1. Trang chủ
  2. » Đề thi

đề toán thi vào lớp 10 môn toán chuyên trường trần hưng đạo bình thuận năm 2015-2016

2 528 2

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 2
Dung lượng 223,5 KB

Nội dung

ĐỀ THI VÀO TRƯỜNG CHUYÊN TRẦN HƯNG ĐẠO BÌNH THUẬN 2015 11.. Một bác nông dân đem trứng ra chợ bán.. Tổng số trứng bán ra được tính như sau: - Ngày thứ nhất bán được 8 trứng và 1/8 số trứ

Trang 1

ĐỀ THI VÀO TRƯỜNG CHUYÊN TRẦN HƯNG ĐẠO BÌNH THUẬN 2015 1

1 ĐỀ THI CHUYÊN TOÁN TRẦN HƯNG ĐẠO

2015

1 BÀI 1 (2 điểm) Giải phương trình:

x 8 2 x 9    x 20 ĐS: x = 25

GIẢI

 x 8 2 x 9    x 20  x 9 1 x 20    

x 9  x 21 

x 21

2

x 21

x 21

x 25

x 18

2 BÀI 2 (2 điểm) Một bác nông dân đem trứng ra chợ

bán Tổng số trứng bán ra được tính như sau:

- Ngày thứ nhất bán được 8 trứng và 1/8 số trứng còn lại

- Ngày thứ hai bán được 16 trứng và 1/8 số trứng còn lại

- Ngày thứ ba bán được 24 trứng và 1/8 số trứng còn lại

Cứ như vậy cho đến ngày cuối cùng thì bán hết trứng

Nhưng thật thú vị, số trứng bán được trong mỗi ngày

đều bằng nhau Hỏi tổng số trứng bán được là bao

nhiêu và bán hết trong mấy ngày? ĐS: 392 trứng, 7

ngày

GIẢI

 Gọi x là tổng số trứng bán được (x  N*) thì :

 Số trứng bán được trong ngày thứ nhất là:

x 8 8 8

 Số trứng bán được trong ngày thứ hai là:

x 8

8 16

8

 Theo đề toán ta có phương trình:

x 8

 Giải phương trình ta được x = 392

 Vậy tổng số trứng bán được là 392 trứng

 Số trứng bán được trong mỗi ngày là 8 x 8 56

8

 Số ngày là 392 : 56 = 7 (ngày)

3 BÀI 3 (2đ) Cho các số thực dương x,y,z thỏa

x y z 3 2   Chứng minh rằng:

4

x 3y 5z  y 3z 5x  z 3x 5y 

GIẢI

Dự đoán điểm rơi (điểm xảy ra dấu bằng) là

x  y z 2 Kiểm tra lại ta thấy khi x y z   2

thì mỗi số hạng của vế trái bằng

4 2x 2

x 3x 5x  8x   , tổng của ba số

hạng đúng bằng 3/4

 Mỗi số hạng của vế trái có dạng 1

ab nên ta liên tưởng đến bất đẳng thức 1 2

a b

ab   (nghịch đảo của trung bình nhân  nghịch đảo của trung bình cộng suy ra từ bất đẳng thức Cô-si: ab a b

2

 ) Dấu = xảy ra khi a

= b

 Trong phân thức thứ nhất của vế trái, khi dấu = xảy ra thì 3y + 5z = 8x nên ta nhân tử và mẫu với 8 2 2 để làm xuất hiện 8x trong dấu căn, nghĩa là:

8x 3y 5z

x 3y 5z  8x 3x 5y    (1)

 Tương tự ta có:

8y 3z 5x

y 3z 5x   

3 8z 3z 5y

z 3x 5y   

 Cộng từng vế các bất đẳng thức cùng chiều (1), (2), (3)

ta được:

VT 4 2

8x 3y 5z 8y 3z 5x 8z 3x 5y

 Biểu thức trong dấu ngoặc có dạng 1 1 1

a b c  ta liên tưởng đến bất đẳng thức 1 1 1 9

a b c  a b c  chứng minh như sau:

 Theo bất đẳng thức Cô-si áp dụng cho ba số không âm

ta có:

3

3

a b c 3 abc

   

 a b c 1 1 1 9

a b c  a b c  Dấu = xảy ra  a = b = c

 Áp dụng bất đẳng thức 1 1 1 9

a b c  a b c  vào (*) ta được

 

8x 3y 5z 8y 3z 5x 8z 3x 5y 8x 3y 5z 8y 3z 5x 8z 3x 5y

 

Trang 2

ĐỀ THI VÀO TRƯỜNG CHUYÊN TRẦN HƯNG ĐẠO BÌNH THUẬN 2015 2

4 BÀI 4 (3đ) Cho đường tròn (O) đường kính AB = 2R,

điểm C di động sao cho ACB 60 0 và các đoạn thẳng

AC, BC lần lượt cắt đường tròn (O) tại hai điểm D, E

a) Chứng minh rằng khi điểm C di động thì đường thẳng

DE luôn tiếp xúc với một đường tròn cố định

b) Gọi M, N lần lượt là hình chiếu vuông góc của A, B

trên đường thẳng DE Xác định vị trí điểm C để tích

AM.BN đạt giá trị lớn nhất

GIẢI

C

D

E

O

H M

N

a) ACB 1 AB DE  

2

2

DE 60  DOE 60 0 mà OD = OE = R   ODE

đều cạnh R  đường cao OH R 3

2

  DE tiếp xúc đường tròn (O,R 3)

2 cố định

b) ACB 60  0  C di động trên hai cung chứa góc 600

dựng trên đoạn AB giới hạn sao cho các đoạn thẳng

CA, CB phải cắt đường tròn (O)

 OA = OB, OH//AM//BN (cùng vuông góc với DE) 

OH là đường trung bình của hình thang ABNM 

AM BN 2OH R 3   không đổi  tích AM.BN lớn

nhất =

2

AM BN

2

2 2

 AM = BN 

C là điểm chính giữa của hai cung chứa góc 600 dựng

trên đoạn AB

5 BÀI 5 (2đ) Trên bảng viết các số

2015 2015 2015 2015 Mỗi lần biến đổi, xóa đi

hai số a, b bất kỳ và thay bằng số a + b – 5ab Hỏi sau

2014 lần thực hiện phép biến đổi trên bảng còn lại số

nào? ĐS: 1/5

GIẢI

 Mỗi lần biến đổi ta xóa đi hai số và thêm lại một số

nên tổng kết mỗi lần biến đổi giảm đi một số Sau

2014 lần biến đổi giảm đi 2014 số và còn lại 01 số

 Giả sử các số trên bảng đang là a1, a2, …, ak tại một thời điểm bất kỳ

 Cho tương ứng bảng số trên với tích

5a11 5a  21 5a  k1

 Sau mỗi lần biến đổi xóa đi hai số a, b bất kỳ và thay bằng số a + b - 5ab thì tích trên mất đi hai thừa số 5a 1 , 5b 1 nhưng được thêm thừa số

5 a b 5ab  1 = 5a 5b 25ab 1   =

5a 1 5b 1  

Như vậy sau mỗi lần biến đổi tích chỉ đổi dấu.

 Vì tích ban đầu bằng 0 (do bảng ban đầu có thừa số

52015 nên thừa số tương ứng bằng 5.1 1 0

5  ) nên sau 2014 lần thực hiện phép biến đổi trên bảng số và trên tích tương ứng thì số cuối cùng x cũng phải cho tích bằng 0 tức là 5x – 1 = 0  x 1

5

Ngày đăng: 27/07/2015, 11:50

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w