1. Trang chủ
  2. » Giáo án - Bài giảng

CHUYÊN ĐỀ ÔN THI VÀO THPT (2011-2012)

46 283 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 46
Dung lượng 2,04 MB

Nội dung

ôn thi vào lớp 10 Năm học: 2011 - 2012 Chuyên đề i: căn thức bậc hai - bậc ba Các phép biến đổi căn thức bậc hai- bậc ba A. Những công thức biến đổi căn thức: 1) AA = 2 2) BAAB .= ( với A 0 và B 0 ) 3) B A B A = ( với A 0 và B > 0 ) 4) BABA = 2 (với B 0 ) 5) BABA 2 = ( với A 0 và B 0 ) BABA 2 = ( với A < 0 và B 0 ) 6) B AB B A = ( với AB 0 và B 0 ) 7) B BA B A = ( với B > 0 ) 8) 2 )( BA BAC BA C = ( Với A 0 và A B 2 ) 9) BA BAC BA C = )( ( với A 0, B 0 và A B B. Bài tập cơ bản: Bài 1: Tìm ĐKXĐ của các biểu thức sau: a) 32 + x b) 12 3 + x c) 1 2 x d) 2 2 1 x HD: a) 2 3 x b) 2 1 < x c) 1 0 x x d) 0 x Bài 2: Phân tích thành nhân tử ( với x 0 ) a) 8632 +++ b) x 2 - 5 c) x - 4 d) 1 xx HD: a) ( )( ) 1232 ++ b) ( )( ) 55 + xx c) ( )( ) 22 + xx d) ( )( ) 11 ++ xxx Bài 3: Đa các biểu thức sau về dạng bình phơng. a) 223 + b) 83 c) 549 + d) 7823 HD: a) ( ) 2 12 + b) ( ) 2 12 c) ( ) 2 25 + d) ( ) 2 74 Bài 4: Rút gọn các biểu thức sau: 1 a) ( ) 2 174 b) 2832 146 + + c) 5 5 2 + x x (với x 5) d) 1 1 x xx ( với 1,0 xx ) HD: a) 417 b) 2 2 c) 5 x d) 1 ++ xx Bài 5: Tìm giá trị của x Z để các biểu thức sau có giá trị nguyên. a) 2 3 + x ( với x 0) b) 1 5 + + x x ( với x 0) c) 2 2 + x x ( với x 0 và x 4) HD: a) { } 1=x b) { } 9;1;0=x c) { } 36;16;9;1;0=x Bài 6: Giải các phơng trình, bất phơng trình sau: a) 35 = x b) 523 x c) 2 3 3 = + x x d) 1 1 3 > x HD: a) x = 14 b) 2 3 1 x c) x = 81 d) 161 << x C. Bài tập tổng hợp: Bài 1: Cho biểu thức: A = 1 1 1 1 + + x x x xx a)Tìm ĐKXĐ và rút gọn A. b) Tính giá trị biểu thức A khi x = 4 9 . c) Tìm tất cả các giá trị của x để A < 1. HD: a) ĐKXĐ là: 1 0 x x , rút gọn biểu thức ta có: A = 1x x . b) x = 4 9 thì A = 3 c) 10 < x . Bài 2: Cho biểu thức: B = 4 52 2 2 2 1 + + + + x x x x x x a) Tìm điều kiện xác định và rút gọn biểu thức B. b) Tìm x để B = 2. HD: a) Điều kiện: 4 0 x x , rút gọn biểu thức ta có: B = 2 3 +x x . c) B = 2 x = 16. Bài 3: Cho biểu thức: C = + + 1 2 2 1 : 1 1 1 a a a a aa a) Tìm điều kiện xác định và rút gọn biểu thức C. b) Tìm giá trị a để C dơng. HD: a) Điều kiện: > 1 4 0 a a a , rút gọn biểu thức ta có: C = a a 3 2 2 b) C d¬ng khi a > 4. Bµi 4: Cho biĨu thøc D = x x x x x x 4 4 . 22 −         + + − a) T×m ®iỊu kiƯn x¸c ®Þnh vµ rót gän biĨu thøc D. b) TÝnh gi¸ trÞ cđa D khi x = 526 − . HD: a) §iỊu kiƯn:    ≠ > 4 0 x x , rót gän biĨu thøc ta cã: D = x . b) D = 15 − Bµi 5: Cho biĨu thøc E = 1 3 11 − − + − − + x x x x x x a) T×m ®iỊu kiƯn x¸c ®Þnh vµ rót gän biĨu thøc E. b) T×m x ®Ĩ E = -1. HD: a) §iỊu kiƯn:    ≠ > 1 0 x x ,rót gän biĨu thøc ta cã: E = x + − 1 3 . c) x = 4. Bµi 6: Cho biĨu thøc:F = 8 44 . 2 2 2 2 ++         + − − xx xx a) Tìm TXĐ rồi rút gọn biểu thức F. b) Tính giá trò của biểu thức F khi x=3 + 8 ; c) Tìm giá trò nguyên của x để biểu thức F có giá trò nguyên ? HD: a) §KX§:    ≠ ≥ 4 0 x x ,rót gän biĨu thøc ta cã: F = 2 2 − + x x b) x = 3+ ( ) 2 122238 +=+= ⇒ A = 122 − c) BiĨu thøc A nguyªn khi: { } 1;2;42 ±±±=−x ⇒ x = {0; 1; 9; 16; 36} D. Bµi tËp lun tËp: Bµi1: Cho biĨu thøc : + −+ − + + = 6 5 3 2 aaa a P a − 2 1 a) T×n §KX§ vµ rót gän P. b) TÝnh gi¸ trÞ cđa P khi: a = 347 − . c) T×m gi¸ trÞ cđa a ®Ĩ P < 1. Bµi2 : Cho biĨu thøc: Q=         − + − − +         − − 1 2 2 1 : 1 1 1 a a a a aa a. Rót gän Q. b. T×m gi¸ trÞ cđa a ®Ĩ Q d¬ng. Bµi3: Cho biĨu thøc: A = x x x x xx x − + − − + − +− − 3 12 2 3 65 92 a, T×m §KX§ vµ rót gän biĨu thøc A. 3 b, Tìm các giá trị của x để A > 1. c, Tìm các giá trị của x Z để A Z. Bài4 : Cho biểu thức: C = 1 2 1 3 1 1 + + + + xxxxx a, Tìm ĐKXĐ và rút gọn biểu thức C. b, Tìm các giá trị của x để C = 1. Bài5: Cho biểu thức: M = . 2 x)(1 1x2x 2x 1x 2x 2 ++ + a) Rút gọn M. b) Tìm các giá trị của x để M dơng. c) Tìm giá trị lớn nhất của M. Bài6: Cho biểu thức: P = + + 1 2 1 1 : 1 1 x xxxx x a) Tìm ĐKXĐ và rút gọn P b) Tìm các giá trị của x để P > 0 c) Tìm x để P = 6. Chuyên đề II PHNG TRèNH - H PHNG TRèNH - BT PHNG TRèNH (Bc nht) A.KIN THC C BN 1.Phng trỡnh bc nht mt n -Quy ng kh mu. -a v dng ax + b = 0 (a 0) -Nghim duy nht l b x a = 2.Phng trỡnh cha n mu -Tỡm KX ca phng trỡnh. -Quy ng v kh mu. -Gii phng trỡnh va tỡm c. -So sỏnh giỏ tr va tỡm c vi KX ri kt lun. 3.Phng trỡnh tớch giỏi phng trỡnh tớch ta ch cn gii cỏc phng trỡnh thnh phn ca nú. Chng hn: Vi phng trỡnh A(x).B(x).C(x) = 0 ( ) ( ) ( ) A x 0 B x 0 C x 0 = = = 4.Phng trỡnh cú cha h s ch (Gii v bin lun phng trỡnh) Dng phng trỡnh ny sau khi bin i cng cú dng ax + b = 0. Song giỏ tr c th ca a, b ta khụng bit nờn cn t iu kin xỏc nh s nghim ca phng trỡnh. -Nu a 0 thỡ phng trỡnh cú nghim duy nht b x a = . -Nu a = 0 v b = 0 thỡ phng trỡnh cú vụ s nghim. -Nu a = 0 v b 0 thỡ phng trỡnh vụ nghim. 4 5.Phương trình có chứa dấu giá trị tuyệt đối Cần chú ý khái niệm giá trị tuyệt đối của một biểu thức: A khi A 0 A A khi A 0 ≥  =  − <  6.Hệ phương trình bậc nhất Cách giải chủ yếu dựa vào hai phương pháp cộng đại số và thế. Chú ý phương pháp đặt ẩn phụ trong một số trường hợp xuất hiện các biểu thức giống nhau ở cả hai phương trình. 7.Bất phương trình bậc nhất Với bất phương trình bậc nhất thì việc biến đổi tương tự như với phương trình bậc nhất. Tuy nhiên cần chú ý khi nhân và cả hai vế với cùng một số âm thì phải đổi chiều bất phương trình. B.MỘT SỐ VÍ DỤ VD1.Giải các phương trình sau a) ( ) ( ) 2 x 3 1 2 x 1 9− + = + − b) ( ) 7x 20x 1,5 5 x 9 8 6 + − − = c) 2 2 13 1 6 2x x 21 2x 7 x 9 + = + − + − d) x 3 3 x 7 10− + − = (*) Giải ( ) ( ) a) 2 x 3 1 2 x 1 9 2x 5 2x 7 5 7− + = + − ⇔ − = − ⇔ − = − (Vô lý) Vậy phương trình vô nghệm. ( ) 7x 20x 1,5 b) 5 x 9 21x 120x 1080 80x 6 179x 1074 x 6 8 6 + − − = ⇔ − + = + ⇔ − = − ⇔ = Vậy phương trình có nghiệm x = 6. c) 2 2 13 1 6 2x x 21 2x 7 x 9 + = + − + − ( ) ( ) ( ) ( ) 13 1 6 x 3 2x 7 2x 7 x 3 x 3 ⇔ + = − + + − + ĐKXĐ: 7 x 3; x 2 ≠ ± ≠ − ( ) ( ) ( ) ( ) 2 13 x 3 x 3 x 3 6 2x 7 13x 39 x 9 12x 42 ⇒ + + − + = + ⇔ + + − = + ( ) ( ) 2 x 3 DKXD x x 12 0 x 3 x 4 0 x 4 DKXD = ∉  ⇔ + − = ⇔ − + = ⇔  = − ∈  Vậy phương trình có nghiệm x = - 4. d) Lập bảng xét dấu x 3 7 x – 3 - 0 + + x - 7 - - 0 + -Xét x < 3: (*) ( ) 7 3 x 3 7 x 10 24 4x 10 4x 14 x 2 ⇔ − + − = ⇔ − = ⇔ − = − ⇔ = (loại) -Xét 3 x 7 ≤ < : 5 (*) ( ) x 3 3 7 x 10 2x 18 10 2x 8 x 4⇔ − + − = ⇔ − + = ⇔ − = − ⇔ = (t/mãn) -Xét x 7 ≥ : (*) ( ) 17 x 3 3 x 7 10 4x 24 10 4x 34 x 2 ⇔ − + − = ⇔ − = ⇔ = ⇔ = (loại) Vậy phương trình có nghiệm x = 4. VD2.Giải và biện luận phương trình sau a) 2 2 x a b x b a b a a b ab + − + − − − = (1) b) ( ) 2 2 a x 1 ax 1 2 x 1 x 1 x 1 + − + = − + − (2) Giải a) ĐK: a ≠ 0; b ≠ 0. ( ) ( ) ( ) ( ) ( ) 2 2 2 2 2 2 (1) b x a b a x b a b a bx ab b ax ab a b a b a x 2 b a b a ⇔ + − − + − = − ⇔ + − − − + = − ⇔ − = − + -Nếu b – a ≠ 0 b a ⇒ ≠ thì ( ) ( ) ( ) 2 b a b a x 2 b a b a − + = = + − -Nếu b – a = 0 b a ⇒ = thì phương trình có vô số nghiệm. Vậy: -Với b ≠ a, phương trình có nghiệm duy nhất x = 2(b + a). -Với b = a, phương trình có vô số nghiệm b) ĐKXĐ: x 1 ≠ ± ( ) ( ) ( ) ( ) ( ) 2 2 2 (2) ax-1 x 1 2 x 1 a x 1 ax ax x 1 2x 2 ax a a 1 x a 3 ⇒ + + − = + ⇔ + − − + − = + ⇔ + = + -Nếu a + 1 ≠ 0 a 1 ⇒ ≠ − thì a 3 x a 1 + = + -Nếu a + 1 = 0 a 1 ⇒ = − thì phương trình vô nghiệm. Vậy: -Với a ≠ -1 và a ≠ -2 thì phương trình có nghiệm duy nhất a 3 x a 1 + = + -Với a = -1 hoặc a = -2 thì phương trình vô nghiệm. VD3.Giải các hệ phương trình sau 6 1 1 5 x 2y 3z 2 x 5y 7 x y x y 8 a) b) c) x 3y z 5 3x 2y 4 1 1 3 x 5y 1 x y x y 8  + − = + =   + = + −    − + =    − =    − = − =   − +  Giải ( ) x 7 5y x 5y 7 x 7 5y x 7 5y x 2 a) 3 7 5y 2y 4 3x 2y 4 21 17y 4 y 1 y 1 = −  + = = − = − =     ⇔ ⇔ ⇔ ⇔      − − = − = − = = =      hoặc x 5y 7 3x 15y 21 17y 17 y 1 3x 2y 4 3x 2y 4 3x 2y 4 x 2 + = + = = =     ⇔ ⇔ ⇔     − = − = − = =     b) ĐK: x y ≠ ± đặt 1 1 u; v x y x y = = + − Khi đó, có hệ mới 5 1 2v 1 u v v 8 2 5 1 3 u v u u v 8 8 8   = + = =       ⇔ ⇔    + =    = − + =      Thay trở lại, ta được: x y 8 x 5 x y 2 y 3 + = =   ⇔   − = =   c) x 2y 3z 2 x 1 5y x 1 5y x 6 x 3y z 5 1 5y 2y 3z 2 7y 3z 1 y 1 x 5y 1 1 5y 3y z 5 2y z 4 z 2 + − = = + = + =         − + = ⇔ + + − = ⇔ − = ⇔ =         − = + − + = + = =     C.MỘT SỐ BÀI TẬP CƠ BẢN 1.Giải các phương trình sau ( ) ( ) ( ) ( ) 2 x 17 3x 7 a) 3 x 4 5 x 2 4 3x 1 82 b) 2 5 4 x 1 x 2 x 3 x 4 x 1 x 7x 3 c) d) 65 64 63 62 x 3 x 3 9 x x 2 1 2 e) f ) x 3 5 x 2 x x x 2 g) 3x 1 2x 6 + − + − − = − + − = − + + + + − − + = + − = + − − + − = + = − − − = + ( ) ( ) ( ) h) 2 x 3 2x 1 4 4x 3 x 1 2x 3 x 2 i) 5 3x x 3 3x 1 x 2 k) 3 6 2 4 − − + = + − − + + + < − + − > − 2.Giải và biện luận các phương trình sau x a x b a) b a a b − − + = + ( ) 2 b) a x 1 3a x− − = 7 2 2 ax-1 x a a 1 c) a+1 1 a a 1 + + = a 1 a 1 a 1 d) x a x 1 x a x 1 + + = + + + 3.Gii cỏc h phng trỡnh sau 2 2 2 2 m n p 21 x y 24 3x 4y 5 0 2u v 7 n p q 24 a) b) c) d) x y 8 2x 5y 12 0 p q m 23 2 u 2v 66 9 7 9 q m n 22 + + = + = + = = + + = + = + + = + = + = + + = 4.Cho h phng trỡnh ( ) m 1 x y 3 mx y m + = + = a) Gii h vi m = - 2 b) Tỡm m h cú nghim duy nht sao cho x + y dng. Chuyên đề iii Hàm số và đồ thị i.Kiến thức cơ bản 1.Hàm số a. Khái niệm hàm số - Nếu đại lợng y phụ thuộc vào đại lợng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định đợc chỉ một giá trị tơng ứng của y thì y đợc gọi là hàm số tơng ứng của x và x đợc gọi là biến số - Hàm số có thể cho bởi bảng hoặc công thức b. Đồ thị hàm số - Đồ thị hàm số y = f(x) là tập hợp tất cả những điểm M trong mặt phẳng tọa độ có tọa độ thỏa mãn ph- ơng trình y = f(x) (Những điểm M(x, f(x)) trên mặt phẳng tọa độ) c. Hàm số đồng biến, hàm số nghịch biến * Cho hàm số y = f(x) xác định với mọi giá trị của x thuộc R - Nếu x 1 < x 2 mà f(x 1 ) < f(x 2 ) thì hàm số y = f(x) đồng biến trên R - Nếu x 1 < x 2 mà f(x 1 ) > f(x 2 ) thì hàm số y = f(x) nghịch biến trên R 1.1Hàm số bậc nhất a. Khái niệm hàm số bậc nhất - Hàm số bậc nhất là hàm số đợc cho bởi công thức y = ax + b. Trong đó a, b là các số cho trớc và a 0 b. Tính chất Hàm số bậc nhất y = ax + b xác định với mọi giá trị của x thuộc R và có tính chất sau: - Đồng biến trên R khi a > 0 - Nghịch biến trên R khi a < 0 c. Đồ thị của hàm số y = ax + b (a 0) Đồ thị của hàm số y = ax + b (a 0) là một đờng thẳng - Cắt trục tung tại điểm có tung độ bằng b - Song song với đờng thẳng y = ax, nếu b 0, trùng với đờng thẳng y = ax, nếu b = 0 * Cách vẽ đồ thị hàm số y = ax + b (a 0) Bớc 1. Cho x = 0 thì y = b ta đợc điểm P(0; b) thuộc trục tung Oy. Cho y = 0 thì x = -b/a ta đợc điểm Q(-b/a; 0) thuộc trục hoành Bớc 2. Vẽ đờng thẳng đi qua hai điểm P và Q ta đợc đồ thị hàm số y = ax + b d. Vị trí tơng đối của hai đờng thẳng Cho hai đờng thẳng (d): y = ax + b (a 0) và (d): y = ax + b (a 0). Khi đó 8 + ' // ' ' a a d d b b = + { } ' ' 'd d A a a = + ' ' ' a a d d b b = = + ' . ' 1d d a a = e. Hệ số góc của đờng thẳng y = ax + b (a 0) Góc tạo bởi đờng thẳng y = ax + b và trục Ox. - Góc tạo bởi đờng thẳng y = ax + b và trục Ox là góc tạo bởi tia Ax và tia AT, trong đó A là giao điểm của đờng thẳng y = ax + b với trục Ox, T là điểm thuộc đờng thẳng y = ax + b và có tung độ dơng Hệ số góc của đờng thẳng y = ax + b - Hệ số a trong phơng trình y = ax + b đợc gọi là hệ số góc của đờng thẳng y = ax +b f. Một số phơng trình đờng thẳng - Đờng thẳng đi qua điểm M 0 (x 0 ;y 0 )có hệ số góc k: y = k(x x 0 ) + y 0 - Đờng thẳng đi qua điểm A(x 0 , 0) và B(0; y 0 ) với x 0 .y 0 0 là 0 0 1 x y x y + = 1.2 Hàm số bậc hai a. Định nghĩa - Hàm số có dạng y = ax 2 (a 0) b. Tính chất - Hàm số y = ax 2 (a 0) xác đinh với mọi giá trị của c thuộc R và: + Nếu a > 0 thì hàm số nghịch biến khi x < 0, đồng biến khi x > 0 + Nếu a < 0 thì hàm số đồng biến khi x < 0, nghịch biến khi x > 0 c. Đồ thị của hàm số y = ax 2 (a 0) - Đồ thị hàm số y = ax 2 (a 0) là một Parabol đi qua gốc tọa độ nhận trục Oy làm trục đối xứng + Nếu a > 0 thì đồ thị nằm phía trên trục hoành, O là điểm thấp nhất của đồ thị + Nếu a < 0 thì đồ thị nằm phía dời trục hoành, O là điểm cao nhất của đồ thị 2.Kiến thức bổ xung 2.1 Công thức tính toạ độ trung điểm của đoạn thẳng và độ dài đoạn thẳng Cho hai điểm phân biệt A với B với A(x 1 , y 1 ) và B(x 2 , y 2 ). Khi đó - Độ dài đoạn thẳng AB đợc tính bởi công thức 2 2 ( ) ( ) B A B A AB x x y y = + - Tọa độ trung điểm M của AB đợc tính bởi công thức ; 2 2 A B A B M M x x y y x y + + = = 2.2 Quan hệ giữa Parabol y = ax 2 (a 0) và đờng thẳng y = mx + n (m 0) Cho Parabol (P): y = ax 2 (a 0) và đờng thẳng (d): y = mx + n. Khi đó - Tọa độ giao điểm của (P) và (d) là nghiệm của hệ phơng trình 2 y ax y mx n = = + - Hoành độ giao điểm của (P) và (d) là nghiệm của phơng trình ax 2 = mx + n (*) - Số giao điểm của (P) và (d) là số nghiệm của phơng trình (*) + Nếu (*) vô nghiệm thì (P) và (d) không có điểm chung + Nếu (*) có nghiệm kép thì (P) và (d) tiếp xúc nhau + Nếu (*) có hai nghiệm phân biệt thì (P) và (d) cắt nhau tại hai điểm phân biệt 9 II. Bài tập mẫu: Bài 1: Cho hàm số: y = (m + 4)x - m + 6 (d). a. Tìm các giá trị của m để hàm số đồng biến, nghịch biến. b. Tìm các giá trị của m, biết rằng đờng thẳng (d) đi qua điểm A(-1; 2). Vẽ đồ thị của hàm số với giá trị tìm đợc của m. c. Xác định m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 2. d. Xác định m để đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 2. e. Chứng minh rằng khi m thay đổi thì các đờng thẳng (d) luôn luôn đi qua một điểm cố định. Bài 2: Cho hai đờng thẳng: y = (k - 3)x - 3k + 3 (d 1 ) và y = (2k + 1)x + k + 5 (d 2 ). Tìm các giá trị của k để: a. (d 1 ) và (d 2 ) cắt nhau. b. (d 1 ) và (d 2 ) cắt nhau tại một điểm trên trục tung. c. (d 1 ) và (d 2 ) song song với nhau. d. (d 1 ) và (d 2 ) vuông góc với nhau. e. (d 1 ) và (d 2 ) trùng nhau. Bài 3: Cho hàm số: y = (2m-5)x+3 với m có đồ thị là đờng thẳng d . Tìm giá trị của m để : a. Góc tạo bởi (d) và trục Ox là góc nhọn, góc tù ( hoặc hàm số đồng biến , nghịch biến) b. (d) đi qua điểm (2;-1) c. (d)// với đờng thẳng y =3x-4 d. (d) // với đờng thẳng 3x+2y = 1 e. (d) luôn cắt đờng thẳng 2x-4y-3 =0 f. (d) cắt đờng thẳng 2x+ y = -3 tại điểm có hoành độ bằng -2 g. Chứng tỏ (d) luôn đi qua 1 điểm cố định trên trục tung Bài 4: cho (p) y = 2x 2 và đờng thẳng (d) y = (2m-1)x m 2 -9 . Tìm m để : a. Đờng thẳng(d) cắt (P) tại hai điểm phân biệt b. (d) tiếp xúc với (P) c. (d) và (P) không giao nhau. Bi 5: Cho hm s: 2 1 2 y = x cú th (P). a) Tỡm cỏc im A, B thuc (P) cú honh ln lt bng 1 v 2. b) Vit phng trỡnh ng thng AB. c) Vit phng trỡnh ng thng song song vi AB v tip xỳc vi (P). Tỡm ta tip im. Bi 6: Cho hm s: y = (m + 1)x 2 cú th (P). a) Tỡm m hm s ng bin khi x > 0. b) Vi m = 2. Tỡm to giao im ca (P) vi ng thng (d): y = 2x 3. c) Tỡm m (P) tip xỳc vi (d): y = 2x 3. Tỡm ta tip im. Bi 7: Chng t ng thng (d) luụn tip xỳc vi Parabol (P) bit: a) (d): y = 4x 4; (P): y = x 2 . b) (d): y = 2x 1; (P): y = x 2 . Bi 8: 8.1)Chng t rng ng thng (d) luụn ct Parabol (P) ti 2 im phõn bit: a) (d): y = 3x + 4; (P): y = x 2 . b) (d): y = 4x + 3; (P): y = 4x 2 . 8.2)Tỡm ta giao im ca (d) v (P) trong cỏc trng hp trờn. Bi 9: Cho Parabol (P) cú phng trỡnh: y = ax 2 v hai ng thng sau: 10 [...]... đôi công nhân dự định hoàn thành công việc với 500 ngày công thợ Hãy tín số ngời của đội, biết rằng nếu bổ sung thêm 5 công nhân thì số ngày hoàn thành công việc giảm 5 ngày Bài 7 : Hai đội công nhân cùng làm một công việc thì làm xong trong 4 giờ Nếu mỗi đội làm một mình để làm xong công việc ấy , thì đội thứ nhất cần thời gian ít hơn so với đội thứ hai là 6 giờ Hỏi mỗi đội làm một mình xong công... trong bao lâu sẽ làm xong công việc >Nếu ba ngời cùng làm sẽ hoàn thành công việc trong mấy giờ ? 24 Giải : Gọi ngời A một mình làm xong công việc trong x (giờ ), x > 0 thì mỗi giờ làm đ ợc một mình làm xong công việc trong y (giờ ), y > 0 thì mỗi giờ làm đợc xong công việc trong z (giờ ), z > 0 thì mỗi giờ làm đợc 1 ( công việc).Ngời B x 1 ( công việc)Ngời C một mình làm y 1 ( công việc) z 1 1 1 504 ... hai làm xong công việc với năng suất dự định ban đầu 1 Một giờ ngời thứ nhất làm đợc (công việc ) x 1 Một giờ ngời thứ hai làm đợc (công việc ) y Một giờ cả hai ngời làm đợc Nên ta có pt : 1 (công việc ) 12 1 1 1 + = (1) y 12 x trong 8 giờ hai ngời làm đợc 8 Công việc còn lại là 1 - 1 2 = (công việc ) 12 3 2 1 = ( công việc ) 3 3 Năng suất của ngời thứ hai khi làm một mình là 2 1 2 = (Công việc ) y... 5 = 100 4 1 1 1 12 + + = ( công việc ) x y z 504 504 = 42 (giờ ) Vậy cả ba ngòi cùng làm sẽ hoàn thành cong việc trong 12 Bài tập 10: Hai đội công nhân cùng làm chung một công việc Thời gian để đội I làm một mình xong công việc ít hơn thời gian để đội II làm một mình xong công việc đó là 4 giờ Tổng thời gian này gấp 4,5 lần thời gian hai đội cùng làm chung để xong công việc đó Hỏi mỗi đội làm một... ngợc dòng là 24 (km/h) Bài 4 : Hai đội công nhân cùng làm một công việc trong 16 ngày thì xong Nếu đội thứ nhất làm 3 ngày, đội thứ hai làm trong 6 ngày thì hoàn thành đợc 1 công việc Hỏi nếu làm một mình thì mỗi đội hoàn thành 4 công việc đó trong bao lâu ? HD : Gọi thời gian đội thứ nhất hoàn thành công việc một mình là x ( ngày) Thời gian đội thứ hai hoàn thành công việc một mình là y ( ngày) 1 x +... thành công việc còn lại là 10 (giờ) nên ta có pt 3 1 2 10 y 10 : = hay = (2) 3 y 3 6 3 Từ (1) và (2) ta có hệ pt : 1 1 1 x + y = 12 x = 30 y = 20 y = 10 6 3 Vậy theo dự định ngời thứ nhất làm xong công việc hết 30giờ và ngời thứ hai hết 20 giờ Bài tập 9: Hai ngời A và B làm xong công việc trông 72 giờ , còn ngời A và C làm xong công việc trong đó trong 63 giờ và ngơoì B và C làm xong công việc... 0 ) 1 Ta có pt : x + y = 12 (1) 2 1 thời gian ngời thứ nhất làm riêng l để xong công việc là 2x => 1 giờ ngời thứ nhất làm đợc công việc 2x 1 Gọi thời gian ngời thứ hai làm riêng l để xong công việc là 2y => 1 giờ ngời thứ hai làm đợc công việc 2y Vậy 1 giờ cả hai vòi chảy đợc 1: 21 1 giờ cả hai ngời làm đợc 1 1 1 1 công việc nên ta có pt : + = 6 2x 2 y 6 (2) 1 15 x = 5 x + y = 12 2 x = Từ (1)... chung thì sau 4 ngày sễ hoàn thành công việc nhng lúc đầu, đội một làm đợc 9 ngày thì đội hai mới tới và hai đội làm một ngày nữa thì công việc mới hoàn thành Hỏi mỗi đội làm một mình thì sau bao lâu sẽ xong công việc ? 27 Bài 5 : Hai vòi nớc cùng chảy vào một bể cạn thì sau 2 giờ 30 phút sẽ đày bể Nếu từng vòi chảy riêng thì vòi I chảy trong 3 giờ băng nớc vòi II chảy vào bể trong 2 giờ Hỏi nếu chảy một... chung thì công việc hoàn thành trong 6 giờ Tính xem mỗi đội làm một mình xong cả con mơng trong bao lâu? HD: Gọi thời gian đội I hoàn thành công việc một mình là x (giờ) 25 > x > 0 Thời gian đội hai hoàn thành công việc một mình trong 25 x ngày 28 1 1 1 + = x 2 25 x + 150 = 0 x1 = 10; x 2 = 15 Thời gian đội I hoàn thành công việc một mình x 25 x 6 là 10 (giờ) Thời gian đội II hoàn thành công việc... 5 5 5 x2 < 2 , không thoả mãn đk của ẩn Vậy theo kế hoạch mỗi đội phải làm việc 10 ngày Bài 6: Hai ngời thợ cùng làm một công việc trong 16 giờ thì xong Nếu ngời thứ nhất làm trong 3 giờ và ngời thứ hai làm trong 6 giờ thì họ làm đợc 25% công việc Hỏi mỗi ngời làm công việc đó trong mấy giờ thì xong Giải: Gọi x , y lần lợt là số giờ ngời thứ nhất ngời thứ hai một mình làm xong công việc đó ( x > . ôn thi vào lớp 10 Năm học: 2011 - 2012 Chuyên đề i: căn thức bậc hai - bậc ba Các phép biến đổi căn thức bậc hai- bậc ba A. Những công thức biến đổi căn thức: 1). cho x + y dng. Chuyên đề iii Hàm số và đồ thị i.Kiến thức cơ bản 1.Hàm số a. Khái niệm hàm số - Nếu đại lợng y phụ thuộc vào đại lợng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định đợc. đúng hệ số a, b, c và áp dụng đúng công thức + Áp dụng đúng công thức (không nhẩm tắt vì dễ dẫn đến sai sót) + Gv: cần chú ý rèn tính cẩn thận khi áp dụng công thức và tính toán * Bài tương tự:

Ngày đăng: 30/06/2015, 23:00

TỪ KHÓA LIÊN QUAN

w