1. Trang chủ
  2. » Trung học cơ sở - phổ thông

Bài tập tổ hợp xác suất

2 784 2

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 2
Dung lượng 53,91 KB

Nội dung

GIẢI TÍCH TỔ HP-XÁC SUẤT 1/ Với 5 chữ số : 1,2,3,4,5 có thể lập được bao nhiêu số gồm n chữ số khác nhau ? (n∈N; 2≤ n ≤5) 2/ Có bao nhiêu số gồm 4 chữ số khác nhau mà tổng của các chữ số của mỗi số bằng 12. 3/ Cho 7 chữ số: 1, 2,3,4,5,6,7. Có bao nhiêu số có 4 chữ số khác nhau được lập từ các số trên. Trong đó có bao nhiêu số luôn có mặt chữ số 7. Bao nhiêu số luôn có mặt chữ số 7 và chữ số hàng ngàn là chữ số 1. 4/ Tìm số hạng thứ 6 của khai triển : a/ ( x x 1 + ) 15 ; b/ (2 – 2z) 21 5/ Tìm số hạng hữu tỷ của khai triển: a/ 15 3 )23( + ; b/ 6 )153( − 6/ Tìm số hạng chứa z với số mũ tự nhiên trong khai triển: a/ ( z - 3 1 z ) 13 ; b/ ( 10 4 )( zz + 7/ Tìm hệ số của số hạng chứa a 8 trong khai triển của Tổng: S = (a+1) 12 + (a+1) 13 + (a+1) 14 + (a+1) 15 + (a+1) 16 + (a+1) 17 8/ Tìm hệ số của số hạng chứa: x 4 trong khai triển : (x/3 – 3/x) 12 và a 8 trong khai triển : (a + 1/a) 12 . 9/ Tìm số hạng chính giữa của khai triển : a/ (a 3 + ab) 31 ; b/ (x – 2y) 30 . 10/ Tìm số hạng thứ 5 của khai triển nhò thức: n a a ) 3 1 ( + biết rằng tỉ số giữa các hệ số của số hạng thứ 3 và thứ 4 là 3/10. 11/ Biết hệ số của số hạng thứ 3 của khaitriển nhò thức: n a a aa )( 3 2 + bằng 36. Hãy tìm số hạng thứ 7. 12/ Tìm số hạng không chứa x trong khai triển: a/ 16 3 ) 1 ( x x + ;b/ (x 3 + 1/x 3 ) 18 . 13/ Trong khai triển sau có bao nhiêu số hạng hữu tỉ: a/ 100 4 124 4 )32/(;)53( ++ b 14/ Tìm số hạng lớn nhất của khai triển : (1 + 0,001) 1000 a/ P x+3 = 720.A x 5 .P x-5 (ĐS: x = 7) ; b/ 72 . 1 1 1 = − − + + x yx y x P PA (ĐS:x = 8; y<8; y∈ ∈∈ ∈N) ; c/ 0 .4 143 12 4 2 <− −+ + xx x PP A d/ { 126: 720 1 1 =+ = − − + xy yx x y x CPA P (ĐS: x=5; y=7) ; e/ { 503 402 =+ =+ y x y x y x y x CA CA (ĐS: x=5; y=2) ; f/ 0 96 .143 3 5 4 5 <− + + + x x x P P C g/ C y x+1 :C x y+1 :C x y-1 = 6:5:2 (ĐS:x=8;y=3) ;h/ C x y-1 :(C y x-2 + 5:5:3:)2 11 2 2 2 =+ +− − − − y x y x y x CCC ( ĐS:x=7;y=3 ) i/ (A y x-1 + y.A 1 1 − − y x ):A x y-1 :C x y-1 = 10 :2 :1 (ĐS:x=7;y=3) ; j/ A x y-1 : A y x-1 :(C y x-2 +C 10:60:21) 1 2 = − − y x l/ A x 3 + 5.A x 2 ≤ 21x (ĐS:x =3;4) ; m/ A x 2 .C x x-2 = 200 (ĐS:x=5) ; n/ C x 1 +6.C x 2 +6C x 3 = 9x 2 – 14x 15/ Một hội nghò bàn tròn có phái đoàn các nước: Đài Loan 3 người; Nhật : 5 người ; Thái Lan : 2 người; Mỹ: 3 người; Việt Nam 4 người. Hỏi có bao nhiêu cách sắp xếp chỗ ngồi cho mọi thành viên sao cho người cùng nước thì ngồi cạnh nhau ? 16/ Từ 5 số : 1; 2; 3; 4; 5 ta có thể lập được bao nhiêu số gồm 8 chữ số trong đó chữ số 1 có mặt đúng 3 lần; chữ số 2 có mặt đúng 2 lần; và mỗi chữ số còn lại có mặt đúng 1 lần. 17/ Cho các số 1; 2; 5; 7; 8. Có bao nhiêu cách lập ra 1 số gồm 3 chữ số khác nhau từ 5 số trên sao cho: a/ Số đó là số chẳn ; b/ Số đó không có mặt số 7 ; c/ Số đó nhỏ số 278. 18/ Có bao nhiêu số tự nhiên lẻ có 6 chữ số khác nhau nhỏ hơn số 600.000 19/ Có bao nhiêu số tự nhiên nhỏ hơn số 10.000 được tạo thành từ 5 chữ số : 0; 1; 2; 3; 4. 20/ Một đội xây dựng gồm 10 công nhân, 3 kỷ sư. Để lập một tổ công tác cần chọn 1 kỷ sư làm tổ trưởng, 1 công nhân làm tổ phó và 5 công nhân làm tổ viên. Hỏi có bao nhiêu cách lập? 21// Một tổ học sinh có 5 nam và 5 nữ xếp thành một hàng dọc. a/ Có bao nhiêu cách xếp khác nhau? b/ Có bao nhiêu cách xếp sao cho không có học sinh cùng phái đứng kề nhau? 22/ Từ các chữ số : 0; 1; 2; 3; 4; 5; 6; 7 có thể lập được bao nhiêu số gồm 10 chữ số được chọn từ các số trên, trong đó chữ số 6 có mặt đúng 3 lần, các chữ số khác có mặt đúng 1 lần. 23/ a/ Có bao nhiêu số tự nhiên chẵn gồm 6 chữ số đôi một khác nhau trong đó chữ số đầu tiên là lẻ. b/ Có bao nhiêu số tự nhiên chẵn gồm 6 chữ số đôi một khác nhau, trong đó có đúng 3 chữ số lẽ và 3 chữ số chẵn. 24/ Một bàn dài, gồm hai dãy ghế đối diện nhau, mỗi dãy gồm 5 chỗ, người ta xếp 8 nam và 2 nữ vào bàn này. Hỏi có bao nhiêu cách sắp xếp nếu: a/ Hai bạn nữ phải ngồi cạnh nhau. b/ Hai bạn nữ phải ngồi đối diện nhau. 25/ Cho n ∈ N; thoả: 55 21 =+ −− n n n n CC . Hãy tìm số hạng là số nguyên trong khai triển: n )58( 37 + . 26/ Tìm số hạng không chứa x trong khai triển: P(x) = (x + 10 ) 1 x + (x 2 + 12 ) 1 x + (x 3 + 16 ) 1 x . 27/ Biết trong khai triển: n b a a b )( 10 3 7 + có số hạng chứa tích (a.b). Hãy tìm số hạng đó 28/ Cho khai triển: n x n n n xx n n x n x n n x n n xx CCCC )2()2).(2( )2.()2()2()22( 3 1 32 1 1 3 1 2 1 1 2 1 0 32 1 − − −− − − − −−−− ++++=+ . Với n là số nguyên dương. Biết trong khai triển đó C n 3 = 5C n 1 vàsố hạng thứ tư bằng 20n. Tìm n và x? 29/ Trong khai triển nhò thức: (x + y) n . Hãy tính tổng các hệ số của các số hạng có số thứ tự chẳn. Biết hệ số của số hạng thứ 3 lớn hơn hệ số của số hạng thứ hai 9 đơn vò. 30/ Tìm hệ số của: x 9 y 3 trong khai triển: (2x – 3y) 12 và xyz 2 trong khai triển (x + y + z) 4 . 31/ Rút ngẫu nhiên 5 con bài trong bộ bài 52 con. Tính xác suất để được ít nhất 1 con J 32/ Trong 1 lớp 12 phân ban A, có 85% học sinh thích môn Toán, 60% thích môn Lý, 50% thích cả 2 môn Toán, Lý. Chọn ngẫu nhiên một học sinh. Tính xác suất để chọn được một học sinh thích Toán hoặc Lý. 33/ Trong một kỳ thi lớp 12T có 90% học sinh thi đậu. Lớp có 5 nữ sinh. Tính xác suất để chỉ có 2 nữ sinh thi đậu. 34/ Trong một kỳ thi, xác suất để 1 học sinh thi đậu 0,7. Có 5 học sinh cùng quê tham gia kỳ thi. Tính xác suất để: a/ Không có học sinh nào trong nhóm đó thi đậu b/ Cả 5 học sinh đều đậu. c/ Có ít nhất 2 trong 5 học sinh đó thi đậu. 35/ Hai người đi săn bắn 1 con thỏ cùng một lúc. Xác suất để người thứ nhất bắn trúng là 1/3, để người thứ 2 bắn trúng là 1/5. Tính xác suất để con thỏ bò bắn trúng. 36/ Rút ngẫu nhiên 2 con bài từ bộ bài 52 con. Tìm xác suất để: a/ Một trong 2 con bài là con át cơ. b/ Không được con át nào cả. c/ Được ít nhất 1 con át. 37/ Một cái bình đựng 28 viên bi đánh số từ 1 đến 28. Lấy ngẫu nhiên 4 viên bi. Tính xác suất để có ít nhất 1 viên bi mà số ghi trên nó là một ước số của 24. 38/ Một cái hộp đựng 7 quả cầu trắng và 3 quả cầu đỏ. Lấy ra 4 quả cầu. Tính xác suất để: a/ Có 2 quả cầu đỏ. b/ Có nhiều nhất 2 quả cầu đỏ. c/ Có ít nhất 2 quả cầu đỏ. 39/ Lấy ngẫu nhiên 2 viên bi trong một hộp đựng 5 bi xanh, 3 bi vàng. Tính xác suất chọn được 2 viên bi cùng màu. 40/ Một chi đồn học sinh có 30 đồn viên gồm 20 đồn viên nam và 10 đồn viên nữ. Cần chọn ra 4 đồn viên để dự đại hội ðồn trường. a. Có bao nhiêu cách chọn ? b. Gọi A là biến cố,Chọn được 2 đồn viên nam và 2 đồn viên nữ. Tính xác suất của biến cố A. c. Gọi B là biến cố : Chọn được nhiều nhất là 3 đồn viên nam. Tìm biến cố đối của biến cố B và tính xác suất của biến cố B. 41/ Trong một lơ hàng có 10 quạt bàn và 5 quạt trần, lấy ngẫu nhiên 5 quạt. Tính a) Số cách lấy ra sao cho có 3 quạt bàn . b) Tính xác suất để được 3 quạt trần. 42/ Có 14 người gồm 8 nam và 6 nữ, chọn ngẫu nhiên một tổ 6 người. Tính: a) Số cách chọn để được một tổ có nhiều nhất là 2 nữ.b) Xác suất để được một tổ chỉ có 1 nữ . một lúc. Xác suất để người thứ nhất bắn trúng là 1/3, để người thứ 2 bắn trúng là 1/5. Tính xác suất để con thỏ bò bắn trúng. 36/ Rút ngẫu nhiên 2 con bài từ bộ bài 52 con. Tìm xác suất để:. Tính xác suất để được 3 quạt trần. 42/ Có 14 người gồm 8 nam và 6 nữ, chọn ngẫu nhiên một tổ 6 người. Tính: a) Số cách chọn để được một tổ có nhiều nhất là 2 nữ.b) Xác suất để được một tổ chỉ. công nhân, 3 kỷ sư. Để lập một tổ công tác cần chọn 1 kỷ sư làm tổ trưởng, 1 công nhân làm tổ phó và 5 công nhân làm tổ viên. Hỏi có bao nhiêu cách lập? 21// Một tổ học sinh có 5 nam và 5 nữ

Ngày đăng: 14/07/2015, 12:06

TỪ KHÓA LIÊN QUAN

w