) + 36 0,25
=x(x – 2) y y( + + 6) 12 + 3 y y( + + 6) 12 0,25
=(y2 + 6y+ 12) (x2 − 2x+ 3) 0,25
Trang 5Mµ 2 ( )2
2 ( )2
VËy P > 0 víi mäi x;y thuéc R
0,25
SỞ GIÁO DỤC VÀ ĐÀO TẠO
QUẢNG NINH
- -KỲ THI TUYỂN SINH LỚP 10 THPT
NĂM HỌC 2009 - 2010
ĐỀ THI CHÍNH THỨC MÔN : TOÁN
Ngày thi : 29/6/2009
Thời gian làm bài : 120 phút
(không kể thời gian giao đề)
Chữ ký GT 1 : Chữ ký GT 2 :
(Đề thi này có 01 trang)
Bài 1 (2,0 điểm) Rút gọn các biểu thức sau:
a) 2 3 3 27 + − 300
b) 1 1 : 1
Bài 2 (1,5 điểm)
a) Giải phương trình: x 2 + 3x – 4 = 0
b) Giải hệ phương trình: 3x – 2y = 4
2x + y = 5
Bài 3 (1,5 điểm)
Cho hàm số : y = (2m – 1)x + m + 1 với m là tham số và m # 1
2 Hãy xác định m trong mỗi trường hợp sau:
a) Đồ thị hàm số đi qua điểm M ( -1;1 )
b) Đồ thị hàm số cắt trục tung, trục hoành lần lượt tại A, B sao cho tam giác OAB cân.
Bài 4 (2,0 điểm): Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:
Một ca nô chuyển động xuôi dòng từ bến A đến bến B sau đó chuyển động ngược dòng từ B về A hết tổng thời gian là 5 giờ Biết quãng đường sông từ A đến B dài 60 Km và
Trang 6vận tốc dòng nước là 5 Km/h Tính vận tốc thực của ca nô ( Vận tốc của ca nô khi nước đứng yên )
Bài 5 (3,0 điểm)
Cho điểm M nằm ngoài đường tròn (O;R) Từ M kẻ hai tiếp tuyến MA , MB đến đường tròn (O;R) ( A; B là hai tiếp điểm).
a) Chứng minh MAOB là tứ giác nội tiếp.
b) Tính diện tích tam giác AMB nếu cho OM = 5cm và R = 3 cm.
c) Kẻ tia Mx nằm trong góc AMO cắt đường tròn (O;R) tại hai điểm C và D ( C nằm giữa M và D ) Gọi E là giao điểm của AB và OM Chứng minh rằng EA là tia phân giác của góc CED.
Hết
-(Cán bộ coi thi không giải thích gì thêm)
Họ và tên thí sinh: ……… Số báo danh: ………
SỞ GIÁO DỤC VÀ ĐÀO TẠO
QUẢNG NINH
- -KỲ THI TUYỂN SINH LỚP 10 THPT
NĂM HỌC 2008 - 2009
ĐỀ THI CHÍNH THỨC MÔN : TOÁN
Ngày thi : 03/7/2008
Thời gian làm bài : 120 phút
(không kể thời gian giao đề)
Chữ ký GT 1 : Chữ ký GT 2 :
(Đề thi này có 01 trang)
Bài 1: (1,5 điểm)
a, Rút gọn biểu thức A = 1 2 2 3 8+ − + 32
b, Rút gọn biểu thức B = ( x 1).( x 1) 1 víi x 0+ − + ≥
Bài 2: (2,0 điểm)
Cho phương trình: x2 + 2mx - m2 = 0 (1) với m là tham số
a, Giải phương trình (1) với m = 1
b, Tìm các giá trị của m để phương trình (1) có 2 nghiệm phân biệt?
Bài 3: (2,5 điểm) Giải bài toán bằng cách lập phương trình hoặc hệ phương trình:
Năm trước, hai đơn vị sản xuất nông nghiệp thu hoạch được 750 tấn thóc Năm sau, đơn vị thứ nhất làm vượt mức 15% và đơn vị thứ hai làm vượt mức 10% so với năm trước nên cả hai đơn vị thu hoạch được 845 tấn thóc Hỏi năm trước mỗi đơn vị thu hoạch được bao nhiêu tấn thóc?
Bài 4: (3,0 điểm)
Cho đường tròn (O;R) có AB là một dây cố định (AB < 2R) Trên cung lớn AB lấy hai điểm C, D sao cho AD//BC
Trang 7a, Kẻ các tiếp tuyến với đường tròn (O;R) tại A và D, chúng cắt nhau tại I Chứng minh AODI là tứ giác nội tiếp
b, Gọi M là giao điểm của AC và BD Chứng minh rằng điểm M thuộc một đường tròn cố định khi C, D di chuyển trên cung lớn AB sao cho AD // BC
c, Cho biết AB = R 2 và BC = R Tính diện tích tứ giác ABCD theo R
Bài 5: (1,0 điểm)
Giả sử phương trình: x2 - mx - 1 = 0 có hai nghiệm là x1 và x2, không giải phương trình, hãy tính theo m giá trị của biểu thức M = x1 - x2
Hết
-(Cán bộ coi thi không giải thích gì thêm)
Họ và tên thí sinh: ……… Số báo danh: ………
SỞ GIÁO DỤC VÀ ĐÀO TẠO
QUẢNG NINH
- -KỲ THI TUYỂN SINH LỚP 10 THPT
NĂM HỌC 2007 - 2008
ĐỀ THI CHÍNH THỨC MÔN : TOÁN
Ngày thi : 03/7/2007
Thời gian làm bài : 120 phút
(không kể thời gian giao đề)
Chữ ký GT 1 : Chữ ký GT 2 :
(Đề thi này có 01 trang)
Bài 1: (1,5 điểm).
Rút gọn biểu thức:
A
2 B= ( 3− 7)2
Bài 2: (2 điểm)
Cho phương trình ẩn m sau: x 2 - 6x + m + 1 = 0.
1 Tìm m để phương trình có nghiệm x = 2.
2 Tìm m để phương trình có hai nghiệm x 1 , x 2 thỏa mãn x 1 + x 2 = 26.
Bài 3 (2 điểm)
Giải bài toán bằng cách lập phương trình hoặc hệ phương trình:
Một thửa ruộng hình chữ nhật có chu vi là 300m Tính diện tích của thửa ruộng biết rằng nếu chiều dài giảm đi 3 lần và chiều rộng tăng 2 lần thì chu vi thửa ruộng vẫn không thay đổi.
Bài 4: (3,5 điểm)
Cho đường tròn (O; R) và đường thẳng (d) cố định không giao nhau Từ điểm M thuộc (d) kẻ hai tiếp tuyến MA, MB với đường tròn (O;R) (A, B là các tiếp điểm).
1 Chứng minh rằng tâm đường tròn nội tiếp tam giác MAB thuộc đường tròn (O;R).
Trang 82 Cho biết MA = R 3, tính diện tích hình phẳng giới hạn bởi hai tiếp tuyến MA,
MB và cung nhỏ AB.
3 Chứng minh rằng khi M di động trên (d) thì đường thẳng AB luôn đi qua một điểm
cố định.
Bài 5 (1 điểm)
Cho a = 3 26 15 3+ + 3 26 15 3− Chứng minh rằng a là bình phương của một số nguyên.
Hết
-(Cán bộ coi thi không giải thích gì thêm)
Họ và tên thí sinh: ……… Số báo danh: ………
SỞ GIÁO DỤC VÀ ĐÀO TẠO
QUẢNG NINH
- -KỲ THI TUYỂN SINH LỚP 10 THPT
NĂM HỌC 2006 - 2007
ĐỀ THI CHÍNH THỨC MÔN : TOÁN
Ngày thi : 15/6/2006
Thời gian làm bài : 120 phút
(không kể thời gian giao đề)
Chữ ký GT 1 : Chữ ký GT 2 :
(Đề thi này có 01 trang)
Bài 1: (2 điểm)
1 Rút gọn biểu thức A.
2 Tính giá trị của biểu thức A khi x = 3 2 2− .
Bài 2: (2,5 điểm)
Cho hai hàm số bậc nhất: y = -2x + 3 (1) ; y = 0,5x - 2 (2).
1 Vẽ đồ thị hai hàm số đã cho trên cùng một mặt phẳng tọa độ và tính các góc tạo bởi các đường thẳng có phương trình (1) và (2) với trục Ox (làm tròn đến phút).
2 Gọi giao điểm của các đường thẳng có phương trình (1) và (2) với trục Ox theo thứ
tự là A và B, giao điểm của hai đường thẳng đó là C Tính diện tích tam giác ABC (đơn vị đo trên các trục tọa độ là cm).
Bài 3: (2 điểm)
Xét phương trình: x 4 - 2(m 2 + 2)x 2 + 5m 2 + 3 = 0 (1) với m là tham số.
1 Chứng minh rằng với mọi giá trị của m, phương trình (1) luôn có 4 nghiệm phân biệt.
2 Gọi các nghiệm của phương trình là (1) là x 1 , x 2 , x 3 , x 4 , hãy tính theo m giá trị của biểu thức 2 2 2 2
1 2 3 4
M
Bài 4: (3,5 điểm)
Trang 9Cho tam giác ABC cân tại A có góc BAC = 45 0 , nội tiếp đường tròn (O;R) Tia AO cắt đường tròn (O;R) tại D khác A Lấy điểm M trên cung nhỏ AB (M khác A, B) Dây MD cắt dây BC tại I Trên tia đối của tia MC lấy điểm E sao cho ME = MB Đường tròn tâm D bán kính DC cắt MC tại điểm thứ hai K.
1 Chứng minh rằng:
a, BE song song với DM.
b, Tứ giác DCKI là tứ giác nội tiếp.
2 Không dùng máy tính hoặc bảng lượng giác, hãy tính theo R thể tích hình do tam giác ACD quay một vòng quanh cạnh AC sinh ra.
Hết
-(Cán bộ coi thi không giải thích gì thêm)
Họ và tên thí sinh: ……… Số báo danh: ………