1. Trang chủ
  2. » Giáo Dục - Đào Tạo

đề kiểm tra chất lượng học kì 1 môn toán lớp 12,đề tham khảo số 1

6 389 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 211,5 KB

Nội dung

WWW.TOANCAPBA.TK KIỂM TRA CHẤT LƯỢNG HỌC KỲ I Năm học 2012-2013 Môn thi: TOÁN – Lớp 12 Thời gian: 120 phút (không kể thời gian phát đề) Ngày thi: 14/12/2012 ĐỀ ĐỀ XUẤT (Đề gồm có 01 trang) Đơn vị ra đề: THPT Châu Thành 1 (Sở GDĐT Đồng Tháp) I. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) Câu I (3,0 điểm) Cho hàm số 33 3 ++−= xxy (1) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) 2) Dựa vào đồ thị, tìm giá trị m sao cho phương trình 0233 3 =+−− m xx có duy nhất một nghiệm Câu II (2 điểm) 1) Không sử dụng máy tính, tính giá trị của ( ) 5log 2 3 8log=P 2)Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số ( ) x exxfy 2 2 −== trên đoạn [-1; 2] Câu III (2 điểm) Cho hình chóp đều SABC, đáy là tam giác ABC đều tâm O cạnh a, góc giữa SB với mặt đáy bằng 60 0 1)Tính thể tích chóp SABC theo a 2)Cho tam giác SOA xoay quanh trục SO ta được một khối tròn xoay. Tính thể tích khối tròn xoay đó II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được làm một trong hai phần (phần 1 hoặc phần 2) 1. Phần 1 Câu IVa (1,0 điểm) Viết phương trình tiếp tuyến của đồ thị hàm số ( ) 24 23 xxxfy +−== tại điểm có hoành độ là nghiệm của phương trình y” = 0 Câu Va (2 điểm) 1) Giải phương trình sau đây: 053log6log 3 =−+ x x 2) Giải bất phương trình sau đây: 3 2 2 3 32 2 >       − xx 2. Phần 2 Câu IVb (1,0 điểm) Viết phương trình tiếp tuyến của đồ thị hàm số ( ) 24 23 xxxfy +−== tại điểm có hoành độ là nghiệm của phương trình y” = -5 Câu Vb(2 điểm) 1) Cho hàm số ( ) ( ) 2 4ln xxxxfy −== Tìm tập xác định và tính ( ) 2'f của hàm số WWW.TOANCAPBA.TK WWW.TOANCAPBA.TK 2)Tìm m để đồ thị hàm số ( ) 1 2 − +− = x mxx yC m cắt trục hoành tại hai điểm phân biệt có hoành độ dương HẾT KIỂM TRA CHẤT LƯỢNG HỌC KỲ I Năm học 2012-2013 Môn thi: TOÁN – Lớp 12 HƯỚNG DẪN CHẤM ĐỀ ĐỀ XUẤT (Hướng dẫn chấm gồm có 5 trang) Đơn vị ra đề: THPT Châu Thành 1 (Sở GDĐT Đồng Tháp) CÂU I NỘI DUNG ĐIỂM 2 điểm 1)Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số 33 3 ++−= xxy Tập xác định D = R 33' 2 +−= xy Cho    = = ⇒    −= = ⇔=+−⇔= 1 5 1 1 0330' 2 y y x x xy +∞= −∞→ y x lim ; −∞= +∞→ y x lim Hàm số đồng biến trên khoảng Hàm số nghịch biến trên mỗi khoảng Hàm số đạt cực đại tại x = 1 , giá trị cực đại y = 5 Hàm số đạt cực tiểu tại x = -1 , giá trị cực tiểu y = 5 Bảng biến thiên x ∞− -1 1 ∞+ y’ - 0 + 0 - y ∞+ 5 1 ∞− Cho điểm đặc biệt x = 2 ; y = 1 x= -2; y = 5 Vẽ đồ thị 0,25 0,25 0,25 0.25 0,5 0,5 WWW.TOANCAPBA.TK O y x WWW.TOANCAPBA.TK 1 điểm 2)Dựa vào đồ thị, tìm giá trị m sao cho phương trình 0233 3 =+−− m xx có duy nhất một nghiệm Ta có: 0233 3 =+−− m xx m xx 233 3 =++−⇔ (1) Phương trình (1) là phương trình hoành độ giao điểm của đồ thị hàm số 33 3 ++−= xxy và đường thẳng m y 2= , dựa vào đồ thị phương trình có 1 nghiệm duy nhất khi    < > ⇔    < > 0 5log 12 52 2 m m m m 0,25 0,25 0,25 0,25 CÂU II NỘI DUNG ĐIỂM 0,5 điểm 1) Không sử dụng máy tính, tính giá trị của ( ) 5log 2 3 8log=P ( ) ( ) 532log8log 5log 5log 3 2 5log 2 3 3 3 ====P 0,5 1,5 điểm 2)Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số ( ) x exxfy 2 2 −== trên đoạn [-1; 2] Tập xác định D = R ( ) x exf 2 22' −= Cho ( ) ]2;1[010220' 22 −∈=⇔=⇔=−⇔= xeexf xx ( ) ( ) ( ) 4 2 42;10; 1 21 eff e f −=−=−−=− Vậy ( ) = −∈ xfMax x ]2;1[ ( ) ;10 −=f ( ) = −∈ xf x ]2;1[ min ( ) 4 42 ef −= 0,5 0,25 0,25 0,5 CÂU III 2 điểm 1) Tính thể tích chóp SABC theo a Ta có SABC là chóp đều nên )(ABCSO ⊥ OB là hình chiếu vuông góc của SB lên mặt phẳng (ABC) Góc giữa SB và (ABC) là góc SBO 0,25 WWW.TOANCAPBA.TK B S C I J O A O S A WWW.TOANCAPBA.TK Suy ra góc SBO = 60 0 Gọi I, J lần lượt là trung điểm của AC, BC Ta có 3 3 3 2 a IBOB == Xét tam giác SOB vuông tại O a a SBOOBSO OB SO SBO ===⇔= 3. 3 3 tan.tan 4 3 2 a S ABC = ∆ Vậy 4 3 . 3 1 3 a SSOV ABCSABC == ∆ (đvtt) 0,25 0,25 0,25 1 điểm 2)Cho tam giác SOA xoay quanh trục SO ta được một khối tròn xoay. Tính thể tích khối tròn xoay đó Cho tam giác SOA xoay quanh trục SO ta được một khối tròn xoay là khối nón đỉnh S Khối nón có chiều cao h = SO = a, bán kính đường tròn đáy r = OA = 3 3a Thể tích khối nón là 9 3 1 3 2 π π a hrV == (đvtt) 0,5 0,5 Phần riêng Phần 1 CÂU IVa 1 điểm Viết phương trình tiếp tuyến của đồ thị hàm số ( ) 24 23 xxxfy +−== tại điểm có hoành độ là nghiệm của phương trình y” = 0 Ta có: ( ) 24 23 xxxfy +−== ( ) xxxfy 412'' 3 +−== ( ) 436"" 2 +−== xxfy Cho y’’ = 0       = = ⇒       − = = ⇔=+−⇔ 27 5 27 5 3 1 3 1 0436 2 y y x x x Hệ số góc tiếp tuyến       − = = ⇒       − = = 9 8 9 8 3 1 3 1 k k x x Vậy ta có hai phương trình tiếp tuyến là 9 1 9 8 ; 9 1 9 8 + − =−= xyxy 0,25 0,25 0,25 0,25 CÂU Va 2 điểm 1)Giải phương trình sau đây: 053log6log 3 =−+ x x điều kiện    ≠ > 1 0 x x 0,25 0,25 WWW.TOANCAPBA.TK WWW.TOANCAPBA.TK ( ) 06log5log05 log 1 .6log 3 2 3 3 3 =+−⇔=−+ xx x x Đặt ( ) 0log 3 ≠= txt Ta có phương trình    = = ⇒=+− 2 3 065 2 t t tt với 273log3 3 =⇔=⇔= xxt (nhận) với 92log2 3 =⇔=⇔= xxt (nhận) Vậy phương trình có hai nghiệm x = 27, x = 9 0,25 0,25 2)Giải bất phương trình sau đây: 3 2 2 3 32 2 >       − xx 3 2 2 3 32 2 >       − xx ⇔ 0132 2 3 2 3 2 132 2 >+−⇔       >       −− xx xx 1; 2 1 ><⇔ xx Vậy tập nghiệm của bất phương trình là ( ) +∞∪       ∞−= ;1 2 1 ;S 0,75 0,25 CÂU IVb 1 điểm Viết phương trình tiếp tuyến của đồ thị hàm số ( ) 24 23 xxxfy +−== tại điểm có hoành độ là nghiệm của phương trình y” = -5 Ta có: ( ) 24 23 xxxfy +−== ( ) xxxfy 412'' 3 +−== ( ) 436"" 2 +−== xxfy Cho y’’ = -5       = = ⇒       − = = ⇔=+−⇔ 16 5 16 5 2 1 2 1 0936 2 y y x x x Hệ số góc tiếp tuyến       − = = ⇒       − = = 2 1 2 1 2 1 2 1 k k x x Vậy ta có hai phương trình tiếp tuyến là 16 1 2 1 ; 16 1 2 1 − − =+= xyxy 0,25 0,25 0,25 0,25 CÂU Vb 2 điểm 2) Cho hàm số ( ) ( ) 2 4ln xxxxfy −== . Tìm tập xác định và tính ( ) 2'f của hàm số điều kiện: 04 2 >− xx 40 <<⇔ x Tập xác định của hàm số là ( ) 4;0=D ( ) ( ) 2 4ln xxxxfy −== ( ) x x xxy − − +−=⇒ 4 24 4ln' 2 Vậy ( ) 4ln2' =f 0,5 0,5 WWW.TOANCAPBA.TK WWW.TOANCAPBA.TK Tìm m để đồ thị hàm số ( ) 1 2 − +− = x mxx yC m cắt trục hoành tại hai điểm phân biệt có hoành độ dương Phương trình hoành độ giao điểm của đồ thị và trục hoành ( ) 1,00 1 2 2 ≠=+−⇔= − +− xmxx x mxx đồ thị cắt trục hoành tại 2 điểm phân biệt có hoành độ dương khi phương trình hoành độ giao điểm có hai nghiệm dương phân biệt khác 1 4 1 0 0 4 1 0 0 041 011 0 0 0 2 <<⇔      > < ⇔      ≠ > >− ⇔        ≠+− > > >∆ m m m m m m m P S Vậy 0 < m < 1/4 0,25 0,25 0,5 HẾT WWW.TOANCAPBA.TK . WWW.TOANCAPBA.TK KIỂM TRA CHẤT LƯỢNG HỌC KỲ I Năm học 2 012 -2 013 Môn thi: TOÁN – Lớp 12 Thời gian: 12 0 phút (không kể thời gian phát đề) Ngày thi: 14 /12 /2 012 ĐỀ ĐỀ XUẤT (Đề gồm có 01 trang) Đơn vị ra đề: . số ( ) 1 2 − +− = x mxx yC m cắt trục hoành tại hai điểm phân biệt có hoành độ dương HẾT KIỂM TRA CHẤT LƯỢNG HỌC KỲ I Năm học 2 012 -2 013 Môn thi: TOÁN – Lớp 12 HƯỚNG DẪN CHẤM ĐỀ ĐỀ XUẤT (Hướng. góc tiếp tuyến       − = = ⇒       − = = 2 1 2 1 2 1 2 1 k k x x Vậy ta có hai phương trình tiếp tuyến là 16 1 2 1 ; 16 1 2 1 − − =+= xyxy 0,25 0,25 0,25 0,25 CÂU Vb 2 điểm 2) Cho

Ngày đăng: 27/07/2015, 04:39

TỪ KHÓA LIÊN QUAN

w