ĐỀ ƠN THI HỌC KỲ 2 NĂM HỌC 2010 – 2011 MƠN: TỐN 12 Thời gian: 120 phút(khơng kể thời gian phát đề) ĐỀ 1 Câu I: Tìm ngun hàm F(x) của hàm số f(x) = 2 1 1x x x + − , biết F(1) = 0. Câu II: a) Tính tích phân : I = 2 2 2 0 ( ). x x e xdx+ ∫ . b) Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x 3 – 4x và trục hồnh. c) Tính thể tích khối tròn xoay sinh bởi hình phẳng giới hạn bởi các đường y = x(1 – x 3 ) 5 , trục hồnh và đường thẳng x = 1 khi quay quanh Ox. Câu III: a) Giải phương trình: z 4 + (2 - 2 )z 2 - 2 2 = 0. b) Xác định tập hợp tất cả các điểm biểu diễn số phức z thỏa điều kiện 3 9z i− = . Câu IV: Trong khơng gian Oxyz, cho ba điểm A(1;0;-1), B(1;2;1), C(0;2;0). Gọi G là trọng tâm của tam giác ABC. a) Viết phương trình đường thẳng OG. b) Viết phương trình mặt cầu (S) đi qua bốn điểm O, A, B, C. c) Viết phương trình các mặt phẳng vng góc với đường thẳng OG và tiếp xúc với mặt cầu (S). ĐỀ 2 Câu I: Tìm ngun hàm F(x) của hàm số f(x) = 3 1 x e x − − , biết F(ln2) = 3 8 − . Câu II: a) Tính các tích phân sau: 1 2 0 1 3 I dx x = + ∫ 1 2011 2 1007 0 (1 ) x I dx x = + ∫ b) Tính diện tích hình phẳng giới hạn bởi các đường y = e 2x – 2, y = - e x , x = 1. c) Tính thể tìch các hình tròn xoay do các hình phẳng giới hạn bởi các đường y = cosx, y = 0, x = 0, x = 2 π khi quay quanh Ox. Câu III: a) Giải phương trình: 3z 2 +z +1 = 0. b) Cho số phức 1 3z i= + . Tính: 2 2 ( )z z+ . Câu IV: Trong khơng gian Oxyz, cho điểm M(-1;2;-3) và mặt phẳng ( ) : 2 2 5 0x y z α + − + = . a) Viết phương trình mặt phẳng (P) đi qua M và song song với ( ) α .Tính khoảng cách giữa hai mặt phẳng (P) và ( ) α . b) Viết phương trình tham số của đường thẳng đi qua M và vng góc với mặt phẳng ( ) α . c) Viết phương trình mặt cầu đi qua điểm A(0 ; 1 ; 1), có tâm thuộc đường thẳng d: 1 2 1 2 1 x y z− − = = − và tiếp xúc với mặt phẳng ( ) α . ĐỀ 3 Câu I: Tìm nguyên hàm F(x ) của hàm số 2 1 sin y x = , biết rằng đồ thị của hàm số F(x) đi qua điểm M( 6 π ; 0). Câu II: 1) Tính các tích phân sau: I = 2 1 2 3 0 ( ) x x e dx + ∫ J = 1 2 0 1 5 6 dx x x− + ∫ 2) Hình phẳng (H) giới hạn bởi đồ thị (C) của hàm số − = + x 1 y x 1 và hai trục tọa độ. a) Tính diện tích của miền (H). b) Tính thể tích khối tròn xoay sinh ra khi quay (H) quanh trục Ox. Câu III: a) Gọi x 1 , x 2 là 2 nghiệm phương trình 2 2 1 0x x− + = . Tính 3 3 1 2 x x+ b) Tìm môđun của số phức 3 1 4 (1 )z i i= + + − . Câu IV: Trong không gian Oxyz ,cho hai đường thẳng 1 1 2 : 2 2 1 x y z − − ∆ = = − − và 2 2 : 5 3 4 x t y t z = − ∆ = − + = a) Chứng minh rằng đường thẳng 1 ( )∆ và đường thẳng 2 ( )∆ chéo nhau. b) Viết phương trình mặt phẳng (P) chứa đường thẳng 1 ( )∆ và song song với đường thẳng 2 ( )∆ . c) Viết phương trình đường thẳng đi qua điểm M(2; 0; -1) vuông góc với 1 ∆ và cắt 2 ∆ . ĐỀ 4 Câu I: Tìm nguyên hàm F(x ) của hàm số y = 2 1 1 + − x x , biết rằng đồ thị của hàm số F(x) đi qua điểm M(3; -2). Câu II: a) Tính các tích phân sau: 3 0 sin .ln(cos ) π = ∫ I x x dx J = tan 4 2 0 cos π ∫ x e dx x b) Cho hàm số 2 2 1 − + = + x y x có đồ thị (C). Tính diện tích hình phẳng giới hạn bởi đồ thị (C), trục hoành và các đường thẳng x = 0 và x = 2. Câu III: a) Tìm cặp số thực x và y thỏa mãn : ( ) 2 2 4 2 2− − + − = − +x xi y x i y i . b) Tính giá trị của biểu thức: 2 5 3 3 1 2 3 + = ÷ ÷ − i P i Câu IV: Trong không gian Oxyz cho mặt phẳng (P) có phương trình 2 2 3 0+ − − =x y z ; đường thẳng (d) : 1 . 5 3 2 = + = − = − x t y t z t và điểm M(2;-1;3). a) Tìm điểm A thuộc đường thẳng (d) sao cho khoảng cách từ A mặt phẳng (P) bằng 1 b) Viết phương trình mặt phẳng (Q) chứa M và (d). c) Tìm tọa độ hình chiếu vuông góc của điểm M trên (P). d) Viết phương trình mặt cầu (S), biết rằng mặt cầu (S) có tâm M và mặt phẳng (P) cắt mặt cầu (S) theo một đường tròn (C) có bán kính bằng 4. . ĐỀ ƠN THI HỌC KỲ 2 NĂM HỌC 2010 – 2011 MƠN: TỐN 12 Thời gian: 120 phút(khơng kể thời gian phát đề) ĐỀ 1 Câu I: Tìm ngun hàm F(x) của hàm số f(x). xúc với mặt cầu (S). ĐỀ 2 Câu I: Tìm ngun hàm F(x) của hàm số f(x) = 3 1 x e x − − , biết F(ln2) = 3 8 − . Câu II: a) Tính các tích phân sau: 1 2 0 1 3 I dx x = + ∫ 1 2011 2 1007 0 (1 ) x I. đường thẳng 2 ( )∆ . c) Viết phương trình đường thẳng đi qua điểm M(2; 0; -1) vuông góc với 1 ∆ và cắt 2 ∆ . ĐỀ 4 Câu I: Tìm nguyên hàm F(x ) của hàm số y = 2 1 1 + − x x , biết rằng đồ thị