Bài1. Rút gọn các biểu thức sau: 1) 2818 + 2) 1 1 + x x x xx Bài 2. Cho phơng trình: 015 2 =++ mxx (1) (m là tham số) 1) Giải phơng trình (1) khi m = 5 2) Tìm giá trị của m để phơng trình (1) có hai nghiệm x 1 , x 2 thoả mãn đẳng thức: (x 1 x 2 - 1) 2 = 20(x 1 + x 2 ) Bài 3.1) Trên hệ trục toạ độ Oxy, đờng thẳng y = ax + b đI qua điểm M(0;1) và N(2;4). Tìm hệ số a và b. 2)Giải hệ phơng trình: = =+ 1 522 xy yx Bài 4. Cho hình vuông ABCD, điểm M thuộc cạnh BC (M B và M C). Qua B kẻ đờng thẳng vuông góc với tia DM cắt các đờng thẳng DM, DC theo thứ tự tại E và F. 1) Chứng minh các tứ giác: ABED và BDCE nội tiếp đờng tròn. 2) Tính góc CEF. 3) Đờng thẳng AM cắt đờng thẳng DC tại N. Chứng minh đẳng thức: 2 1 AD = 2 1 AM + 2 1 AN . Bài 5. Tìm x để y đạt giá trị lớn nhất thoả mãn: x 2 + 2y 2 + 2xy - 8x 6y = 0. Hết Họ tên thí sinh: Số báo danh: Sở giáo dục và đào tạo Hải Phòng Đề thi chính thức Đề thi tuyển lớp 10 THPT Năm học 2010-2011 Ngày thi : 23/ 6/ 2010 Sở gd đt hà tĩnh đề thi tuyển sinh lớp 10 thpt - năm học 2010 2011 Môn toán Thời gian làm bài: 120 phút BÀI GI I VÀO L P 10 T NH HÀ T NH N M 2011Ả Ớ Ĩ Ị Ă Bài 1. Rút g n bi u th c:ọ ể ứ 1) 18 8 2 3 2 2 2 2 2 2− + = − + = 1) 1 ( 1) ( 1)( 1) 2 1 1 x x x x x x x x x x x x − − − − + + = + = − − Bài 2. 1) Khi m = 5 ta có : x 2 – 5x + 6 = 0 . Có a + b + c = 0 => x = 1; x = 6. 2) / K : m Đ 21 4 ≤ Theo vi – ét : S = 5; P = m + 1 (x 1 x 2 – 1) 2 = 20(x 1 + x 2 ) ⇔ m 2 = 100 => m = ± 10 . So /K m =đ 10 lo i ạ v y m = – 10 .ậ Bài 3. 1) ng thĐườ ¼ng y = ax + b ®i qua ®iÓm M(0;1) => b = 1 . Điểm N(2;4) thuộc đường thẳng => 2a + 1 = 4 => a = 3 2 2) Giải hệ phương trình: 2 2 5 1 x y xy + = = 5 2 1 x y xy + = ⇔ = => x; y là nghiệm của phương trình 2t 2 – 5t + 2 = 0 => t = 1; t= 4 Vậy nghiệm của hệ là 1 4 x y = = hoặc 4 1 x y = = Bài 4. 1) T GT => ừ · · 2BAD BED V+ = nên t giác ABED n i ti p c m t ứ ộ ế đượ ộ ng tròn.đườ Và c ng t GT ta c ng có C và E cùng nhìn DB d i m t góc vuông ũ ừ ũ ướ ộ nên t giác BECD n i ti p c m t ng tròn.ứ ộ ế đượ ộ đườ 2) T câu 1) có có BDEC n i ti p c m t ng tròn ; mà ừ ộ ế đượ ộ đườ · CAF là góc ngoài tu61 giác DBEC => · · 0 45CEF BDC= = . 3) D dàng ch ng minh ề ứ ∆ BAM ng d ng đồ ạ ∆ DNA => AM AN AB DN = mà AB = AD => AM.DN = AD.AN => AM 2 .DN 2 = AD 2 .AN 2 => AM 2 (AN 2 – AD 2 ) = AD 2 .AN 2 ( theo pi ta go) => AM 2 .AN 2 = AM 2 .AD 2 + AD 2 .AN 2 Chia hai v cho AMế 2 .AN 2 .AD 2 => 2 2 2 1 1 1 AD AN AM = + Bài 5. i u ki n t n t i x khi PT: xĐ ề ệ ồ ạ 2 + 2(y – 4)x + 2y 2 - 6y = 0 có nghi m ệ => (y – 4) 2 – 2y 2 + 6y 0 ≥ ⇔ y 2 + 2y – 17 0 ≤ ⇔ (y+1) 2 ≤ 17 . T dó +> d uừ ấ b ng x y ra tìm y thay vào ph ng trình tìm x ằ ẩ ươ ĐỀ THI TUYỂN SINH VÀO LỚP 10 NĂM HỌC 2010 – 2011 TỈNH KIÊN GIANG Thời gian: 120 phút ; Ngày thi: 15/07/2010 Câu 1: (2 điềm) a) Thực hiện phép tính: 12 27 75A = + − b) Rút gọn biểu thức: 2 2 1 1 x y P x y x y x y − = − ÷ ÷ ÷ + + − Với x > 0 ; y > 0 ; x y ≠ Câu 2: (1 điểm) a) Vẽ đồ thị hàm số y = 2x + 4 (d) b) Gọi giao điểm của (d) với trục tung là A, với trục hoành là B. Tính số đo góc ABO chính xác đến độ. Câu 3: (1,5 điểm) Cho hệ phương trình 2 24 (1 ) 9 mx my m x y + = − − + = − a) Giải hệ phương trình với m = 3 b) Tìm m để hệ phương trình có nghiệm duy nhất. Câu 4: (2 điểm) a) Cho phương trình 2x 2 + 5x – 1 =0 có 2 nghiệm x 1 , x 2 . Không giải phương trình. Hãy tính giá trị : X = x 1 2 – x 1 .x 2 + x 2 2 b) Đường bộ từ A đến B là 240 km. Hai người đi cùng lúc từ A đến B, một người đi xe máy, một người đi ô tô. Người đi ô tô đến B sớm hơn người đi xe máy là 2 giờ. Biết mỗi giờ, ô tô đi nhanh hơn xe máy là 20 km. Tìm vận tốc xe máy và vận tốc ô tô. Câu 5: (2,5 điểm) Cho đường tròn tâm O, từ điểm M ở bên ngoài đường tròn kẻ hai tiếp tuyến MA, MB của đường tròn (A, B là hai tiếp điểm và A khác B). Vẽ cát tuyến MCD của đường tròn (C nằm giữa M và D) a) Chứng minh tứ giác MAOB nội tiếp được đường tròn b) Chứng minh MA 2 = MC.MD c) Giả sử bán kính đường tròn tâm O là 6cm, OM = 10 cm, CD = 3,6 cm. Tính MD. Câu 6: (1 điểm) Cho tam giác ABC vuông tại B, góc ACB bằng 30 0 , AC = 2 cm. Tính thể tích hình nón tạo thành khi quay tam giác ABC quanh AB. HẾT GV sưu tầm và giải: Lê Trọng Hiếu Trường THCS Lê Quý Đôn Tp Rạch Giá – Kiên Giang LỜI GIẢI Câu 1: (2 điềm) a) Thực hiện phép tính: 12 27 75A = + − 2 3 3 3 5 3 0= + − = b) Rút gọn biểu thức: 2 2 1 1 x y P x y x y x y − = − ÷ ÷ ÷ + + − Với x > 0 ; y > 0 ; x y ≠ ( ) ( ) ( ) ( ) 2 2 1 x y x y x y x y P x y x y x y y x y y x y + − − − − = × + + − − − = × = − − Câu 2: (1 điểm) a) Vẽ đồ thị hàm số y = 2x + 4 (d) b) Gọi giao điểm của (d) với trục tung là A, với trục hoành là B. Tính số đo góc ABO chính xác đến độ. a/ (d) là đường thẳng đi qua (0;4) và (-2; 0) b/ Theo giả thiết A(0;4) và B(-2; 0) góc ABO chính là góc tạo bởi (d) với trục Ox hệ số góc của (d): a = 2 > 0 nên tg · · 0 2 63ABO ABO= ⇒ ≈ (hoặc dựa vào đồ thị xét tam giác OAB) 4 2 -2 -4 -5 5 y f x ( ) = 2 ⋅ x+4 B A x Câu 3: (1,5 điểm) Cho hệ phương trình 2 24 (1 ) 9 mx my m x y + = − − + = − a) với m = 3 thì hệ sẽ là 3 6 24 2 2 9 5 x y x x y y + = − = ⇔ − + = − = − b) để hệ phương trình có nghiệm duy nhất thì ' ' a b a b ≠ ( ) ( ) ( ) 2 2 1 1 1 2 1 0 1 1 2 0 0 2 m m m m m m m m m m m m va m ⇔ ≠ ⇔ ≠ − − ⇔ − − ≠ ⇔ − ≠ ⇔ ≠ ≠ (có thể lí luận khác) Câu 4: (2 điểm) a) Từ phương trình 2x 2 + 5x – 1 = 0 có 2 nghiệm, theo Vi-ét ta có x 1 + x 2 = 5 2 − ; x 1 . x 2 = 1 2 − . X = x 1 2 – x 1 .x 2 + x 2 2 = (x 1 + x 2 ) 2 – 3x 1 .x 2 = 2 5 1 31 3. 2 2 4 − − − = ÷ b) Gọi vận tốc của xe máy là x (km/h) với x > 0 thì vận tốc của ô tô là x + 20 (km/h) Thời gian xe máy đi hết quãng đường AB: 240 x (h) Thời gian ô tô đi hết quãng đường AB: 240 20x + (h) Ta có PT: 240 x - 240 20x + = 2 2 20 2400 0x x⇔ + − = Giải từng bước tìm được 1 2 40; 60 ( )x x loai= = − Trả lời: vận tốc của xe máy là 40 km/h, vận tốc của ô tô là 40 + 20 = 60 km/h Câu 5: (2,5 điểm) a) Chứng minh tứ giác MAOB nội tiếp được đường tròn · · 0 90MAO MBO= = (tính chất tiếp tuyến) ⇒ · · 0 0 0 90 90 180MAO MBO+ = + = ⇒ MAOB nội tiếp được đường tròn b) Chứng minh MA 2 = MC.MD Xét MAD∆ và MAC∆ có · AMD chung · · MDA MAC= (cùng chắn cung AC của (O)) MDA MAC⇒ ∆ ∆: (g – g) 2 . MD MA MA MC MA MC MD ⇒ = ⇒ = c) Giả sử bán kính đường tròn tâm O là 6cm, OM = 10 cm, CD = 3,6 cm. Tính MD. Xét µ 0 ( 90 )MAO A∆ = theo Py-Ta-Go ta có: MA 2 = MO 2 – OA 2 = 10 2 – 6 2 = 64 C M O A B D Đặt MD = x, với x > 0. Từ 2 .MA MC MD= suy ra: (x – CD).x = MA 2 x 2 – 3,6x – 64 = 0 Giải phương trình tìm được x = 10 , x = -6,4 (loại) Vậy MD = 10 cm Câu 6: (1 điểm) Cho tam giác ABC vuông tại B, góc ACB bằng 30 0 , AC = 2 cm. Tính thể tích hình nón tạo thành khi quay tam giác ABC quanh AB. Khi quay tam giác ABC vuông tại B một vòng quanh cạnh AB cố định ta được hình nón có đỉnh là A, bán kính đáy là BC, chiều cao là AB. Xét tam giác ABC vuông tại B ta có: AB = AC.sin 30 0 = 1 2 1 2 × = BC = AC.cos 30 0 = 3 2 3 2 × = ( ) 2 2 3 1 1 . 3 .1 ( ) 3 3 V r h cm π π π = = = GV: Lê Trọng Hiếu – THCS Lê Quý Đôn Rạch Giá SỞ GIÁO DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH VÀO LỚP 10 THPT TỈNH BÀ RỊA – VŨNG TÀU Năm học 2010 – 2011 ĐỀ CHÍNH THỨC Môn thi: TOÁN Ngày thi 02 tháng 07 năm 2010 Thời gian làm bài thi: 120 phút Câu I: ( 3 điểm) 1) Giải phương trình : 2x 2 + 3x – 5 =0 2) Giải hệ phương trình: 2x y 3 3x y 7 − = + = 3) Rút gọn: M = 1 22 32 2 50 2 11 − + Câu II: ( 1,5 điểm) Cho phương trình x 2 – mx – 2 =0 1) Chứng minh phương trình có hai nghiệm phân biệt với mọi giá trị của m. 2) Gọi x 1 ; x 2 là nghiệm của phương trình. Tìm các giá trị của m sao cho x 1 2 +x 2 2 – 3x 1 x 2 =14 Câu III: ( 1,5 điểm) Một ca nô chạy với vận tốc không đổi trên một khúc song dài 30 km, cả đi và về hết 4 giờ. Tính vận tốc của ca nô khi nước yên lặng, biết vận tốc của dòng nước là 4 km/h. Câu VI: ( 3,5 điểm) Cho tam giác ABC vuông tại A ( AB>AC) Trên cạnh AC lấy điểm M (khác A và C). Đường tròn đường kính MC cắt BC tại E và cắt đường thẳng BM tại D ( E khác C ; D khác M). C B A 1) Chứng minh tứ giác ABCD nội tiếp. 2) Chứng minh · · ABD MED= 3) Đường thẳng AD cắt đường tròn đường kính MC tại N ( N khác D). Đường thẳng MD cắt CN tại K, MN cắt CD tại H. Chứng minh KH song song với NE. Câu V: ( 0,5 điểm) Tìm giá trị nhỏ nhất của : y= x 3 x 1 1 ;(x 1) x 4 x 1 2 + − + ≥ + − + HẾT HƯỚNG DẪN CHẤM ĐỀ THI CHÍNH THỨC Câu I ( 3 điểm) 1/ Giải phương trình : 2x 2 + 3x – 5 =0 C1: pt có dạng a+b+c= 2+3 – 5 = 0 0,5 đ Nên ptcó 2 nghiệm x 1 = 1; x 2 = c 5 a 2 − = 0,25đ +0,25 đ C2: 2 b 4ac 9 40 49 7= − = + = ⇒ =V V 0,25 +0,25 Nên ptcó 2 nghiệm x 1 = 1; x 2 = c 5 a 2 − = 0,25 +0,25 Ghi chú : nếu chỉ ghi đúng nghiệm mà không giải thích gì cho 0,5 điểm. 2/Giải hệ phương trình: 2x y 3 3x y 7 − = + = 5x 10 x 2 x 2 3x y 7 6 y 7 y 1 = = = ⇔ ⇔ ⇔ + = + = = 0,25+0,25+0,25 Trả lời 0,25 Ghi chú : nếu chỉ ghi đúng nghiệm mà không giải thích gì cho 0,5 điểm. 3/ M = 1 22 32 2 50 2 11 − + = 2 2 10 2 2− + 0,25 + 0,25 + 0,25 7 2= − 0,25 Câu II: ( 1,5 điểm) Cho phương trình x 2 – mx – 2 =0 1/ C1: ta có a.c = 1.(-2) = -2 <0 0,5 Vậy phương trình luôn có hai nghiệm phân biệt với mọi m 0,25 C2: 2 m 8 0 m= + > ∀V 0,25 +0,25 Vậy phương trình luôn có hai nghiệm phân biệt với mọi m 0,25 2/ Vì phương trình luôn có hai nghiệm phân biệt nên theo định lí Vi – ét ta có: x 1 +x 2 = m ; x 1 .x 2 = - 2 0,25 x 1 2 +x 2 2 – 3x 1 x 2 =14 2 2 1 2 1 2 (x x ) 5x x 14 m 10 14⇔ + − = ⇔ + = 0,25 ⇔ m= 2± 0,25 Câu III: ( 1,5 điểm) Gọi x( km/h) là vận tốc của canô trong nước yên lặng ( đ k x>4) 0,25 Vận tốc ca nô xuôi dàng là x+4 ( km/h) và vận tốc canô khi ngược dòng là x – 4 ( km/h) 0,25 Thời gian ca nô xuôi dòng là 30 x 4+ (h) và thời gian ca nô ngược dòng là 30 x 4− (h) 0,25 Theo đề bài ta có pt: 30 30 4 x 4 x 4 + = + − 0,25 ⇔ x 2 – 15 x – 16 =0 0,25 Pt có 2 nghiệm x 1 = -1 ( loại) x 2 = 16 ( nhận) và trả lời 0,25 Câu VI: ( 3,5 điểm) Hình vẽ : 0,5 đ Nếu vẽ đúng tam giác vuông ABC ( AB>AC) và đường tròn đường kính MC 0,25 Vẽ đúng phần còn lại 0,25 B C A M O E D N K H 1\ Chứng minh tứ giác ABCD nội tiếp. Ta có · 0 BAC 90 (gt)= 0.25 · 0 MDC 90= ( góc nội tiếp chắn nửa đường tròn đk MC) 0.25 Hay · 0 BDC 90= ( B,M,D thẳng hàng) 0.25 Suy ra tứ giác ABCD nội tiếp đường tròn đường kính BC. 0.25 2\ Chứng minh · · ABD MED= Ta có: · · ABD ACD= ( hai góc nội tiếp cùng chắn cung AD của đường tròn đkính BC) 0.25 Mà · · MCD MED= ( hai góc nội tiếp cùng chắn cung MD của đường tròn đkính MC) 0.25 Hay · · ACD MED= ( vì A; M; C thẳng hàng) 0,25 Suy ra · · ABD MED= 0,25 3/ Chứng minh KH//EN Trong tam giác MKC có MN KC;CD MK⊥ ⊥ suy ra H là trực tâm của tam giac MKC KH MC ⇒ ⊥ hay KH AC ⊥ 0.25 KH / /AB⇒ ( cùng vuông góc AC) (1) Ta có · · CEN CDN= ( hai góc nội tiếp cùng chắn cung CN của đường tròn đk MC) 0.25 Mà · · CDN CBA= ( cùng bù với góc ADC) 0.25 · · CEN CBA⇒ = EN / /BA ⇒ ( 2 góc đồng vị) (2) Từ (1) và (2) Suy ra KH//EN 0.25 Câu V: ( 0,5 điểm) Tìm giá trị nhỏ nhất của : y= ( ) ( ) 2 2 x 1 3 x 1 2 x 3 x 1 1 ( x 1 1)( x 1 2) y x 4 x 1 2 ( x 1 1)( x 1 3) x 1 4 x 1 3 x 1 2 1 1 x 1 3 x 1 3 − + − + + − + − + − + = = = + − + − + − + − + − + − + = = − − + − + 0.25 min 1 1 x 1 0 x 1 x 1 3 3 3 x 1 3 1 2 2 y 1 y khi x=1 3 3 3 + + = = 0.25 Môn thi : Toán Thời gian làm bài 120 phút (Không kể thời gian giao đề) Chú ý: Đề thi gồm có 2 trang. Học sinh làm bài vào tờ giấy thi Phần I: Trắc nghiệm (2 điểm) Câu 1. Căn bậc hai số học của 5 là A. 5 B. 5 C. 5 D. 25 Câu 2: Hàm số nào sau đây là hàm số bậc nhất? Câu 3 : Đờng thẳng nào sau đây song song với đờng thẳng y = 2x 3? Câu 4: Nếu phơng trình x 2 - ax + 1 = 0 có nghiệm thì tích hai nghiệm số là Câu 5: Đờng tròn là hình Câu 6: Trong hình 1, tam giác ABC vuông tại A, AH BC. Độ dài của đoạn thẳng AH bằng Hình 1 9 4 H C B A Hình 2 O M N B A 70 0 Câu 7: Trong hình 2 biết AB là đờng kính của đờng tròn (O), góc AMN = 70 0 . Số đo góc BAN là Câu 8: Cho hình chữ nhật ABCD có AB = 3cm , CB = 4cm. Quay hình chữ nhật đó một vòng quanh cạnh AB đợc một hình trụ. Thể tích hình trụ đó là Phần 2 : Tự Luận( 8 điểm) Bài 1 (1,5 điểm): Cho biểu thức ( ) M 8 4 2 40 2= + và 5 2 N 5 2 = + 1.Rút gọn biểu thức M và N. 2.Tính M + N. Bài 2 (2,0 điểm): A. y 3x 3= B. y 3x 3= C. y = -3 D. 1 y x 3 3 = A. y = 3 x - 3 B. 1 y x 1 2 = + C. y = -2 (1 - x) D. y = 2 (1 - x) A. 1 B. a C. -1 D. -a A.Không có trục đối xứng B. có một trục đối C.có hai trục đối xứng D. có vô số trục đối xứng A. 6,5 B. 6 C. 5 D. 4,5 A. 20 0 B. 30 0 C. 40 0 D. 25 0 A. 48cm 3 B. 36cm 3 B. 36 cm 3 A. 48 cm 3 [...]... được x = y = - 1 2 x=y= SỞ GIÁO DỤC ĐÀO TẠO BÌNH ĐỊNH Đề chính thức Bài 1: (1,5 điểm) Giải các phương trình sau: a) 3(x – 1) = 2+x 1 2 KỲ THI TUYỂN SINH VÀO LỚP 10 THPT KHĨA NGÀY : 30 - 6 - 2010 Mơn thi: TỐN Thời gian: 120 phút ( khơng kể thời gian phát đề) Ngày thi: 01/7/2010 b) x2 + 5x – 6 = 0 Bài 2: (2,0 điểm) a) Cho phương trình x2 – x + 1 – m ( m là tham số ) Tìm điều kiện của... nội tiếp đường tròn 2 Chứng minh tam giác DEI là tam giác cân 3 Gọi F là tâm đường tròn ngoại tiếp tam giác ICD Chứng minh góc ABF có số đo khơng đổi khi D thay đổi trên cung BC (D khác B và C) - Hết Họ và tên thí sinh:………………………………………Số báo danh:………………… SỞ GD&ĐT NGHỆ AN KÌ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2010 - 2011 HƯỚNG DẪN VÀ BIỂU ĐIỂM CHẤM ĐỀ THI CHÍNH THỨC (Hướng dẫn và biểu điểm chấm... 2 x + y2 §¸p ¸n- biĨu ®iĨm Bµi 3: H×nh vÏ: 0,5 ® C©u 3: 0,75 ® C©u 1: 0,75® C©u 4: 0,75 ® C©u 2: 1 ® Bµi 4: Tõ gi¶ thi t suy ra x ≠ 0 1 NÕu y = 0 th× P = 0 2 NÕu y ≠ 0 th× P ≠ 0 • NÕu x, y tr¸i dÊu th× P < 0 • NÕu x, y cïng dÊu TH1: x < 0, y < 0 th× xy + 1 > 0 nªn x < xy +1 Tr¸i víi gi¶ thi t x ≥ xy +1 1 y y 1 TH2: x > 0, y > 0 Tõ x ≥ xy +1 suy ra 1 ≥ y + ≥ 2 ⇔ ≤ x x x 4 y 1 3t §Ỉt t = 0 < t ≤... nghiệm nên có ∆ = b2 - 4ac < 0(do a>0 ;b>0 nên c>0) ⇒ b2 < 4ac ⇔ 2bc - c2 < 4ac ⇔ 4a > 2b-c ⇔ a+b+c > 3b - 3a ⇔ SỞ GD&ĐT NGHỆ AN a+b+c > 3 (Đpcm) b−a KỲ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2010 – 2011 Đề chính thức Câu I (3 điểm) Cho biểu thức A = Mơn thi: TỐN Thời gian làm bài: 120 phút x 2 2 − − x −1 x +1 x −1 1 Nêu điều kiện xác định và rút gọn biểu thức A 2 Tính giá trị của biểu thức A khi x =... ( ) ( ) 12 17 12 12 VËy gi¸ trÞ lín nhÊt cđa P = 17 17 1 1 §¹t ®ỵc khi chØ khi t = ⇔ ( x;y ) = 2; ÷ 4 2 KÕt hỵp l¹i ta ®ỵc P ≤ së gi¸o dơc vµ ®µo t¹o K× THI TUN SINH vµo líp 10 THPT L¹ng s¬n N¨M häc 2010 - 2011 ®Ị chÝnh thøc M¤N THI: TỐN Thời gian làm bài 120 phút, khơng kể thời gian giao đề Câu 1 ( 3,0 điểm ) a) Giải phương trình: x2 - 2x - 1 = 0 5 x − 2 y = 8 b) Giải hệ phương trình: ... ABD = 90° , do đó IDB = 90° · vì CH ⊥ AB nên IHB = 90° · · suy ra IDB + IHB = 180° Vậy tứ giác HBDI nội tiếp đường tròn 2 · · EDA = DBA (1,25đ) 1 » = sd AD ÷ 2 · · · DEI = DBA ( cùng bù DIH ) · · Do đó EDI = DIE hay ∆DEI là tam giác cân 0,25 0,25 0,25 0,25 0,50 0,50 0,25 E C 3 (0,75đ) F D I O A H B ( lưu ý : Khơng u cầu thí sinh vẽ hình này ) Do F là tâm đường tròn ngoại tiếp tam giác ICD... Khi a ≠ ± b thì p/t cho có ∆ = a6b4 (b-a)2 ≥ 0 Vậy khi a ≠ ± b p/t cho ln có nghiệm (**) 0,5 Từ (*) và (**) => p/t cho ln có nghieemk với mọi a, b B.HƯỚNG DẪN CHẤM 1) Điểm bài thi đánh giá theo thang điểm từ 0 đến 10 Điểm bài thi là tổng các điểm thành phần và khơng làm tròn 2) Học sinh giải cách khác nếu đúng vẫn cho điểm tối đa phần đó 3 ) Đáp án và biểu điểm gồm 04 trang - ĐỀ... CBA = HCB 2 0,25 Vì D nằm trên cung BC nên tia CF trùng với tia CB cố định Vậy góc 0,25 0,25 ABF có số đo khơng đổi - Hết - UBND TỈNH ĐĂKLĂK SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC Bài 1: (2 điểm) KỲ THI TUYỂN SINH VÀO LỚP 10 PTTH Năm học : 2010 -2011 MƠN : TỐN Thời gian : 120 phút ( khơng kể thời gian phát đề) 1) Giải phương trình: 2 x 2 + 3 x = x 2 + 2 3 x 2) Xác định a và b để đồ thị hàm số y =... suy ra OH vng góc với PQ c) Chứng minh rằng MP + MQ = AH Câu 5 (1 điểm) Cho hai số thực dương x, y thỏa mãn 4xy = 1 Tìm giá trị nhỏ nhất của biểu thức: A = 2 x 2 + 2 y 2 + 12 xy x+ y Chú ý: Cán bộ coi thi khơng giải thích gì thêm Họ tên thí sinh…………………………………… SBD ………………………… ĐÁP ÁN Câu 1 ( 3,0 điểm ) a) x2 - 2x - 1 = 0 Δ’ = 12- (-1) =2 > 0 ∆’ = 2 Phương trình có hai nghiệm phân biệt: x1 = 1 + 2 x2 =... 4) = 0 ⇔ ⇔ y ( x − 4 − 2) 2 + x( y − 4 − 2) 2 = 0 ( V× x > 0 vµ y >0 ) x − 4 − 2 = 0 ⇔ x=8 y−4 −2=0 y=8 VËy cã duy nhÊt cỈp sè (x;y) = (8;8) tho¶ m·n ycbt UBND TỈNH QUẢNG NAM SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 PTTH Năm học : 2010 -2011 MƠN : TỐN Thời gian : 120 phút ( khơng kể thời gian phát đề) ĐỀ CHÍNH THỨC Bài 1: ( 2,0 điểm) Rút gọn các biểu thức sau: a) A = -+ c) C = , với x > 2 . báo danh: Sở giáo dục và đào tạo Hải Phòng Đề thi chính thức Đề thi tuyển lớp 10 THPT Năm học 2010-2011 Ngày thi : 23/ 6/ 2010 Sở gd đt hà tĩnh đề thi tuyển sinh lớp 10 thpt - năm học 2010 2011 Môn. DỤC VÀ ĐÀO TẠO KÌ THI TUYỂN SINH VÀO LỚP 10 THPT TỈNH BÀ RỊA – VŨNG TÀU Năm học 2010 – 2011 ĐỀ CHÍNH THỨC Môn thi: TOÁN Ngày thi 02 tháng 07 năm 2010 Thời gian làm bài thi: 120 phút Câu I:. = ữ sở giáo dục và đào tạo Kì THI TUYểN SINH vào lớp 10 THPT Lạng sơn NăM học 2010 - 2011 đề chính thức MÔN THI: TON Thi gian lm bi 120 phỳt, khụng k thi gian giao Cõu 1 ( 3,0 im ). a)