Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 19 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
19
Dung lượng
1,1 MB
Nội dung
http://tranduythai.violet.vn Biên soạn: Trần Duy Thái 103 ĐỀ 19 A. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I. (2,0 điểm) Cho hàm số mxxmxy 9)1(3 23 , với m là tham số thực. 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho ứng với 1m . 2. Xác định m để hàm số đã cho đạt cực trị tại 21 , xx sao cho 2 21 xx . Câu II. (2,0 điểm) 1. Giải phương trình: ) 2 sin(2 cossin 2sin cot 2 1 x xx x x . 2. Giải phương trình: )12(log1)13(log2 3 5 5 xx . Câu III. (1,0 điểm) Tính tích phân 5 1 2 13 1 dx xx x I . Câu IV. (1,0 điểm) Cho hình lăng trụ tam giác đều '''. CBAABC có ).0(',1 mmCCAB Tìm m biết rằng góc giữa hai đường thẳng 'AB và 'BC bằng 0 60 . Câu V. (1,0 điểm) Cho các số thực không âm zyx ,, thoả mãn 3 222 zyx . Tìm giá trị lớn nhất của biểu thức zyx zxyzxyA 5 . B. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được làm một trong hai phần (phần a, hoặc b). a. Theo chương trình Chuẩn: Câu VIa. (2,0 điểm) 1. Trong mặt phẳng với hệ toạ độ ,Oxy cho tam giác ABC có )6;4(A , phương trình các đường thẳng chứa đường cao và trung tuyến kẻ từ đỉnh C lần lượt là 0132 yx và 029136 yx . Viết phương trình đường tròn ngoại tiếp tam giác ABC . 2. Trong không gian với hệ toạ độ ,Oxyz cho hình vuông MNPQ có )4;3;2(),1;3;5( PM . Tìm toạ độ đỉnh Q biết rằng đỉnh N nằm trong mặt phẳng .06:)( zyx Câu VIIa. (1,0 điểm) Cho tập 6,5,4,3,2,1,0E . Từ các chữ số của tập E lập được bao nhiêu số tự nhiên chẵn gồm 4 chữ số đôi một khác nhau? b. Theo chương trình Nâng cao: Câu VIb. (2,0 điểm) 1. Trong mặt phẳng với hệ toạ độ ,Oxy xét elíp )(E đi qua điểm )3;2( M và có phương trình một đường chuẩn là .08 x Viết phương trình chính tắc của ).(E 2. Trong không gian với hệ toạ độ ,Oxyz cho các điểm )2;3;0(),0;1;0(),0;0;1( CBA và mặt phẳng .022:)( yx Tìm toạ độ của điểm M biết rằng M cách đều các điểm CBA ,, và mặt phẳng ).( Câu VIIb. (1,0 điểm) Khai triển và rút gọn biểu thức n xnxx )1( .)1(21 2 thu được đa thức n n xaxaaxP .)( 10 . Tính hệ số 8 a biết rằng n là số nguyên dương thoả mãn n CC nn 171 32 . ĐÁP ÁN ĐỀ 19 Câu Đáp án Điểm www.VNMATH.com http://tranduythai.violet.vn Biờn son: Trn Duy Thỏi 104 1. (1,25 im) Với 1m ta có 196 23 xxxy . * Tập xác định: D = R * Sự biến thiên Chiều biến thiên: )34(39123' 22 xxxxy Ta có 1 3 0' x x y , 310' xy . Do đó: + Hàm số đồng biến trên mỗi khoảng )1,( và ),3( . + Hm số nghịch biến trên khoảng ).3,1( 0,5 Cực trị: Hàm số đạt cực đại tại 1x và 3)1( yy CD ; đạt cực tiểu tại 3x và 1)3( yy CT . Giới hạn: yy xx lim;lim . 0,25 Bảng biến thiên: 0,25 * Đồ thị: Đồ thị cắt trục tung tại điểm )1,0( . 1 2 3 4 -1 1 2 3 x y O 0,25 2. (0,75 điểm) Ta có .9)1(63' 2 xmxy +) Hàm số đạt cực đại, cực tiểu tại 21 , xx phương trình 0'y có hai nghiệm pb là 21 , xx Pt 03)1(2 2 xmx có hai nghiệm phân biệt là 21 , xx . 31 31 03)1(' 2 m m m )1( 0,25 I (2,0 im) +) Theo định lý Viet ta có .3);1(2 2121 xxmxx Khi đó 41214442 2 21 2 2121 mxxxxxx )2(134)1( 2 mm 0,5 x y y 3 -1 0 0 3 1 www.VNMATH.com http://tranduythai.violet.vn Biờn son: Trn Duy Thỏi 105 Từ (1) và (2) suy ra giá trị của m là 313 m và .131 m 1. (1,0 điểm) Điều kiện: .0cossin,0sin xxx Pt đã cho trở thành 0cos2 cossin cossin2 sin2 cos x xx xx x x 02sin) 4 sin(cos 0 cossin cos2 sin2 cos 2 xxx xx x x x +) ., 2 0cos kkxx 0,5 +) nm n x mx nxx mxx xx , 3 2 4 2 4 2 4 2 2 4 2 ) 4 sin(2sin ., 3 2 4 t t x Đối chiếu điều kiện ta có nghiệm của pt là kx 2 ; .,, 3 2 4 tk t x 0,5 2. (1,0 điểm) Điều kiện . 3 1 x (*) Với đk trên, pt đã cho )12(log31)13(log 5 2 5 xx 32 3 5 2 5 )12()13(5 )12(log)13(5log xx xx 0,5 II (2,0 im) 8 1 2 0)18()2( 0436338 2 23 x x xx xxx Đối chiếu điều kiện (*), ta có nghiệm của pt là .2x 0,5 III (1,0 im) Đặt 3 2 132 3 13 tdt dx x dx dtxt . Khi 1x thì t = 2, và khi x = 5 thì t = 4. Suy ra 4 2 2 2 2 3 2 . . 3 1 1 3 1 tdt t t t I 4 2 2 4 2 2 1 2)1( 9 2 t dt dtt 0,5 www.VNMATH.com http://tranduythai.violet.vn Biờn son: Trn Duy Thỏi 106 . 5 9 ln 27 100 2 4 1 1 ln 2 4 3 1 9 2 3 t t tt 0,5 - Kẻ )''('// BADABBD 0 60)',()','( BCBDBCAB 0 60' DBC hoặc .120' 0 DBC 0,5 IV (1,0 điểm) - Nếu 0 60'DBC Vì lăng trụ đều nên ).'''(' CBABB áp dụng định lý Pitago và định lý cosin ta có 1' 2 mBCBD và .3'DC Kết hợp 0 60'DBC ta suy ra 'BDC đều. Do đó .231 2 mm - Nếu 0 120'DBC áp dụng định lý cosin cho 'BDC suy ra 0m (loại). Vậy .2m * Chú ý: - Nếu HS chỉ xét trường hợp góc 0 60 thì chỉ cho 0,5đ khi giải đúng. - HS có thể giải bằng phương pháp vectơ hoặc toạ độ với nhận xét: ''. '.' )','cos()','cos( BCAB BCAB BCABBCAB . 0,5 Đặt zyxt 2 3 )(23 2 2 t zxyzxyzxyzxyt . Ta có 30 222 zyxzxyzxy nên 3393 2 tt vì .0t Khi đó . 5 2 3 2 t t A 0,5 V (1,0 điểm) Xét hàm số .33, 2 35 2 )( 2 t t t tf Ta có 0 55 )(' 2 3 2 t t t ttf vì .3t Suy ra )(tf đồng biến trên ]3,3[ . Do đó . 3 14 )3()( ftf Dấu đẳng thức xảy ra khi .13 zyxt Vậy GTLN của A là 3 14 , đạt được khi .1 zyx 0,5 1. (1 điểm) VIa. (2,0 điểm) - Gọi đường cao và trung tuyến kẻ từ C là CH và CM. Khi đó CH có phương trình 0132 yx , A 2 1 m C C B B A m D 3 1 1 0 120 C(-7; -1) B(8; 4) www.VNMATH.com http://tranduythai.violet.vn Biờn son: Trn Duy Thỏi 107 CM có phương trình .029136 yx - Từ hệ ).1;7( 029136 0132 C yx yx - )2,1( CHAB unCHAB 0162: yxABpt . - Từ hệ )5;6( 029136 0162 M yx yx ).4;8(B 0,5 - Giả sử phương trình đường tròn ngoại tiếp .0: 22 pnymxyxABC Vì A, B, C thuộc đường tròn nên 0750 04880 06452 pnm pnm pnm 72 6 4 p n m . Suy ra pt đường tròn: 07264 22 yxyx hay .85)3()2( 22 yx 0,5 2. (1 điểm) - Giả sử );;( 000 zyxN . Vì )1(06)( 000 zyxN - MNPQ là hình vuông MNP vuông cân tại N 0.PNMN PNMN 0)4)(1()3()2)(5( )4()3()2()1()3()5( 00 2 000 2 0 2 0 2 0 2 0 2 0 2 0 zzyxx zyxzyx 0,5 )3(0)4)(1()3()2)(5( )2(01 00 2 000 00 zzyxx zx - Từ (1) và (2) suy ra 1 72 00 00 xz xy . Thay vào (3) ta được 065 0 2 0 xx 2,1,3 1,3,2 000 000 zyx zyx hay )2;1;3( )1;3;2( N N . - Gọi I là tâm hình vuông I là trung điểm MP và NQ ) 2 5 ;3; 2 7 ( I . Nếu )13;2( N thì ).4;3;5( Q Nếu )2;1;3( N thì ).3;5;4( Q 0,5 Giả sử abcd là số thoả mãn ycbt. Suy ra 6,4,2,0d . +) .0d Số cách sắp xếp abc là . 3 6 A +) .2d Số cách sắp xếp abc là . 2 5 3 6 AA 0,5 VIIa. (1,0 điểm) +) Với 4d hoặc 6d kết quả giống như trường hợp .2d Do đó ta có số các số lập được là .4203 2 5 3 6 3 6 AAA 0,5 1. (1 điểm) VIb. (2,0 điểm) www.VNMATH.com http://tranduythai.violet.vn Biờn son: Trn Duy Thỏi 108 - Gọi phương trình )0(1:)( 2 2 2 2 ba b y a x E . - Giả thiết )2(8 )1(1 94 2 22 c a ba Ta có ).8(88)2( 22222 cccccabca Thay vào (1) ta được 1 )8( 9 8 4 ccc . 0,5 2 13 2 026172 2 c c cc * Nếu 2c thì .1 1216 :)(12,16 22 22 yx Eba * Nếu 2 13 c thì .1 4/3952 :)( 4 39 ,52 22 22 yx Eba 0,5 2. (1 điểm) Giả sử );;( 000 zyxM . Khi đó từ giả thiết suy ra 5 22 )2()3()1()1( 002 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 yx zyxzyxzyx )3( 5 )22( )1( )2()2()3()1( )1()1()1( 2 00 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 yx zyx zyxzyx zyxzyx 0,5 Từ (1) và (2) suy ra 00 00 3 xz xy . Thay vào (3) ta được 2 00 2 0 )23()1083(5 xxx 3 23 1 0 0 x x ). 3 14 ; 3 23 ; 3 23 ( )2;1;1( M M 0,5 Ta có nnnnnn n nCC nn 1 )2)(1( !3.7 )1( 2 3 171 32 .9 0365 3 2 n nn n 0,5 VIIb. (1,0 điểm) Suy ra 8 a là hệ số của 8 x trong biểu thức .)1(9)1(8 98 xx Đó là .89.9.8 8 9 8 8 CC 0,5 www.VNMATH.com http://tranduythai.violet.vn Biên soạn: Trần Duy Thái 109 ĐỀ 20 I.Phần chung (7 điểm) :dành cho tất cả các thí sinh Câu I(2 điểm) :Cho hàm số 3 2 y x 2mx (m 3)x 4 có đồ thị là (C m ) 1) Khảo sát sự biến thiên và vẽ đồ thị (C 1 ) của hàm số trên khi m = 2. 2) Cho E(1; 3) và đường thẳng ( ) có phương trình x-y + 4 = 0. Tìm m để ( ) cắt (C m ) tại ba điểm phân biệt A, B, C ( với x A = 0) sao cho tam giác EBC có diện tích bằng 4. Câu II (2 điểm):a.Giải phương trình: 2 3 2 sin 2 1 1 3 2cos sin 2 tanx x x x . b.Giải hệ phương trình : 3 2 4 3 2 2 x y x xy 1 x x y x y 1 Câu III (1 điểm). Tính tính phân sau: π 2 2 0 dx I cos x 3cosx 2 . Câu IV (1 điểm): Cho hình lăng trụ đứng / / / ABC. A B C có đáy là tam giác đều cạnh a, cạnh bên 2a .Gọi E là trung điểm của / BB .Xác định vị trí của điểm F trên đoạn / AA sao cho khoảng cách từ F đến C / E là nhỏ nhất. Câu V (1 điểm):Xét các số thực dương a, b, c thỏa mãn: 1 1 1 1 a b c . Tìm giá trị nhỏ nhất của biểu thức: 2 2 2 b c c a a b T a b c II. Phần riêng (3 điểm): Thí sinh chỉ làm một trong hai phần (Phần 1 hoặc phần 2) Phần 1: Theo chương trình chuẩn Câu VIa: ( 2 điểm) 1/.Trong mặt phẳng toạ độ Oxy , cho đường thẳng (d) : 3 7 0x y và điểm A(3;3). Tìm toạ độ hai điểm B, C trên đường thẳng (d) sao cho ABC vuông, cân tại A. 2/. Trong không gian Oxyz, cho mặt phẳng (P) : 2x y 5z 1 0 . Lập phương trình mặt phẳng (Q) chứa trục Oz và tạo với mặt phẳng (P) một góc 60 0 Câu VIIa:( 1 điểm) Cho m bông hồng trắng và n bông hồng nhung khác nhau. Tính xác suất để lấy được 5 bông hồng trong đó có ít nhất 3 bông hồng nhung?. Biết m, n là nghiệm của hệ sau: 2 2 1 3 1 9 19 2 2 720 m m n m n C C A P Phần 2: Theo chương trình nâng cao Câu VIb:( 2 điểm) 1/. Viết phương trình đường tròn nội tiếp tam giác ABC với các đỉnh: A(-2;3), B( )0;2(),0; 4 1 C 2/.Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(4;5;6). Viết phương trình mặt phẳng (P) qua A; cắt các trục tọa độ lần lượt tại I; J; K mà A là trực tâm của tam giác IJK. Câu VII:( 1 điểm) Giải hệ phương trình : 2 2 3 3 2 2 2 2 log log 4 y x y x x xy y x y www.VNMATH.com http://tranduythai.violet.vn Biên soạn: Trần Duy Thái 110 ĐÁP ÁN ĐỀ 20 Câu ĐÁP ÁN Điểm Ia -Tập xác định , tính y / -Nghiệm y / và lim -Bảng biến thiên -Đồ thị 0,25 0,25 0,25 0,25 Ib PT hoành độ giao điểm : 3 2 x 2mx (m 3)x 4 x 4 (1) 2 x(x 2mx m 2) 0 2 x 0 g(x) x 2mx m 2 0 (2) (d) cắt (C m ) tại ba điểm phân biệt A(0; 4), B, C phương trình (2) có 2 nghiệm phân biệt khác 0. / 2 m 1 m 2 m m 2 0 (a) m 2 g(0) m 2 0 Δ Diên tích 1 S BC.d(E,BC) 2 Khoảng cách d(E, BC) 2 Suy ra BC = 4 2 2 B C B C (x x ) 4x x 16 2 4m 4(m 2) 16 Giải pt m = 3, m = -2 (loại) 0,25 0,25 0,25 0,25 II a . Đk: 2 x k Phương trình đã cho tương đương với: 2 3 2 1 3 2 sin 2 tan cot x x x 2 2 2 2 2(sin cos ) 3 3 2 sin cos 3 2 3 0 tan cot tan tan x x x x x x x x 3 3 1 3 6 tan tan x x k x x k ,kZ KL: So sánh với điều kiện phương trình có nghiệm : 6 2 x k ; kZ 0,25 0,25 0,25 0,25 IIb. Hệ tương đương : 3 2 3 x y x(y x) 1 [x(y x)] x y 1 Đặt 3 u x y, v x(y x) Hệ trở thành 2 u v 1 u v 1 Giải hệ u 0 v 1 , u 3 v 2 0,25 0,25 www.VNMATH.com http://tranduythai.violet.vn Biên soạn: Trần Duy Thái 111 Với u 0 v 1 giải hệ được x 1 y 0 Với u 3 v 2 giải hệ (vô nghiệm) Nghiệm của hệ : x 1 y 0 , x 1 y 0 0,25 0,25 III π π 2 2 0 0 1 1 I dx dx 1 cosx 2 cos x Tính π π 2 2 0 0 2 dx dx 1 x 1 cos x 2cos 2 Tính 2 π π 2 2 0 0 2 x 1 tan dx 2 .dx x cos x 2 3 tan 2 . Đặt 2 2 x x 3 tan 3 tan t (1 tan )dx (1 tan t).dt 2 2 2 x = 0 => t = 0 x = π 2 => t = π 6 2 π π 2 2 0 0 2 x 1 tan dx 2 .dx x cos x 2 3 tan 2 = π 6 0 2 dt 3 = π 3 3 Vây π π 2 2 0 0 1 1 I dx dx 1 cos x 2 cos x = 1 - π 3 3 0,25 0,25 0,25 0,25 IV + Chọn hệ trục tọa độ Oxyz sao cho AO; BOy; A / Oz. Khi đó: A(0;0;0), B(0;a;0); A / (0;0;2a),, / 3 ; ;2 2 2 a a C a và E(0;a;a) F di động trên AA / , tọa độ F(0;0;t) với t [0;2a] Vì C / E có độ dài không đổi nên d(F,C / E ) nhỏ nhất khi / ΔFC E S nhỏ nhất Ta có : / / 1 , 2 FC E S EC EF Ta có: / 3 ; ; 2 2 EF 0; ; a a EC a a t a / , EC EF ( 3 ; 3( ); 3) 2 a t a t a a / 2 2 2 , ( 3 ) 3( ) 3 2 a EC EF t a t a a 0,25 z x C C / F A A / B / B E www.VNMATH.com http://tranduythai.violet.vn Biên soạn: Trần Duy Thái 112 / 2 2 2 2 ΔFC E a 4t 12at 15a 2 1 a S . . 4t 12at 15a 2 2 Giá trị nhỏ nhất của / FC E S tùy thuộc vào giá trị của tham số t. Xét f(t) = 4t 2 12at + 15a 2 f(t) = 4t 2 12at + 15a 2 (t [0;2a]) f '(t) = 8t 12a 3 '( ) 0 2 a f t t / FC E S nhỏ nhất f(t) nhỏ nhất 3 2 a t F(0;0;t) , hay FA=3FA / ( có thể giải bằng pp hình học thuần túy ) 0,25 0,25 0,25 V Đặt 1 x a , 1 y b , 1 z c .vì 1 1 1 1 a b c nên x +y +z = 1 Và 2 2 2 1 1 1 1 1 1 ( ) ( ) ( ) T x y z y z z x x y +) Aùp dụng BĐT C.S ta có: 2 1 ( )x y z 2 x y z . y z . z x . x y y z z x x y 2 2 2 2 2 2 x y z x y z (2x 2y 2z) 2( ) y z z x x y y z z x x y +) Ta có: 2 2 2 1 1 1 1 4 ( ) x x x y z y z y z y z y z Tương tự . Do đó 2 2 2 x y z T 4 y z z x x y 2 Đẳng thức xảy ra khi 1 3 x y z hay 3 a b c 0,25 0,25 0,25 0,25 VIa:1 Cho ABC có đỉnh A(1;2), đường trung tuyến BM: 2 1 0x y và phân giác trong CD: 1 0x y . Viết phương trình đường thẳng BC. Điểm : 1 0 ;1C CD x y C t t . Suy ra trung điểm M của AC là 1 3 ; 2 2 t t M . Điểm 1 3 : 2 1 0 2 1 0 7 7;8 2 2 t t M BM x y t C Từ A(1;2), kẻ : 1 0AK CD x y tại I (điểm K BC ). Suy ra : 1 2 0 1 0AK x y x y . Tọa độ điểm I thỏa hệ: 1 0 0;1 1 0 x y I x y . 0,25 0,25 www.VNMATH.com [...]... hệ cho ta 2 x = y = 2 ( do x, y > 0) 2 2 x 2 y 4 Vậy hệ có nghiệm duy nhất x; y 2; 2 0,25 0,25 0,25 0,25 ĐỀ 21 Phần dành chung cho tất cả các thí sinh (7 điểm) Câu 1: Cho hàm số : y = x 3 3mx 2 3( m 2 1) x ( m 2 1) (1) a, Với m = 0 , khảo sát sự biến thi n và vẽ đồ thị hàm số (1) b, Tìm m để đồ thị hàm số (1) cắt trục Ox tại ba điểm phân biệt có hoành độ dương Câu 2: a,... y z 1 0 x y z 2 0 trình : Tìm toạ độ điểm M nằm trên đường thẳng ( )sao cho : MA + MB nhỏ nhất Câu 7b : Cho (1 x x 2 )12 a0 a1 x a2 x 2 a24 x 24 Tính hệ số a 4 ĐÁP ÁN ĐỀ 21 Câu Câu 1 a (1.0 điểm) Khảo sát… (2 điểm) Với m=0, ta có: y=x3-3x+1 TXĐ D=R Đáp án Điểm x 1 y’=3x2-3; y’=0 x 1 0,25 lim y x BBT x y’ y + -1 0 3 - 1 0 + 0,25 -1 Hs . 103 ĐỀ 19 A. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I. (2,0 điểm) Cho hàm số mxxmxy 9)1(3 23 , với m là tham số thực. 1. Khảo sát sự biến thi n. (1,25 im) Với 1m ta có 196 23 xxxy . * Tập xác định: D = R * Sự biến thi n Chiều biến thi n: )34(39123' 22 xxxxy Ta có 1 3 0' x x y , 310'