1. Trang chủ
  2. » Đề thi

Đề thi thử đại học môn Toán số 19

2 213 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 2
Dung lượng 60,5 KB

Nội dung

ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG Môn thi : TOÁN ( ĐỀ 19 ) I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2 điểm) Cho hàm số 3 2 3 4= − +y x x . 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Gọi d là đường thẳng đi qua điểm A(3; 4) và có hệ số góc là m. Tìm m để d cắt (C) tại 3 điểm phân biệt A, M, N sao cho hai tiếp tuyến của (C) tại M và N vuông góc với nhau. Câu II (2điểm) 1) Giải hệ phương trình: 2 2 1 ( ) 4 ( 1)( 2)  + + + =   + + − =   x y x y y x x y y (x, y ∈R ) 2) Giải phương trình: 3 3 sin .sin3 cos cos3 1 8 tan tan 6 3 π π + = −     − +  ÷  ÷     x x x x x x Câu III (1 điểm) Tính tích phân: 1 2 0 ln( 1)= + + ∫ I x x x dx Câu IV (1 điểm) Cho hình lăng trụ ABC.A’B’C’ có đáy là tam giác đều cạnh a, hình chiếu vuông góc của A’ lên mặt phẳng (ABC) trùng với tâm O của tam giác ABC. Một mặt phẳng (P) chứa BC và vuông góc với AA’, cắt lăng trụ theo một thiết diện có diện tích bằng 2 3 8 a . Tính thể tích khối lăng trụ ABC.A’B’C’. Câu V (1 điểm) Cho a, b, c là ba số thực dương thỏa mãn abc = 1. Tìm giá trị lớn nhất của biểu thức 2 2 2 2 2 2 1 1 1 2 3 2 3 2 3 = + + + + + + + + P a b b c c a II. PHẦN RIÊNG (3 điểm) A. Theo chương trình chuẩn Câu VI.a (2 điểm) 1) Trong mặt phẳng với hệ toạ độ Oxy, cho ∆ ABC có đỉnh A(1;2), phương trình đường trung tuyến BM: 2 1 0x y+ + = và phân giác trong CD: 1 0x y+ − = . Viết phương trình đường thẳng BC. 2) Trong không gian với hệ tọa độ Oxyz, cho đường thẳng (D) có phương trình tham số { 2 ; 2 ; 2 2= − + = − = +x t y t z t . Gọi ∆ là đường thẳng qua điểm A(4;0;–1) song song với (D) và I(–2;0;2) là hình chiếu vuông góc của A trên (D). Viết phương trình của mặt phẳng chứa ∆ và có khoảng cách đến (D) là lớn nhất. Câu VII.a (1điểm) Tìm hệ số của số hạng chứa x 2 trong khai triển nhị thức Niutơn của 4 1 2   +  ÷   n x x , biết rằng n là số nguyên dương thỏa mãn: 2 3 1 0 1 2 2 2 2 6560 2 2 3 1 1 + + + + + = + + L n n n n n n C C C C n n ( k n C là số tổ hợp chập k của n phần tử) B. Theo chương trình nâng cao Câu VI.b (2 điểm) 1) Trong mặt phẳng với hệ trục tọa độ Oxy, cho hai đường thẳng d 1 : x + y + 5 = 0, d 2 : x + 2y – 7= 0 và tam giác ABC có A(2; 3), trọng tâm là điểm G(2; 0), điểm B thuộc d 1 và điểm C thuộc d 2 . Viết phương trình đường tròn ngoại tiếp tam giác ABC. 2) Trong không gian với hệ trục tọa độ Oxyz, cho tam giác ABC với A(1; 2; 5), B(1; 4; 3), C(5; 2; 1) và mặt phẳng (P): x – y – z – 3 = 0. Gọi M là một điểm thay đổi trên mặt phẳng (P). Tìm giá trị nhỏ nhất của biểu thức 2 2 2 + +MA MB MC . Câu VII.b (1 điểm) Giải hệ phương trình 2( 1) 1 − + +  + = +   = − +   x y x y x y e e x e x y (x, y ∈R ) . ĐỀ THI THỬ ĐẠI HỌC, CAO ĐẲNG Môn thi : TOÁN ( ĐỀ 19 ) I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2 điểm) Cho hàm số 3 2 3 4= − +y x x . 1) Khảo sát sự biến thi n và vẽ. (D) là lớn nhất. Câu VII.a (1điểm) Tìm hệ số của số hạng chứa x 2 trong khai triển nhị thức Niutơn của 4 1 2   +  ÷   n x x , biết rằng n là số nguyên dương thỏa mãn: 2 3 1 0 1 2 2 2. là tam giác đều cạnh a, hình chiếu vuông góc của A’ lên mặt phẳng (ABC) trùng với tâm O của tam giác ABC. Một mặt phẳng (P) chứa BC và vuông góc với AA’, cắt lăng trụ theo một thi t diện có

Ngày đăng: 26/07/2015, 08:21

w