Đề số 2 PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH Câu I: (2đ) Cho hàm số y = + + + 2 1x mx x m 1/ Khảo sát hàm số khi m = −1 2/ Tìm m sao cho hàm số đạt cực đại tại x = 2 Câu II: (2đ) 1/ Giải hệ pt: 2 2 6 20 x y y x x y y x + = + = 2/ Giải pt: 7 3 5 sin cos sin cos sin 2 cos7 0 2 2 2 2 x x x x x x+ + = Câu III: (2 đ) Trong kgOxyz, cho các đường thẳng d 1 : 2 1 0 1 0 x y x y z + + = − + − = và d 2 : 3 3 0 2 1 0 x y z x y + − + = − + = 1/ Cmr d 1 và d 2 đồng phẳng và viết pt mp(P) chứa d 1 và d 2 . 2/ Tìm thể tích phần không gian giới hạn bởi mp(P) và ba mặt phẳng tọa độ. Câu IV: (2đ) 1/ Tính tích phân I = 4 4 4 0 (sin cos )x x dx π − ∫ 2/ Cho x, y, z > 0 và xyz = 1. Chứng minh rằng x 3 + y 3 + z 3 ≥ x + y + z. PHẦN TỰ CHỌN: Thí sinh chọn một trong 2 câu V.a hoặc V.b Câu V.a: (2 điểm) 1/ Trong mpOxy, cho 2 đường thẳng d 1 : 2x − 3y + 1 = 0, d 2 : 4x + y − 5 = 0. Gọi A là giao điểm của d 1 và d 2 . Tìm điểm B trên d 1 và điểm C trên d 2 sao cho ∆ABC có trọng tâm G(3; 5). 2/ Giải hệ phương trình: 2 : 1: 3 : 1: 24 x x y y x x y y C C C A + = = Câu V.b: (2 điểm) 1/ Giải hệ phương trình: 2 2 2 2 2 3 7 6 0 (1) 3 3 lg(3 ) lg( ) 4lg2 0 (2) x y x y x y y x − − + − = ÷ ÷ − + + − = 2/ Cho hình lập phương ABCD.A’B’C’D’. Chứng minh rằng BD’ ⊥ mp(ACB’) . Đề số 2 PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH Câu I: (2đ) Cho hàm số y = + + + 2 1x mx x m 1/ Khảo. + = 1/ Cmr d 1 và d 2 đồng phẳng và viết pt mp(P) chứa d 1 và d 2 . 2/ Tìm thể tích phần không gian giới hạn bởi mp(P) và ba mặt phẳng tọa độ. Câu IV: (2đ) 1/ Tính tích phân I = 4 4 4 0 (sin