1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Vật lý 12 chuyên đề Dao đông cơ học

147 628 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 147
Dung lượng 5,05 MB

Nội dung

- ĐT: 01689.996.187 http://lophocthem.com - vuhoangbg@gmail.com BỒI DƯỠNG KIẾN THỨC – LUYỆN THI ĐẠI HỌC VẬT LÝ CHUYÊN ĐỀ 2 - DAO ĐỘNG CƠ 1 VŨ ĐÌNH HOÀNG http://lophocthem.com ĐT: 01689.996.187 – Email: vuhoangbg@gmail.com Họ và tên: Lớp: Trường BỒI DƯỠNG KIẾN THỨC, LUYỆN THI VÀO ĐẠI HỌC . Thái Nguyên, 2012 - ĐT: 01689.996.187 http://lophocthem.com - vuhoangbg@gmail.com BỒI DƯỠNG KIẾN THỨC – LUYỆN THI ĐẠI HỌC VẬT LÝ CHUYÊN ĐỀ 2 - DAO ĐỘNG CƠ 2 Mục lục CHỦ ĐỀ 1 : ĐẠI CƯƠNG VỀ DAO ĐỘNG ĐIỀU HÒA PHẦN I. KIẾN THỨC CHUNG: 4 CHỦ ĐỀ 1: ĐẠI CƯƠNG VỀ DAO ĐỘNG ĐIỀU HOÀ 4 PHẦN II: PHÂN DẠNG BÀI TẬP THƯỜNG GẶP. 8 DẠNG 1: ĐẠI CƯƠNG VỀ DAO ĐỘNG ĐIỀU HÒA 8 DẠNG 2: VIẾT PHƯƠNG TRÌNH DAO ĐỘNG ĐIỀU HÒA 12 DẠNG 3: TÌM THỜI GIAN VẬT ĐI TỪ LI ĐỘ X1 TỚI X2 15 DẠNG 4: XÁC ĐỊNH QUÃNG ĐƯỜNG ĐI ĐƯỢC ( S, Smax, Smin) 17 DẠNG 5: BÀI TOÁN THỜI GIAN TRONG DĐ ĐH 19 DẠNG 6: Vận tốc trung bình và tốc độ trung bình ( vmax, vmin) 21 DẠNG 7: XÁC ĐỊNH SỐ LẦN VẬT QUA LI ĐỘ X TRONG THỜI GIAN t 22 PHẦN III. ĐỀ TRẮC NGHIỆM TỔNG HỢP: 22 ĐÁP ÁN ĐỀ SỐ 1 26 ĐÁP ÁN ĐỀ SỐ 2 31 ĐÁP ÁN ĐỀ SỐ 3 35 ĐÁP ÁN ĐÈ SỐ 4 40 CHỦ ĐỀ 2: CON LẮC LÒ XO PHẦN I: KIẾN THỨC CHUNG: 40 PHẦN II: CÁC DẠNG BÀI TẬP. 43 DẠNG 1: BÀI TOÁN ĐẠI CƯƠNG VỀ CON LẮC LÒ XO ( TÌM CÁC ĐẠI LƯỢNG THƯỜNG GẶP) T,v,x,Wđ.Wt,… 43 DẠNG 2: BÀI TOÁN LIÊN QUAN ĐỘNG NĂNG, THẾ NĂNG CON LẮC LÒ XO 45 DẠNG 3: VIẾT PHƯƠNG TRÌNH DAO ĐỘNG CỦA CON LẮC LÒ XO 47 DẠNG 4: TÌM ĐỘ BIẾN DẠNG, CHIỀU DÀI (MAX, MIN) CON LẮC LÒ XO 50 DẠNG 5: BÀI TOÁN TÌM LỰC TRONG CON LẮC LÒ XO 52 DẠNG 6: HỆ LÒ XO GHÉP NỐI TIẾP – SONG SONG- XUNG ĐỐI 54 DẠNG 7: SỰ THAY ĐỔI CHU KÌ, TẦN SỐ CON LẮC LÒ XO KHI m THAY ĐỔI 56 DẠNG 8: CON LẮC LÒ XO CHỊU TÁC DỤNG CỦA NGOẠI LỰC 58 BÀI TOÁN 1: VA CHẠM: 58 BÀI TOÁN2: HỆ VẬT CÓ MA SÁT GẮN VÀO NHAU CÙNG DAO ĐỘNG 60 PHẦN III. ĐỀ TRẮC NGHIỆM TỔNG HỢP: 63 ĐÁP ÁN ĐỀ 5 67 ĐÁP ÁN ĐỀ 6 72 ĐÁP ÁN ĐỀ 7 76 CHỦ ĐỀ 3: CON LẮC ĐƠN PHẦN I. KIẾN THỨC CHUNG: 76 PHẦN II. CÁC DẠNG BÀI TẬP: 78 DẠNG 1: ĐẠI CƯƠNG VỀ CON LẮC ĐƠN 78 DẠNG 2: TÌM LỰC CĂNG T CỦA DÂY TREO. 79 *DẠNG 3 : CON LẮC ĐƠN CÓ CHIỀU DÀI THAY ĐỔI ( CẮT, GHÉP) 80 - ĐT: 01689.996.187 http://lophocthem.com - vuhoangbg@gmail.com BỒI DƯỠNG KIẾN THỨC – LUYỆN THI ĐẠI HỌC VẬT LÝ CHUYÊN ĐỀ 2 - DAO ĐỘNG CƠ 3 DẠNG 4: VIẾT PHƯƠNG TRÌNH DAO ĐỘNG CON LẮC ĐƠN 81 DẠNG 5: CON LẮC ĐƠN BỊ VƯỚNG ĐINH, KẸP CHẶT 83 DẠNG 6: BÀI TOÁN VA CHẠM TRONG CON LẮC ĐƠN 84 DẠNG 7 : SỰ THAY ĐỔI CHU KỲ CON LẮC ĐƠN KHI THAY ĐỔI ĐỘ CAO h, ĐỘ SÂU d 86 DẠNG 8 : SỰ THAY ĐỔI CHU KỲ CON LẮC ĐƠN KHI TĂNG GIẢM NHIỆT ĐỘ 87 BÀI TOÁN: Xác định thời gian nhanh chậm của đồng hồ trong một ngày đêm. 88 DẠNG 9: CON LẮC ĐƠN CHỊU TÁC DỤNG NGOẠI LỰC 92 DẠNG 10 : CON LẮC ĐƠN DAO ĐỘNG TRÙNG PHÙNG 98 *DẠNG 11: CON LẮC VẬT LÝ DĐ ĐH 99 DẠNG 12: CON LẮC ĐƠN ĐANG DAO ĐỘNG ĐỨT DÂY 100 PHẦN III. ĐỀ TRẮC NGHIỆM TỔNG HỢP: 102 ĐÁP ÁN ĐỀ 8 106 ĐÁP ÁN ĐỀ 9 111 ĐÁP ÁN ĐỀ 10 115 CHỦ ĐỀ 4: CÁC LOẠI DAO ĐỘNG. CỘNG HƯỞNG CƠ PHẦN I.KIẾN THỨC TRỌNG TÂM: 115 PHẦN II: BÀI TẬP VẬN DỤNG. 116 PHẦN III: ĐỀ TRắC NGHIệM TổNG HợP : 120 ĐÁP ÁN ĐỀ 11 124 CHỦ ĐỀ 5: ĐỘ LỆCH PHA. TỔNG HỢP DAO ĐỘNG PHẦN I. P HƯƠNG PHÁP : 124 PHẦN II. CÁC VÍ DỤ MINH HỌA 125 PHẦN III. ĐỀ TRẮC NGHIỆM TỔNG HỢP: 131 ĐÁP ÁN ĐỀ 12 135 CHỦ ĐỀ 6: DAO ĐỘNG CƠ HỌCĐỀ THI ĐAI HỌC + CAO ĐẲNG CÁC NĂM 2007- 2012 ĐÁP ÁN: DAO ĐỘNG CƠ - ĐH CĐ 2007-2012 147 - ĐT: 01689.996.187 http://lophocthem.com - vuhoangbg@gmail.com BỒI DƯỠNG KIẾN THỨC – LUYỆN THI ĐẠI HỌC VẬT LÝ CHUYÊN ĐỀ 2 - DAO ĐỘNG CƠ 4 PHẦN I. KIẾN THỨC CHUNG: * Dao động cơ, dao động tuần hoàn + Dao động cơ là chuyển động qua lại của vật quanh 1 vị trí cân bằng. + Dao động tuần hoàn là dao động mà sau những khoảng thời gian bằng nhau vật trở lại vị trí và chiều chuyển động như cũ (trở lại trạng thái ban đầu). * Dao động điều hòa + Dao động điều hòa là dao động trong đó li độ của vật là một hàm côsin (hoặc sin) của thời gian. + Phương trình dao động: x = Acos(ωt + ϕ) Trong đó: x (m;cm hoặc rad): Li độ (toạ độ) của vật; cho biết độ lệch và chiều lệch của vật so với VTCB. A>0 (m;cm hoặc rad): Là biên độ (li độ cực đại của vật); cho biết độ lệch cực đại của vật so với VTCB. (ωt + ϕ) (rad): Là pha của dao động tại thời điểm t; cho biết trạng thái dao động (vị trí và chiều chuyển động) của vật ở thời điểm t. ϕ (rad): Là pha ban đầu của dao động; cho biết trạng thái ban đầu của vật. ω (rad/s): Là tần số góc của dao động điều hoà; cho biết tốc độ biến thiên góc pha + Điểm P dao động điều hòa trên một đoạn thẳng luôn luôn có thể dược coi là hình chiếu của một điểm M chuyển động tròn đều trên đường kính là đoạn thẳng đó. * Chu kỳ, tần số của dao động điều hoà + Chu kì T(s): Là khoảng thời gian để thực hiện một dao động toàn phần. Chính là khoảng thời gian ngắn nhất để vật trở lại vị trí và chiều chuyển động như cũ (trở lại trạng thái ban đầu). + Tần số f(Hz):Là số dao động toàn phần thực hiện được trong một giây. + Liên hệ giữa ω, T và f: ω = T π 2 = 2πf. * Vận tốc và gia tốc của vật dao động điều hoà + Vận tốc là đạo hàm bậc nhất của li độ theo thời gian: v = x' = - ωAsin(ωt + ϕ) = ωAcos(ωt + ϕ + 2 π ) Vận tốc của vật dao động điều hòa biến thiên điều hòa cùng tần số nhưng sớm pha hơn 2 π so với với li độ. - Ở vị trí biên (x = ± A): Độ lớn |v| min = 0 - Ở vị trí cân bằng (x = 0): Độ lớn |v| min =ωA. Giá trị đại số: v max = ωA khi v>0 (vật chuyển động theo chiều dương qua vị trí cân bằng) v min = -ωA khi v<0 (vật chuyển động theo chiều âm qua vị trí cân bằng) + Gia tốc là đạo hàm bậc nhất của vận tốc (đạo hàm bậc 2 của li độ) theo thời gian: a = v' = x’’ = - ω 2 Acos(ωt + ϕ) = - ω 2 x CHỦ ĐỀ 1: ĐẠI CƯƠNG VỀ DAO ĐỘNG ĐIỀU HOÀ - ĐT: 01689.996.187 http://lophocthem.com - vuhoangbg@gmail.com BỒI DƯỠNG KIẾN THỨC – LUYỆN THI ĐẠI HỌC VẬT LÝ CHUYÊN ĐỀ 2 - DAO ĐỘNG CƠ 5 Gia tốc của vật dao động điều hòa biến thiên điều hòa cùng tần số nhưng ngược pha với li độ (sớm pha 2 π so với vận tốc). Véc tơ gia tốc của vật dao động điều hòa luôn hướng về vị trí cân bằng và tỉ lệ với độ lớn của li độ. - Ở vị trí biên (x = ± A), gia tốc có độ lớn cực đại : |a| max = ω 2 A. Giá trị đại số: a max =ω 2 A khi x=-A; a min =-ω 2 A khi x=A;. - Ở vị trí cân bằng (x = 0), gia tốc bằng 0. + Đồ thị của dao động điều hòa là một đường hình sin. + Quỹ đạo dao động điều hoà là một đoạn thẳng. * Dao động tự do (dao động riêng) + Là dao động của hệ xảy ra dưới tác dụng chỉ của nội lực + Là dao động có tần số (tần số góc, chu kỳ) chỉ phụ thuộc các đặc tính của hệ không phụ thuộc các yếu tố bên ngoài. Khi đó: ω gọi là tần số góc riêng; f gọi là tần số riêng; T gọi là chu kỳ riêng TÓM TẮT CÔNG THỨC 1. Phương trình dao động: x = Acos( ω t + ϕ ) 2. Vận tốc tức thời: v = - ω Asin( ω t + ϕ ) v r luôn cùng chiều với chiều chuyển động (vật chuyển động theo chiều dương thì v>0, theo chiều âm thì v<0) 3. Gia tốc tức thời: a = - ϖ 2 Acos( ω t + ϕ ) = - ω 2 x a r luôn hướng về vị trí cân bằng 4. Vật ở VTCB: x = 0; v Max = ω A; a Min = 0 Vật ở biên: x = ±A; v Min = 0; a Max = ω 2 A 5. Hệ thức độc lập: 2 2 2 ( ) v A x ω = + a = - ω 2 x 6. Cơ năng: 2 2 đ 1 W W W 2 t m A ω = + = Với 2 2 2 2 2 đ 1 1 W sin ( ) Wsin ( ) 2 2 mv m A t t ω ω ϕ ω ϕ = = + = + 2 2 2 2 2 2 1 1 W ( ) W s ( ) 2 2 t m x m A cos t co t ω ω ω ϕ ω ϕ = = + = + 7. Dao động điều hoà có tần số góc là ω , tần số f, chu kỳ T. Thì động năng và thế năng biến thiên với tần số góc 2 ω , tần số 2f, chu kỳ T/2 8. Động năng và thế năng trung bình trong thời gian nT/2 ( n - N * , T là chu kỳ dao động) là: 2 2 W 1 2 4 m A ω = 9. Khoảng thời gian ngắn nhất để vật đi từ vị trí có li độ x 1 đến x 2 2 1 t ϕ ϕ ϕ ω ω − ∆ ∆ = = với 1 1 2 2 s s x co A x co A ϕ ϕ  =     =   và ( 1 2 0 , ϕ ϕ π ≤ ≤ ) 10. Chiều dài quỹ đạo: 2A 11. Quãng đường đi trong 1 chu kỳ luôn là 4A; trong 1/2 chu kỳ luôn là 2A A -A x1x2 M2 M1 M'1 M'2 O ∆ϕ ∆ϕ - ĐT: 01689.996.187 http://lophocthem.com - vuhoangbg@gmail.com BỒI DƯỠNG KIẾN THỨC – LUYỆN THI ĐẠI HỌC VẬT LÝ CHUYÊN ĐỀ 2 - DAO ĐỘNG CƠ 6 Quãng đường đi trong l/4 chu kỳ là A khi vật đi từ VTCB đến vị trí biên hoặc ngược lại 12. Quãng đường vật đi được từ thời điểm t 1 đến t 2 . Xác định: 1 1 2 2 1 1 2 2 Acos( ) Acos( ) à sin( ) sin( ) x t x t v v A t v A t ω ϕ ω ϕ ω ω ϕ ω ω ϕ = + = +     = − + = − +   (v 1 và v 2 chỉ cần xác định dấu) Phân tích: t 2 – t 1 = nT + ∆ t (n N; 0 ≤ ∆ t < T) Quãng đường đi được trong thời gian nT là S 1 = 4nA, trong thời gian ∆ t là S 2 . Quãng đường tổng cộng là S = S 1 + S 2 Lưu ý: + Nếu ∆ t = T/2 thì S 2 = 2A + Tính S 2 bằng cách định vị trí x 1 , x 2 và chiều chuyển động của vật trên trục Ox + Trong một số trường hợp có thể giải bài toán bằng cách sử dụng mối liên hệ giữa dao động điều hoà và chuyển động tròn đều sẽ đơn giản hơn. + Tốc độ trung bình của vật đi từ thời điểm t 1 đến t 2 : 2 1 tb S v t t = − với S là quãng đường tính như trên. 13. Bài toán tính quãng đường lớn nhất và nhỏ nhất vật đi được trong khoảng thời gian 0 < ∆ t < T/2. Vật có vận tốc lớn nhất khi qua VTCB, nhỏ nhất khi qua vị trí biên nên trong cùng một khoảng thời gian quãng đường đi được càng lớn khi vật ở càng gần VTCB và càng nhỏ khi càng gần vị trí biên. Sử dụng mối liên hệ giữa dao động điều hoà và chuyển đường tròn đều. Góc quét t ∆ = ∆ . ω ϕ Quãng đường lớn nhất khi vật đi từ M 1 đến M 2 đối xứng qua trục sin (hình 1) ax 2A sin 2 M S ϕ ∆ = Quãng đường nhỏ nhất khi vật đi từ M 1 đến M 2 đối xứng qua trục cos (hình 2) 2 (1 os ) 2 Min S A c ϕ ∆ = − Lưu ý: + Trong trường hợp ∆ t > T/2 Tách ' 2 T t n t ∆ = + ∆ trong đó * ;0 ' 2 T n N t ∈ < ∆ < Trong thời gian 2 T n quãng đường luôn là 2nA Trong thời gian ∆ t’ thì quãng đường lớn nhất, nhỏ nhất tính như trên. + Tốc độ trung bình lớn nhất và nhỏ nhất của trong khoảng thời gian ∆ t: ax ax M tbM S v t = ∆ và Min tbMin S v t = ∆ với S Max ; S Min tính như trên. 13. Các bước lập phương trình dao động dao động điều hoà: * Tính ϕ * Tính A * Tính ϕ dựa vào điều kiện đầu: lúc t = t 0 (thường t 0 = 0) 0 0 Acos( ) sin( ) x t v A t ω ϕ ϕ ω ω ϕ = +  ⇒  = − +  Lưu ý: + Vật chuyển động theo chiều dương thì v > 0, ngược lại v < 0 A -A M M 1 2 O P x x O 2 1 M M -A A P 2 1 P P 2 ϕ ∆ 2 ϕ ∆ - ĐT: 01689.996.187 http://lophocthem.com - vuhoangbg@gmail.com BỒI DƯỠNG KIẾN THỨC – LUYỆN THI ĐẠI HỌC VẬT LÝ CHUYÊN ĐỀ 2 - DAO ĐỘNG CƠ 7 + Trước khi tính ϕ cần xác định rõ ϕ thuộc góc phần tư thứ mấy của đường tròn lượng giác (thường lấy -π < ϕ ≤ π) 14. Các bước giải bài toán tính thời điểm vật đi qua vị trí đã biết x (hoặc v, a, W t , W đ , F) lần thứ n * Giải phương trình lượng giác lấy các nghiệm của t (Với t > 0 thuộc phạm vi giá trị của k ) * Liệt kê n nghiệm đầu tiên (thường n nhỏ) * Thời điểm thứ n chính là giá trị lớn thứ n Lưu ý:+ Đề ra thường cho giá trị n nhỏ, còn nếu n lớn thì tìm quy luật để suy ra nghiệm thứ n + Có thể giải bài toán bằng cách sử dụng mối liên hệ giữa dao động điều hoà và chuyển động tròn đều 15. Các bước giải bài toán tìm số lần vật đi qua vị trí đã biết x (hoặc v, a, W t , W đ , F) từ thời điểm t 1 đến t 2 . * Giải phương trình lượng giác được các nghiệm * Từ t 1 < t ≤ t 2 thuộc Phạm vi giá trị của (Với k  Z) * Tổng số giá trị của k chính là số lần vật đi qua vị trí đó. Lưu ý: + Có thể giải bài toán bằng cách sử dụng mối liên hệ giữa dao động điều hoà và chuyển động tròn đều. + Trong mỗi chu kỳ (mỗi dao động) vật qua mỗi vị trí biên 1 lần còn các vị trí khác 2 lần. 16. Các bước giải bài toán tìm li độ, vận tốc dao động sau (trước) thời điểm t một khoảng thời gian ∆ t. Biết tại thời điểm t vật có li độ x = x 0 . * Từ phương trình dao động điều hoà: x = Acos(wt + ϕ ) cho x = x 0 Lấy nghiệm ∆ t +  =  với 0 α π ≤ ≤ ứng với x đang giảm (vật chuyển động theo chiều âm vì v < 0) hoặc t +  = -  ứng với x đang tăng (vật chuyển động theo chiều dương) * Li độ và vận tốc dao động sau (trước) thời điểm đó t giây là x Acos( ) Asin( ) t v t ω α ω ω α = ± ∆ +   = − ± ∆ +  hoặc x Acos( ) Asin( ) t v t ω α ω ω α = ± ∆ −   = − ± ∆ −  17. Dao động có phương trình đặc biệt: * x = a ω Acos( ω t + ϕ )với a = const Biên độ là A, tần số góc là ω , pha ban đầu  x là toạ độ, x 0 = Acos( ω t + ϕ )là li độ. Toạ độ vị trí cân bằng x = a, toạ độ vị trí biên x = a  A Vận tốc v = x’ = x 0 ’, gia tốc a = v’ = x” = x 0 ” Hệ thức độc lập: a = - ω 2 x 0 2 2 2 0 ( ) v A x ω = + * x = a ω Acos 2 ( ω t + ϕ ) (ta hạ bậc) Biên độ A/2; tần số góc 2 ω , pha ban đầu 2 ϕ - ĐT: 01689.996.187 http://lophocthem.com - vuhoangbg@gmail.com BỒI DƯỠNG KIẾN THỨC – LUYỆN THI ĐẠI HỌC VẬT LÝ CHUYÊN ĐỀ 2 - DAO ĐỘNG CƠ 8 PHẦN II: PHÂN DẠNG BÀI TẬP THƯỜNG GẶP. DẠNG 1: ĐẠI CƯƠNG VỀ DAO ĐỘNG ĐIỀU HÒA (TÍNH TOÁN, XÁC ĐỊNH CÁC ĐẠI LƯỢNG THƯỜNG GẶP TRONG CÔNG THỨC) x,a,v,F,w,T I. Phương pháp. + Muốn xác định x, v, a, F ph ở một thời điểm hay ứng với pha dã cho ta chỉ cần thay t hay pha đã cho vào các công thức : . ( . ) x Acos t ω ϕ = + hoặc .sin( . ) x A t ω ϕ = + ; . .sin( . ) v A t ω ω ϕ = − + hoặc . . ( . ) v A cos t ω ω ϕ = + 2 . . ( . ) a A cos t ω ω ϕ = − + hoặc 2 . .sin( . ) a A t ω ω ϕ = − + và . ph F k x = − . + Nếu đã xác định được li độ x, ta có thể xác định gia tốc, lực phục hồi theo biểu thức như sau : 2 . a x ω = − và 2 . . . ph F k x m x ω = − = − + Chú ý : - Khi 0; 0; ph v a F o f f f : Vận tốc, gia tốc, lực phục hồi cùng chiều với chiều dương trục toạ độ. - Khi 0; 0; 0 ph v a F p p p : Vận tốc , gia tốc, lực phục hồi ngược chiều với chiều dương trục toạ độ. * VÍ DỤ MINH HỌA: VD1 1. Cho các phương trình dao động điều hoà như sau. Xác định A, ω, ϕ, f của các dao động điều hoà đó? a) 5. os(4. . ) 6 x c t π π = + (cm). b) 5. os(2. . ) 4 x c t π π = − + (cm). c) 5. os( . ) x c t π = − (cm). d) 10.sin(5. . ) 3 x t π π = + (cm). 2. Phương trình dao động của một vật là: x = 6cos(4πt + 6 π ) (cm), với x tính bằng cm, t tính bằng s. Xác định li độ, vận tốc và gia tốc của vật khi t = 0,25 s. HD: a) 5. os(4. . ) 6 x c t π π = + (cm). 5( ); 4. ( / ); ( ); 6 A cm Rad s Rad π ω π ϕ ⇒ = = = 2. 2. 1 1 0,5( ); 2( ) 4. 0,5 T s f Hz T π π ω π = = = = = = b) 5. 5. os(2. . ) 5. os(2. . ) 5. os(2. . ). 4 4 4 x c t c t c t π π π π π π π = − + = + + = + (cm). 5. 5( ); 2. ( / ); ( ) 4 A cm rad s Rad π ω π ϕ ⇒ = = = 2. 1 1( ); 1( ). T s f Hz T π ω ⇒ = = = = - ĐT: 01689.996.187 http://lophocthem.com - vuhoangbg@gmail.com BỒI DƯỠNG KIẾN THỨC – LUYỆN THI ĐẠI HỌC VẬT LÝ CHUYÊN ĐỀ 2 - DAO ĐỘNG CƠ 9 c) 5. os( . )( ) 5. os( . )( ) x c t cm c t cm π π π = − = + 2. 5( ); ( / ); ( ); 2( ); 0,5( ). A cm Rad s Rad T s f Hz π ω π ϕ π π ⇒ = = = = = = d) 10.sin(5. . ) 10. os(5. . ) 10. os(5. . ) 3 3 2 6 x t cm c t cm c t cm π π π π π π π = + = + − = − . 2. 1 10( ); 5. ( / ); ( ); 0.4( ); 2,5( ) 6 5. 0,4 A cm Rad s Rad T s f Hz π π ω π ϕ π ⇒ = = = = = = = . 2. Khi t = 0,25 s thì x = 6cos(4π.0,25 + 6 π ) = 6cos 6 7 π = - 3 3 (cm); v = - 6.4πsin(4πt + 6 π ) = - 6.4πsin 6 7 π = 37,8 (cm/s); a = - ω 2 x = - (4π) 2 . 3 3 = - 820,5 (cm/s 2 ). VD2. Một vật nhỏ khối lượng 100 g dao động điều hòa trên quỹ đạo thẳng dài 20 cm với tần số góc 6 rad/s. Tính vận tốc cực đại và gia tốc cực đại của vật. HD: Ta có: A = 2 L = 2 20 = 10 (cm) = 0,1 (m); v max = ωA = 0,6 m/s; a max = ω 2 A = 3,6 m/s 2 . VD3. Một vật dao động điều hoà trên quỹ đạo dài 40 cm. Khi ở vị trí có li độ x = 10 cm vật có vận tốc 20π 3 cm/s. Tính vận tốc và gia tốc cực đại của vật. HD. Ta có: A = 2 L = 2 40 = 20 (cm); ω = 22 xA v − = 2π rad/s; v max = ωA = 2πA = 40π cm/s; a max = ω 2 A = 800 cm/s 2 . VD4. Một chất điểm dao động điều hoà với chu kì 0,314 s và biên độ 8 cm. Tính vận tốc của chất điểm khi nó đi qua vị trí cân bằng và khi nó đi qua vị trí có li độ 5 cm. HD; Ta có: ω = 314,0 14,3.22 = T π = 20 (rad/s). Khi x = 0 thì v = ± ωA = ±160 cm/s. Khi x = 5 cm thì v = ± ω 22 xA − = ± 125 cm/s. VD5. Một chất điểm dao động theo phương trình: x = 2,5cos10t (cm). Vào thời điểm nào thì pha dao động đạt giá trị 3 π ? Lúc ấy li độ, vận tốc, gia tốc của vật bằng bao nhiêu? HD. Ta có: 10t = 3 π  t = 30 π (s). Khi đó x = Acos 3 π = 1,25 (cm); v = - ωAsin 3 π = - 21,65 (cm/s); a = - ω 2 x = - 125 cm/s 2 . VD6. Một vật dao động điều hòa với phương trình: x = 5cos(4πt + π) (cm). Vật đó đi qua vị trí cân bằng theo chiều dương vào những thời điểm nào? Khi đó độ lớn của vận tốc bằng bao nhiêu? HD : - ĐT: 01689.996.187 http://lophocthem.com - vuhoangbg@gmail.com BỒI DƯỠNG KIẾN THỨC – LUYỆN THI ĐẠI HỌC VẬT LÝ CHUYÊN ĐỀ 2 - DAO ĐỘNG CƠ 10 Khi đi qua vị trí cân bằng thì x = 0  cos(4πt + π) = 0 = cos(± 2 π ). Vì v > 0 nên 4πt + π = - 2 π + 2kπ  t = - 3 8 + 0,5k với k ∈ Z. Khi đó |v| = v max = ωA = 62,8 cm/s. VD7. Một vật nhỏ có khối lượng m = 50 g, dao động điều hòa với phương trình: x = 20cos(10πt + 2 π ) (cm). Xác định độ lớn và chiều của các véc tơ vận tốc, gia tốc và lực kéo về tại thời điểm t = 0,75T. HD. Khi t = 0,75T = 0,75.2 π ω = 0,15 s thì x = 20cos(10π.0,15 + 2 π ) = 20cos2π = 20 cm; v = - ωAsin2π = 0; a = - ω 2 x = - 200 m/s 2 ; F = - kx = - mω 2 x = - 10 N; a và F đều có giá trị âm nên gia tốc và lực kéo về đều hướng ngược với chiều dương của trục tọa độ. VD8. Một vật dao động điều hòa theo phương ngang với biên độ 2 cm và với chu kì 0,2 s. Tính độ lớn của gia tốc của vật khi nó có vận tốc 10 10 cm/s. HD. Ta có: ω = 2 T π = 10π rad/s; A 2 = x 2 + 2 2 v ω = 2 2 2 4 v a ω ω +  |a| = 4 2 2 2 A v ω ω − = 10 m/s 2 . VD9. Một vật dao động điều hòa với phương trình: x = 20cos(10πt + 2 π ) (cm). Xác định thời điểm đầu tiên vật đi qua vị trí có li độ x = 5 cm theo chiều ngược chiều với chiều dương kể từ thời điểm t = 0. HD. Ta có: x = 5 = 20cos(10πt + 2 π )  cos(10πt + 2 π ) = 0,25 = cos(±0,42π). Vì v < 0 nên 10πt + 2 π = 0,42π + 2kπ  t = - 0,008 + 0,2k; với k ∈ Z. Nghiệm dương nhỏ nhất trong họ nghiệm này (ứng với k = 1) là 0,192 s. VD10. Một vật dao động điều hòa với phương trình: x = 4cos(10πt - 3 π ) (cm). Xác định thời điểm gần nhất vận tốc của vật bằng 20π 3 cm/s và đang tăng kể từ lúc t = 0. HD. Ta có: v = x’ = - 40πsin(10πt - 3 π ) = 40πcos(10πt + 6 π ) = 20π 3  cos(10πt + 6 π ) = 3 2 = cos(± 6 π ). Vì v đang tăng nên: 10πt + 6 π = - 6 π + 2kπ  t = - 1 30 + 0,2k. Với k ∈ Z. Nghiệm dương nhỏ nhất trong họ nghiệm này là t = 6 1 s. VD11. Cho các chuyển động được mô tả bởi các phương trình sau: a) 5. ( . ) 1 x cos t π = + (cm) b) 2 2.sin (2. . ) 6 x t π π = + (cm) c) 3.sin(4. . ) 3. (4. . ) x t cos t π π = + (cm) [...]... Câu44: Phương trình dao động của một vật có dạng x = Acos2( ω t + π /4) Chọn kết luận đúng A Vật dao động với biên độ A/2 B Vật dao động với biên độ A C Vật dao động với biên độ 2A D Vật dao động với pha ban đầu π /4 BỒI DƯỠNG KIẾN THỨC – LUYỆN THI ĐẠI HỌC VẬT LÝ 25 CHUYÊN ĐỀ 2 - DAO ĐỘNG CƠ - ĐT: 01689.996.187 http://lophocthem.com - vuhoangbg@gmail.com Câu45: Phương trình dao động của vật có dạng x =... thời gian 1 phút vật thực hiện được 30 dao động Chu kì dao động của vật là A 2s B 30s C 0,5s D 1s Câu 5: Một vật dao động điều hoà có phương trình dao động là x = 5cos(2 π t + π /3)(cm) Vận tốc của vật khi có li độ x = 3cm là A 25,12cm/s B ± 25,12cm/s C ± 12, 56cm/s D 12, 56cm/s Câu 6: Một vật dao động điều hoà có phương trình dao động là x = 5cos(2 π t + π /3)(cm) Lấy π 2 = 10 Gia tốc của vật khi có li... BỒI DƯỠNG KIẾN THỨC – LUYỆN THI ĐẠI HỌC VẬT LÝ 14 (vì cosϕ < 0 ) CHUYÊN ĐỀ 2 - DAO ĐỘNG CƠ - ĐT: 01689.996.187 http://lophocthem.com - vuhoangbg@gmail.com DẠNG 3: TÌM THỜI GIAN VẬT ĐI TỪ LI ĐỘ X1 TỚI X2 PHƯƠNG PHÁP: Ta dùng mối liên hệ giữa dao động điều hoà và chuyển động tròn đều để tính Khi vật dao động điều hoà từ x1 đến x2 thì tương ứng vứoiu vật chuyển động tròn đều từ M đến N(chú ý x1 và x2 là... quãng đường vật đi được sau 5s bằng A 100m B 50cm C 80cm D 100cm BỒI DƯỠNG KIẾN THỨC – LUYỆN THI ĐẠI HỌC VẬT LÝ 28 CHUYÊN ĐỀ 2 - DAO ĐỘNG CƠ - ĐT: 01689.996.187 http://lophocthem.com - vuhoangbg@gmail.com Câu23: Một vật dao động điều hoà theo phương trình x = 5cos(2 π t- π / 2) (cm) Kể từ lúc t = 0, quãng đường vật đi được sau 12, 375s bằng A 235cm B 246,46cm C 245,46cm D 247,5cm Câu24: Một vật dao động... khoảng thời gian vật đi từ li độ cực đại âm đến li độ cực dương D khoảng thời gian mà vật thực hiện một dao động Câu 2:Pha ban đầu của dao động điều hòa phụ thuộc A cách chọn gốc tọa độ và gốc thời gian B năng lượng truyền cho vật để vật dao động C đặc tính của hệ dao động D cách kích thích vật dao động Câu 3 :Vật dao động điều hòa có tốc độ bằng 0 khi vật ở vị trí A mà lực tác dụng vào vật bằng 0 B cân... có li độ cực đại Câu 4 :Vật dao động điều hòa có động năng bằng 3 thế năng khi vật có li độ BỒI DƯỠNG KIẾN THỨC – LUYỆN THI ĐẠI HỌC VẬT LÝ 31 CHUYÊN ĐỀ 2 - DAO ĐỘNG CƠ 10A 20B 30A 40C 50B 60 - ĐT: 01689.996.187 A x = ± 1 A 3 http://lophocthem.com 2 A 2 B x = ± - vuhoangbg@gmail.com C x = ± 0,5A 3 A 2 D x = ± Câu 5: Năng lượng vật dao động điều hòa A bằng với thế năng của vật khi vật qua vị trí cân bằng... của vật cực đại B vật ở hai biên C vật ở vị trí có tốc độ bằng 0 D hợp lực tác dụng vào vật bằng 0 Câu 8 :Vật dao động điều hòa có động năng bằng thế năng khi vật có li độ A x = ± A B x = 0 2 A 2 C x = ± 1 A 2 D x = ± Câu 9 :Vật dao động điều hòa với biên độ A Thời gian ngắn nhất vật đi từ vị trí cân bằng đến li độ x = 0,5.A là 0,1 s Chu kì dao động của vật là A 0,4 s B 0,8 s C 0 ,12 s D 1,2 s Câu 10 :Vật. .. THI ĐẠI HỌC VẬT LÝ 33 CHUYÊN ĐỀ 2 - DAO ĐỘNG CƠ - ĐT: 01689.996.187 http://lophocthem.com - vuhoangbg@gmail.com Câu 28: Tại một thời điểm khi vật thực hiện dao động điều hoà với vận tốc bằng 1/2 vận tốc cực đại , vật xuất hiện tại li độ bằng bao nhiêu ? A A 3 B A 2 C A 2 D ± A 3 2 Câu 29: Một con lắc lò xo, khối lượng của vật bằng 2 kg dao động theo phương trình x = Acos(ω t+ϕ ) Cơ năng dao động... 2 + Nếu đề cho chiều daig lớn nhất và nhở nhất của lò xo: A = + Nếu đề cho ly độ x ứng với vận tốc v thì ta có: A = x 2 + l max − l min 2 v2 ω2 (nếu buông nhẹ v = 0) + Nếu đề cho vận tốc và gia tốc: A 2 = v2 a2 ω4 v + Nếu đề cho vận tốc cực đại: Vmax thì: A = Max ω BỒI DƯỠNG KIẾN THỨC – LUYỆN THI ĐẠI HỌC VẬT LÝ ω2 + 12 CHUYÊN ĐỀ 2 - DAO ĐỘNG CƠ - ĐT: 01689.996.187 http://lophocthem.com + Nếu đề cho... THỨC – LUYỆN THI ĐẠI HỌC VẬT LÝ 30 CHUYÊN ĐỀ 2 - DAO ĐỘNG CƠ - ĐT: 01689.996.187 http://lophocthem.com - vuhoangbg@gmail.com Câu49: Một vật dao động điều hoà theo phương trình x = 10 cos( πt + π / 3)(cm) Thời gian tính từ lúc vật bắt đầu dao động động(t = 0) đến khi vật đi được quãng đường 30cm là A 1,5s B 2,4s C 4/3s D 2/3s Câu50: Phương trình x = Acos( ωt − π / 3 ) biểu diễn dao động điều hoà của . 2 2 ( ) v A x ω = + a = - ω 2 x 6. Cơ năng: 2 2 đ 1 W W W 2 t m A ω = + = Với 2 2 2 2 2 đ 1 1 W sin ( ) Wsin ( ) 2 2 mv m A t t ω ω ϕ ω ϕ = = + = + 2 2 2 2 2 2 1 1 W ( ) W s ( ) 2. : ' . . ( . ) v x A cos t ω ω ϕ = = + . Vận tốc góc : 2. 2. 2 ( / ) 1 Rad s T π π ω π = = = . ADCT : 2 2 2 2 v A x ω = + 2 2 2 2 2 2 ( 10. . 2) ( 5. 2) (2. ) v A x π ω π − ⇒ = + =. 1 10.sin (2. . ) 5 sin (2 ) 2 2 2 x t t π π π π = + = ⇒ + = ⇒ 2. . .2 2 6 5. 2. . .2 2 6 t k t k π π π π π π π π + = + + = + ( ; k Z ∈ t > 0) Ta có : ' 2. .10. (2 ) 2 v x cos t π π

Ngày đăng: 23/06/2015, 01:00

TỪ KHÓA LIÊN QUAN

w