1. Trang chủ
  2. » Đề thi

đề thi thử thpt quốc gia môn toán trường chuyên vĩnh phúc khối d

6 241 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 573,02 KB

Nội dung

>> Để xem đáp án chi tiết của từng câu truy cập trang http://tuyensinh247.com/ và nhập mã ID câu 1 SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI KHẢO SÁT CHẤT LƯỢNG LẦN THỨ II Trường THPT Chuyên Vĩnh Phúc NĂM HỌC 2014 - 2015 (Đề có 01 trang) Môn: Toán 12 – Khối D Thời gian: 180 phút (Không kể giao đề) Câu 1.( ID: 79227 ) (2,0 điểm) Cho hàm số        (1) a). Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1). b). Với những giá trị nào của tham số m thì đường thẳng nối hai điểm cực trị của đồ thị của hàm số (1) tiếp xúc với đường tròn (C):          . Câu 2 ( ID: 79228 ) (1 điểm) Giải bất phương trình:             Câu 3 ( ID: 79229 ) (1 điểm) Tính tích phân        . Câu 4 ( ID: 79230 ) (1 điểm) a). Tìm giá trị lớn nhất và nhỏ nhất của hàm số:       trên đoạn [-2; 2]. b). Một trường tiểu học có 50 học sinh đạt danh hiệu cháu ngoan Bác Hồ, trong đó có 4 cặp anh em sinh đôi. Có bao nhiêu cách chọn một nhóm gồm 3 học sinh trong số 50 học sinh nói trên đi dự Đại hội cháu ngoan Bác Hồ sao cho trong nhóm không có cặp anh em sinh đôi nào? Câu 5 ( ID: 79231 ) (1 điểm) Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng       và      . Gọi A là giao điểm của   và   . Tìm tọa độ điểm B trên   và tọa độ C trên   sao cho tam giác ABC có trọng tâm G (3;5). Câu 6 ( ID: 79232 ) (1 điểm) Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C):         , và các điểm A (7; 9), B (0; 8). Tìm tọa độ điểm M thuộc (C) sao cho biểu thức    đạt giá trị nhỏ nhất. Câu 7 ( ID: 79233 ) (1 điểm) Cho lăng trụ đều ABC.A’B’C’. Biết rằng góc giữa (A’BC) và (ABC) là 30 0 , tam giác A’BC có diện tích bằng 8. Tính thể tích khối lăng trụ ABC.A’B’C’. Câu 8 ( ID: 79234 ) (1 điểm) Giải phương trình              Câu 9 ( ID: 79235 ) (1 điểm) Cho các số thực a, b, c thỏa mãn a.b.c = 1 và . Tìm giá trị lớn nhất của biểu thức             . Hết >> Để xem đáp án chi tiết của từng câu truy cập trang http://tuyensinh247.com/ và nhập mã ID câu 2 Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh: …………………………………………… ;Số báo danh:……………… HƯỚNG DẪN CHẤM ĐỀ THI THỬ CHUYÊN VĨNH PHÚC – Năm học 2014 – 2015 Câu Ý Nội dung Điểm 1 2.0 a 1.0        + Tập xác định: D =R + Sự biến thiên” -Chiều biến thiên:           Hàm số đã cho nghịch biến trên khoảng  và , đồng biến trên khoảng  0.25 - Cực trị: Hàm số đạt cực đại tại      Hàm số đạt cực tiểu tại      - Giới hạn:       0.25 - Bảng biến thiên: 0.25 + Đồ thị: Giám khảo và thí sinh tự vẽ 0.25 b 1.0 Đồ thị hàm số (1) có điểm cực tiểu A(-2;0), điểm cực đại B(0;4). Phương trình đường thẳng nối hai cực trị của đồ thị hàm số (1) là: (AB):       (AB):    . 0.25 (C):           có tâm I (m; m + 1) bán kính R =   0.25 Đường thẳng (AB) tiếp xúc với đường tròn (C)  d (I; (AB)) = R               0.25          Vậy  hoặc  0.25 2 1.0 Điều kiện:       0.25 Ta có                             0.25 y y’ x -∞ -2 0 +∞  0 + 0 +∞ 0 4 -∞  >> Để xem đáp án chi tiết của từng câu truy cập trang http://tuyensinh247.com/ và nhập mã ID câu 3                    0.25 So điều kiện, bất phương trình có nghiệm:    0.25 3 1.0                    0.25 Đặt              0.25                         0.25 =                0.25 4 a Hàm số       liên tục trên đoạn [-2;2]                              0.25 Ta thấy                                  0.25 b 0.5 Có    cách chọn ra 3 học sinh tùy ý từ 50 học sinh nói trên. Chọn ra 3 học sinh trong số 50 học sinh trên mà trong nhóm có ít nhất một cặp anh em sinh đôi, nghĩa là trong 3 học sinh được chọn chỉ có 1 cặp anh em sinh đôi => số cách chọn là       0.25 Vậy đáp số bài toán là            (cách) 0.25 5 1.0 Tọa độ điểm A là nghiệm của hệ            0.25      );      0.25 Gọi G là trọng tâm tam giác ABC          0.25 Giải hệ này ta được                       0.25 6 1.0 E A B M F I J >> Để xem đáp án chi tiết của từng câu truy cập trang http://tuyensinh247.com/ và nhập mã ID câu 4 (C) có tâm I(1;1) và bán kính R = 5. Ta thấy    => A, B nằm ngoài đường tròn (C) 0.25 Gọi E, J lần lượt là trung điểm của IA, IE => E(4;5); J(    Gọi F là trung điểm của IM, tam giác IME cân tại I => EF = MJ Ta có P = MA + 2MB = 2EF + 2MB = 2 (MJ + MB) Dấu bằng xảy ra khi và chỉ khi M thuộc đoạn thẳng BJ (Vì B nằm ngoài đường tròn (C); J nằm trong đường tròn (C)). 0.25 Do đó P nhỏ nhất khi và chỉ khi M là giao điểm của đường tròn (C) và đoạn thẳng BJ. BJ có phương trình 2x + y – 8 = 0. Tọa độ giao điểm của BJ và (C) là nghiệm của hệ                    0.25 + Vì M thuộc đoạn JB nên       Vậy M (1;6) 0.25 7 1.0 Goị H là trung điểm của BC =>    => BC  (AA’H) Tam giác AA’H vuông tại H =>      là góc giữa hai mặt phẳng (A’BC) và (ABC) =>     0.25 Đặt AB = a (a > 0) => AH =     => A’H =     0.25        0.25 Thể tích khối lăng trụ ABC.A’B’C’ là        B H C C’ A’ B’ A >> Để xem đáp án chi tiết của từng câu truy cập trang http://tuyensinh247.com/ và nhập mã ID câu 5                 8              Điều kiện         (1)                   0.25                                     0.25 Ta có (2)    (thỏa mãn) 0.25                                                  =>(3) vô nghiệm Vậy nghiệm của (1) là    0.25 9 Từ giả thiết  và  Ta chứng minh được           ( * ) Thật vậy ta có :            (2+a 2 +b 2 ).(1+ab) = 2(1+a 2 ).(1+b 2 )  2+2ab +a 2 + a 3 b +b 2 +ab 3 = 2 + 2a 2 + 2b 2 + 2a 2 b 2  2ab + a 3 b + ab 3 = a 2 + b 2 + 2a 2 b 2  (a-b) 2 (1- ab ) = 0 (**) 0.25 (**) đúng nên (*) đúng. Dấu bằng xảy ra khi và chỉ khi    Áp dụng (*) ta có Q              0.25 Xét hàm            trên [1;4] Ta có:                                         trên [1;4] =>f(c) đồng biến trên [1; 4]                  0.25 Dấu bằng xảy ra khi và chỉ khi                       0.25 >> Để xem đáp án chi tiết của từng câu truy cập trang http://tuyensinh247.com/ và nhập mã ID câu 6 Vậy max P =   đạt được khi                 . nhập mã ID câu 1 SỞ GIÁO D C VÀ ĐÀO TẠO ĐỀ THI KHẢO SÁT CHẤT LƯỢNG LẦN THỨ II Trường THPT Chuyên Vĩnh Phúc NĂM HỌC 2014 - 2015 (Đề có 01 trang) Môn: Toán 12 – Khối D Thời gian: 180. ID câu 2 Thí sinh không được sử d ng tài liệu. Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh: …………………………………………… ;Số báo danh:……………… HƯỚNG D N CHẤM ĐỀ THI THỬ CHUYÊN VĨNH PHÚC. 7 ( ID: 79233 ) (1 điểm) Cho lăng trụ đều ABC.A’B’C’. Biết rằng góc giữa (A’BC) và (ABC) là 30 0 , tam giác A’BC có diện tích bằng 8. Tính thể tích khối lăng trụ ABC.A’B’C’. Câu 8 ( ID: 79234

Ngày đăng: 24/07/2015, 04:17

TỪ KHÓA LIÊN QUAN

w