Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 24 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
24
Dung lượng
258,45 KB
Nội dung
Xuctu.com Đào Phú Hùng Trang 1 BÀI 1 Câu 1: Trong không gian Oxyz, viết phương trình mặt phẳng (P) chứa đường thẳng (d) : x y 2 0 2x z 6 0 − − = − − = sao cho giao tuyến của mặt phẳng (P) và mặt cầu (S) : 2 2 2 x y z 2x 2y 2z 1 0 + + + − + − = là đường tròn có bán kính r = 1. Câu 2: Cho lăng trụ ABC.A'B'C' có các mặt bên đều là hình vuông cạnh a. Gọi D, F lần lượt là trung điểm các cạnh BC, C'B'. Tính khoảng cách giữa hai đường thẳng A'B và B'C'. GIẢI Câu 1: Mặt phẳng (P) chứa (d) có dạng: m(x – y – 2) + n(2x – z – 6) = 0 (P): (m 2n)x my nz 2m 6n 0 ⇔ + − − − − = ° Mặt cầu (S) có tâm I(-1; 1; -1), bán kính R = 2. ° (P) cắt (S) theo một đường tròn giao tiếp (C) có bán kính r = 1 2 2 d(I; P) R r 3 ⇔ = − = 2 2 2 m 2n m n 2m 6n 3 (m 2n) m n − − − + − − ⇔ = + + + 2 2 4m 7n 3. 2m 5n 4m.n ⇔ − − = + + 2 2 5m 22m.n 17n 0 ⇔ + + = ° Cho 2 17 n 1 5m 22m 17 0 m 1 hay m 5 = ⇒ + + = ⇔ = − = − ° Vậy, có 2 mặt phẳng (P): 1 2 (P ) : x y z 4 0 (P ): 7x 17y 5z 4 0 + − − = − + − = Câu 2: . Cách 1 : ° Vì các mặt bên của lăng trụ là các hình vuông ⇒ / / / / / / AB BC CA A B B C C A a = = = = = = ⇒ các tam giác ABC, A / B / C / là các tam giác đều. ° Ta có: / / / / / B C // BC B C //(A BC) ⇒ / / / / / / / d(A B; B C ) d(B C ; (A BC)) d(F; (A BC)) ⇒ = = ° Ta có: / / / / BC FD BC (A BC) BC A D ( A BC cân tại A ) ⊥ ⇒ ⊥ ⊥ ∆ ° Dựng / FH A D ⊥ ° Vì / / BC (A BC) BC FH H (A BC) ⊥ ⇒ ⊥ ⇒ ⊥ ° ∆A / FD vuông có: 2 / 2 2 2 2 2 1 1 1 4 1 7 a 21 FH . 7 FH A F FD 3a a 3a = + = + = ⇒ = A / B / C / C B A H F D Xuctu.com Đào Phú Hùng Trang 2 ° Vậy, / / / a 21 d(A B; B C ) FH 7 = = Cách 2 : ° Vì các mặt bên của lăng trụ là các hình vuông ⇒ ∆ABC, ∆A / B / C / là các tam giác đều cạnh a. ° Dựng hệ trục Axyz, với Ax, Ay, Az đôi một vuông góc, A(0; 0; 0), / / / a a 3 a a 3 B ; ; 0 , C ; ; 0 , A (0; 0; a), 2 2 2 2 a a 3 a a 3 B ; ; a , C ; ; a 2 2 2 2 − − ° Ta có: / / / / / B C // BC, B C //(A BC) / / / / / / / / d(B C ; A B) d(B C ; (A BC)) d(B ; (A BC)) ⇒ = = ° / / a a 3 a a 3 A B ; ; a , A C ; ; a 2 2 2 2 = − = − − ° 2 / / 2 2 2 a 3 3 [A B; A C] 0; a ; a 0; 1; a .n, 2 2 = = = với 3 n 0;1; 2 = ° Phương trình mp (A / BC) qua A / với pháp vectơ n : 3 0(x 0) 1(y 0) (z a) 0 2 − + − + − = / 3 a 3 (A BC): y z 0 2 2 ⇔ + − = ° / / a 3 3 a 3 a 3 .a a 21 2 2 2 2 d(B (A BC)) . 7 3 7 1 4 2 + − = = = + ° Vậy, / / / a 21 d(A B; B C ) . 7 = BÀI 2 Câu 1: Trong không gian Oxyz cho A(0; 1; 0), B(2; 2; 2), C(-2; 3; 1) và đường thẳng (∆) : x 1 y 2 z 3 2 1 2 − + − = = − 1. Tìm điểm M thuộc (∆) để thể tích tứ diện MABC bằng 3. 2. Tìm điểm N thuộc (∆) để thể tích tam giác ABN nhỏ nhất. A / C / B / A B C D x a z y Xuctu.com Đào Phú Hùng Trang 3 Câu 2: (1,0 điểm) Cho hình chóp S.ABC đáy ABC là tam giác đều cạnh a. SA = SB = SC, khoảng cách từ S đến mặt phẳng (ABC) là h. Tính h theo a để hai mặt phẳng (SAB) và (SAC) vuông góc nhau. GIẢI Câu 1: 1. Phương trình tham số của (D): x 1 2t y 2 t z 3 2t = + = − − = + ° M ( ) M(1 2t; 2 t; 3 2t) ∈ ∆ ⇒ + − − + ° AB (2;1; 2), AC ( 2; 2;1) = = − ° [AB; AC] ( 3; 6; 6) 3(1; 2; 2) 3.n = − − = − − = − , với n (1; 2; 2) = − ° Phương trình mp (ABC) qua A với pháp vectơ n : (ABC): x + 2y – 2z – 2 = 0. ° 2 2 2 ABC 1 1 9 S [AB; AC] ( 3) ( 6) 6 . 2 2 2 = = − + − + = ° Đường cao MH của tứ diện MABC là khoảng từ M đến (ABC): 1 2t 2( 2 t) 2(3 2t) 2 4t 11 MH d(M(ABC)) 3 1 4 4 + + − − − + − − − = = = + + ° Thể tích tứ diện MABC bằng 3 4t 11 1 9 V . . 3 3 2 3 + ⇔ = = 5 17 4t 11 6 t hay t . 4 4 ⇔ + = ⇔ = − = − ° Vậy, có 2 điểm M cần tìm là: 3 3 1 15 9 11 M ; ; hay M ; ; 2 4 2 2 4 2 − − − 2. N ( ) N(1 2t; 2 t; 3 2t) ∈ ∆ ⇒ + − − + ° 2 2 ABN 1 1 2 3 2 S [NA; NB] 32t 128t 146 (4t 8) 9 2 2 2 2 = = + + = + + ≥ ABN 3 2 maxS 4t 8 0 t 2. 2 ⇒ = ⇔ + = ⇔ = − ° Vậy, điểm N cần tìm là N(-3; 0; 1). Câu 2: Cách 1 : ° Gọi O là tâm của ∆ABC ° Ta có: SA SB SC OA OB OC ( ABC đều) = = = = ∆ ⇒ SO là trục của đường tròn (ABC) SO (ABC) ⇒ ⊥ ° Mà : AO BC; SO BC BC (SOA) BC SA ⊥ ⊥ ⇒ ⊥ ⇒ ⊥ S I A O B M C Xuctu.com Đào Phú Hùng Trang 4 ° Dựng BI SA ⊥ , suy ra: SA (IBC) SA IC. ⊥ ⇒ ⊥ BIC ⇒ là góc phẳng nhò diện (B, SA, C). ° ∆SOA vuông có: 2 2 2 2 2 2 2 2 2 a 3h a 3h a SA SO OA h SA 3 3 3 + + = + = + = ⇒ = ° Gọi M là trung điểm BC Ta có: BM (SOA), BI SA ⊥ ⊥ IM SA ⇒ ⊥ (đònh lý 3 đường vuông góc) ⇒ MIA SOA ∆ ∆ ∼ 2 2 2 2 AM a 3 3 3ah MI SO. h. . SA 2 3h a 2 3h a ⇒ = = = + + ° SAB SAC (c.c.c) IB IC IBC ∆ = ∆ ⇒ = ⇒ ∆ cân tại I. ° (SAB) (SAC) IBC ⊥ ⇔ ∆ vuông cân tại I 1 IM BC 2 ⇔ = 2 2 2 2 2 2 2 3ah 1 a 3h 3h a 2 2 3h a a 6 9h 3h a h . 6 ⇔ = ⇔ = + + ⇔ = + ⇔ = ° Vậy, a 6 h . 6 = Cách 2 : ° Gọi H là tâm của ∆ABC và M là trung điểm của BC ° Ta có: SA SB SC HA HB HC ( ABC đều) = = = = ∆ ° Dựng hệ trục tọa độ Axyz, với Ax, Ay, Az đôi một vuông góc A(0; 0; 0), a a 3 a a 3 a 3 a 3 B ; ; 0 , C ; ; 0 , H 0; ; 0 , S 0; ; h 2 2 2 2 2 3 − . ° a 3 a a 3 a a 3 SA 0; ; h , SB ; ; h , SC ; ; h 3 2 6 2 6 = = − = − − ° 2 1 ah 3 ah a 3 a a [SA; SB] ; ; (3h 3; 3h; a 3) .n , 2 2 6 6 6 = − − = − − = − với 1 n (3h 3; 3h; a 3) = − ° 2 2 ah 3 ah a 3 a a [SA; SC] ; ; (3h 3; 3h; a 3) .n , 2 2 6 6 6 = − − = − − = − với 2 n (3h 3; 3h; a 3) = − . ° Mặt phẳng (SAB) có cặp vectơ chỉ phương SA; SB nên có pháp vectơ 1 n . S z A z H B M y C Xuctu.com Đào Phú Hùng Trang 5 ° Mặt phẳng (SAC) có cặp vectơ chỉ phương SA; SC nên có pháp vectơ 2 n . ° 1 2 (SAB) (SAC) cos(n ; n ) 0 ⊥ ⇔ = 2 2 2 2 2 3h 3.3h 3 3h.3h a 3( a 3) 0 27h 9h 3a 0 a 6 18h 3a h . 6 ⇔ − + − = ⇔ − − = ⇔ = ⇔ = ° Vậy: a 6 h . 6 = BÀI 3 Câu 1: Trong không gian Oxyz cho đường thẳng (d) và mặt cầu (S): 2 2 2 2x 2y z 1 0 (d) : ; (S):x y z 4x 6y m 0 x 2y 2z 4 0 − − + = + + + − + = + − − = Tìm m để (d) cắt (S) tại hai điểm M, N sao cho MN = 8. Câu 2: Cho tứ diện OABC có đáy là ∆OBC vuông tại O, OB = a, OC = a 3, (a 0) > và đường cao OA a 3 = . Gọi M là trung điểm cạnh BC. Tính khoảng cách giữa hai đường thẳng AB và OM. GIẢI Câu 1: Mặt cầu (S): 2 2 2 (x 2) (y 3) z 13 m − + − + = − có tâm I(-2; 3; 0), bán kính R IN 13 m = = − , với m < 13. ° Dựng IH MN MH HN 4 ⊥ ⇒ = = 2 2 IH IN HN 13 m 16 m 3 ⇒ = − = − − = − − , với m < -3. ° Phương trình tham số của đường thẳng (d): x t 1 y 1 t 2 z 1 t = = + = − + ° (d) có vectơ chỉ phương 1 1 u 1; ;1 (2;1; 2) 2 2 = = và đi qua điểm A(0; 1; -1) H N M I Xuctu.com Đào Phú Hùng Trang 6 ° AI ( 2; 2; 1); [AI; u] (3; 6; 6) = − = − ° Khoảng cách h từ I đến đường thẳng (d): 2 2 2 2 2 2 [AI; u] 3 6 6 81 h 3. u 9 2 1 2 + + = = = = + + ° Ta có: IH = h m 3 3 m 3 9 ⇔ − − = ⇔ − − = m 12 ⇔ = − (thỏa điều kiện) ° Vậy, giá trò cần tìm: m = -12. Câu 2: Cách 1 : ° Gọi N là điểm đối xứng của C qua O. ° Ta có: OM // BN (tính chất đường trung bình) ⇒ OM // (ABN) ⇒ d(OM; AB) = d(OM; (ABN)) = d(O; (ABN)). ° Dựng OK BN, OH AK (K BN; H AK) ⊥ ⊥ ∈ ∈ ° Ta có: AO (OBC); OK BN AK BN ⊥ ⊥ ⇒ ⊥ BN OK; BN AK BN (AOK) BN OH ⊥ ⊥ ⇒ ⊥ ⇒ ⊥ OH AK; OH BN OH (ABN) d(O; (ABN) OH ⊥ ⊥ ⇒ ⊥ ⇒ = ° Từ các tam giác vuông OAK; ONB có: 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 5 a 15 OH 5 OH OA OK OA OB ON 3a a 3a 3a = + = + + = + + = ⇒ = ° Vậy, a 15 d(OM; AB) OH . 5 = = Cách 2 : ° Dựng hệ trục Oxyz, với Ox, Oy, Oz đôi một vuông góc O(0; 0; 0), A(0; 0; a 3); B(a; 0; 0), C(0; a 3; 0), a a 3 M ; ; 0 2 2 và a 3 a 3 N 0; ; 2 2 là trung điểm của AC. ° MN là đường trung bình của ∆ABC ⇒ AB // MN ⇒ AB // (OMN) ⇒ d(AB; OM) = d(AB; (OMN)) = d(B; (OMN)). ° a a 3 a 3 a 3 OM ; ; 0 , ON 0; ; 2 2 2 2 = = ° ( ) 2 2 2 2 2 3a a 3 a 3 a 3 a 3 [OM; ON] ; ; 3;1;1 n 4 4 4 4 4 = = = , với n ( 3;1;1) = z A a 3 a 3 y C N O M a x B Xuctu.com Đào Phú Hùng Trang 7 ° Phương trình mp (OMN) qua O với pháp vectơ n : 3x y z 0 + + = ° Ta có: 3.a 0 0 a 3 a 15 d(B; (OMN)) 5 3 1 1 5 + + = = = + + ° Vậy, a 15 d(AB; OM) . 5 = BÀI 4 Câu 1: Trong không gian Oxyz cho mặt phẳng (α) : 2x – y + z – 5 = 0. Viết phương trình mặt phẳng (P) qua giao tuyến của (α) và mặt phẳng (xOy) và (P) tạo với 3 mặt phẳng tọa độ một tứ diện có thể tích bằng 36 125 . Câu 2: Cho hình chóp SABC có đáy là tam giác ABC vuông cân tại A, AB = AC = a (a > 0), hình chiếu của S trên đáy trùng với trọng tâm G của ∆ABC. Đặt SG = x (x > 0). Xác đònh giá trò của x để góc phẳng nhò diện (B, SA, C) bằng 60 o . GIẢI Câu 1: Phương trình mặt phẳng (xOy): z = 0 ° Phương trình mặt phẳng (P) thuộc chùm xác đònh bởi (α) và (xOy) có dạng: m(2x – y + z – 5) – nz = 0 (P): 2mx my (m n)z 5m 0 ⇔ − + + − = ° Giao điểm A, B, C của (P) và 3 trục Ox, Oy, Oz lần lượt có tọa độ: 5 5m A ; 0; 0 , B(0; 5; 0), C 0; 0; 2 m n − + ° Thể tích tứ diện OABC bằng 125 36 1 1 5 5m 125 V .OA.OB.OC . .5. 6 6 2 m n 36 ⇔ = = = + m n 3m m 1, n 2 m n 3 m m n 3m m 1, n 4 + = = = ⇔ + = ⇔ ⇒ + = − = = − ° Vậy, có 2 phương trình mặt phẳng (P): 1 2 (P ) : 2x y 3z 5 0 (m 1; n 2) (P ): 2x y 3z 5 0 (m 1; n 4) − + − = = = − − − = = = − Câu 2: . Cách 1 : ° Gọi M là trung điểm của BC AM BC ⇒ ⊥ (∆ABC vuông cân) ° Ta có: SG (ABC) SG BC ⊥ ⇒ ⊥ . G M C S I A Xuctu.com Đào Phú Hùng Trang 8 Suy ra: BC (SAM) ⊥ ° Dựng BI SA IM SA ⊥ ⇒ ⊥ và IC SA ⊥ BIC ⇒ là góc phẳng nhò diện (B; SA; C). ° SAB SAC (c.c.c) ∆ = ∆ IB IC IBC ⇒ = ⇒ ∆ cân tại I. ° 1 a 2 a 2 BC a 2; AM BM MC BC ; AG 2 2 3 = = = = = = ° 2 2 2 2 AM a 2 1 ax 2 AIM ~ AGS IM SG. x. . AS 2 SG AG 2a 2 x 9 ∆ ∆ ⇒ = = = + + 2 2 3ax 2 IM 2 9x 2a ⇔ = + . ° Ta có: o BIC 60 = o o 2 2 a 2 3.3ax 2 BIM 30 BM IM.tg30 2 2 9x 2a ⇔ = ⇔ = ⇔ = + 2 2 2 2 2 2 2 2 2 9x 2a 3x 3 9x 2a 27x a 18x 2a 9x a x . 3 ⇔ + = ⇔ + = ⇔ = ⇔ = ⇔ = ° Vậy, a x . 3 = Cách 2 : ° BC a 2 = ° Gọi M là trung điểm BC a 2 a 2 AM ; AG 2 3 ⇒ = = ° Gọi E, F lần lượt là hình chiếu của G trên AB, AC. Tứ giác AEGF là hình vuông a AG AE 2 AE AF . 3 ⇒ = ⇒ = = ° Dựng hệ trục tọa độ Axyz, với Ax, Ay, Az đôi một vuông góc, A(0; 0; 0), B(a; 0; 0), C(0; a; 0), a a a a G ; ; 0 , S ; ; x 3 3 2 2 . ° a a 2a a a 2a SA ; ; x , SB ; ; x , SC ; ; x 3 3 3 3 3 3 = = − − = − − ° 2 1 a a [SA; SB] 0; ax; a 0; x; a.n 3 3 = − = − = , với 1 a n 0; x; 3 = − ° 2 2 a a [SA; SC] ( ax; 0; ) a x; 0; a.n , 3 3 = − = − − = − với 2 a n x; 0; 3 = − . ° Mặt phẳng (SAB) có cặp vectơ chỉ phương SA, SB nên có pháp vectơ 1 n z x x y C B A E F G M Xuctu.com Đào Phú Hùng Trang 9 ° Mặt phẳng (SAC) có cặp vectơ chỉ phương SA, SC nên có pháp vectơ 2 n ° Góc phẳng nhò diện (B; SA; C) bằng 60 o . 2 o 2 2 2 2 2 2 a a a 0.x x.0 3 3 9 cos60 9x a a a 0 x x 0 9 9 9 + + ⇔ = = + + + + + 2 2 2 1 a 2 9x a ⇔ = + 2 2 2 2 2 a 9x a 2a 9x a x . 3 ⇔ = = ⇔ = ⇔ = ° Vậy, a x . 3 = BÀI 5 Câu 1: Trong không gian Oxyz, tìm trên Ox điểm A cách đều đường thẳng (d) : 2 2 z 2 y 1 1 x + == − và mặt phẳng (α) : 2x – y – 2z = 0. Câu 2: Cho hình chóp SABC có đáy ABC là tam giác đều có cạnh bằng 2a 2 , SA vuông góc với (ABC) và SA = a. Gọi E, F lần lượt là trung điểm của cạnh AB, BC. Tính góc và khoảng cách giữa hai đường thẳng SE và AF. GIẢI Câu 1: Gọi A(a; 0; 0) Ox ∈ . ° Khoảng cách từ A đến mặt phẳng (α) : 2 2 2 2a 2a d(A; ) 3 2 1 2 α = = + + ° (∆) qua 0 M (1; 0; 2) − và có vectơ chỉ phương u (1; 2; 2) = ° Đặt 0 1 M M u = ° Do đó: d(A; ∆) là đường cao vẽ từ A trong tam giác 0 1 AM M 0 1 2 0 AM M 0 1 [AM ; u] 2.S 8a 24a 36 d(A; ) M M u 3 − + ⇒ ∆ = = = ° Theo giả thiết: d(A; α) = d(A; ∆) Xuctu.com Đào Phú Hùng Trang 10 2 2 2 2 2 2a 8a 24a 36 4a 8a 24a 36 4a 24a 36 0 3 3 4(a 3) 0 a 3. − + ⇔ = ⇔ = − + ⇔ − + = ⇔ − = ⇔ = ° Vậy, có một điểm A(3; 0; 0). Câu 2: Cách 1 : ° Gọi M là trung điểm của BF ⇒ EM // AF (SA; AF) (EM; AF) SEM ⇒ = = ° ∆SAE vuông tại A có: 2 2 2 2 2 SE SA AE a 2a 3a = + = + = SE a 3 ⇒ = ° 2a 2. 3 AF a 6 2 = = a 6 EM BM MF ; BF a 2 2 ⇒ = = = = ° 2 2 2 2 2 2 SB SA AB a 8a 9a SB 3a = + = + = ⇒ = ° 2 2 2 2 2 2 SF SA AF a 6a 7a SF a 7 = + = + = ⇒ = ° Áp dụng đònh lý đường trung tuyến SM trong ∆SBF có: 2 2 2 2 1 SB SF 2.SM BF 2 + = + 2 2 2 2 2 2 1 15a 9a 7a 2SM .2a SM 2 2 ⇔ + = + ⇔ = ° Gọi α là góc nhọn tạo bởi SE và AF ° Áp dụng đònh lý hàm Côsin vào ∆SEM có: 2 2 2 2 2 2 3a 15a 3a ES EM SM 2 2 2 2 cos cosSEM . 2.ES.EM 2 2 a 6 2. .a 3 2 + − + − α = = = = − = o 45 . ⇒ α = ° Dựng AK ME; AH SK. ⊥ ⊥ Ta có: a 2 AK MF 2 = = và AH (SME) ⊥ ° Vì AF// ME d(SE; AF) d(AF; (SME)) AH. ⇒ = = ° ∆SAK vuông có: 2 2 2 2 2 2 1 1 1 1 2 3 a 3 AH 3 AH SA AK a a a = + = + = ⇒ = ° Vậy, a 3 d(SE; AF) 3 = . Cách 2 : ° Dựng hệ trục Axyz, với Ax, Ay, Az đôi một vuông góc, A(0; 0; 0), z a S A x E B M F y C C S F M B E K H A [...]... 2a + a − 2a 1+ 4 +1 = 2a a 6 = 3 6 ð 9 Câu 1: Trong không gian Oxyz cho 2 đường thẳng: x = t x = t ' (d1) : y = 4 + t ; và (d2) : y = 3t ' − 6 z = 6 + 2 t z = t ' − 1 Gọi K là hình chiếu vuông góc của điểm I(1; -1; 1) trên (d2) Tìm phương trình tham số của đường thẳng qua K vuông góc với (d1) và cắt (d1) Câu 2: 1 Tính thể tích của hình chóp S.ABC, biết đáy ABC là một tam giác đều cạnh... = (−4 − 7t1; − 2 + 2t1; − 8 + 3t1 ) Trang 20 B ∆2 A u1 H ∆1 K A/ B/ ∆3 Xuctu.com ° Đào Phú Hùng AH ⊥ u1 ⇔ − 7(−4 − 7t1 ) + 2(−2 + 2t1 ) + 3(−8 + 3t1 ) = 0 ⇔ t1 = 0 ⇒ H(3; 1; 1) Gọi A/ là điểm đối xứng của A qua H ⇒ A/(-1; -1; -7) Gọi K là hình chiếu của B trên (∆1) và B/ là điểm đối xứng của B qua K Tương tự như trên ta tìm được: 105 204 114 25 22 / 20 K ; ; ;− ⇒ B − ; − 31 31 31 31... h= tgα 16 4 1 1 a 3 a 2 3 a3 Thể tích hình chóp S.ABC: V = h.SABC = tgα = tgα 3 3 4 4 16 ⇔ h2 = ° ð 10 Câu 1: Trong không gian Oxyz cho 2 đường thẳng: x − 3 y −1 z −1 x−7 y−3 z−9 (∆1) : = = ; (∆ 2 ): = = −7 2 3 1 2 −1 1 Lập phương trình chính tắc của đường thẳng (∆3) đối xứng với (∆2) qua (∆1) 2 Xét mặt phẳng (α) : x + y + z + 3 = 0 Viết phương trình hình chiếu của (∆2) theo phương (∆1) lên mặt phẳng... có: (α) ∩ (β) = (∆ 2 ) là hình chiếu của (∆2) lên (α) theo phương (∆1) x + y + z + 3 = 0 / Vậy, phương trình hình chiếu (∆ 2 ) : 2x + y + 4z − 53 = 0 3 Gọi I là trung điểm M1M2 ⇒ I(5; 2; 5) ° ° Ta có: MM1 + MM2 = 2MI ° ° ° ⇔ M là hình chiếu của I trên (α) Phương trình đường thẳng (∆) qua I α và vuông góc với (α) là: x = 5 + t y = 2 + t z = 5 + t Gọi M là giao điểm của (∆) và (α) M ∈ (∆ ) ⇒... khối hình chóp S.ABC và khoảng cách từ đỉnh A đến mặt phẳng (SBC) Câu 2: Trong không gian oxyz cho hai đường thẳng: x = 2 t x + y − 3 = 0 (d1) : y = t ; (d2) : 4x + 4y + 3z −12 = 0 z = 4 Chứng minh (d1) và (d2) chéo nhau Viết phương trình mặt cầu (S) có đường kính là đoạn vuông góc chung của (d1) và (d2) Trang 13 Xuctu.com Đào Phú Hùng GI I Câu 1: S Cách 1: ° ° Gọi H là trung điểm của BC... Trang 23 Filename: 20- cau-hoi-hay-ve-toa-do-khong -gian. doc Directory: D:\Vip Template: C:\Documents and Settings\Admin\Application Data\Microsoft\Templates\Normal.dot Title: Đề 1 Subject: Author: dph Keywords: Comments: Creation Date: 11/01 /200 9 7:11:00 CH Change Number: 5 Last Saved On: 11/01 /200 9 8:23:00 CH Last Saved By: Mr Hung Total Editing Time: 62 Minutes Last Printed On: 27/11 /201 4 10:47:00 SA... góc BAC = 120o , cạnh bên BB' = a Gọi I là trung điểm CC' Chứng minh ∆AB'I vuông tại A và tính cosin của góc giữa hai mặt phẳng (ABC) và (AB'I) GI I Câu 1: 1 ° ° ° ° x = 3 − 7t1 (∆1 ) : y = 1 + 2t1 có vectơ chỉ phương u1 = (−7; 2; 3) z = 1 + 3t 1 x = 7 + 7t 2 qua A (7; 3; 9), B(8; 5; 8) và (∆ 2 ) : y = 3 + 2t 2 có vectơ chỉ phương u2 = (1; 2; − 1) z = 9 − t 2 Gọi H là hình chiếu của A trên... trung điểm I của MN: I(2; 1; 2), bán kính R = Trang 15 Xuctu.com Đào Phú Hùng BÀI 8 Câu 1: Trong không gian Oxyz có 2 mặt phẳng (P): 3x + 12y – 3z – 5 = 0, (Q): 3x – 4y + 9z + 7 = 0 và 2 đường thẳng: (d1): x + 5 y − 3 z +1 = = ; 2 −4 3 (d 2 ) : x − 3 y +1 z − 2 = = −2 3 4 Viết phương trình đường thẳng (∆) song song với hai mặt phẳng (P) và (Q), và cắt hai đường thẳng (d1) và (d2) Câu 2: Cho hình lập phương... phương trình tham số của đường thẳng (∆): y = − − 30λ 11 7 z = − 7λ 11 Câu 2: Cách 1: ° ° Dựng SH ⊥ AB Ta có: (SAB) ⊥ (ABC), (SAB) ∩ (ABC) = AB, SH ⊂ (SAB) S ⇒ SH ⊥ (ABC) và SH là đường cao của hình chóp ° Dựng HN ⊥ BC, HP ⊥ AC B ⇒ SN ⊥ BC, SP ⊥ AC ⇒ SPH = SNH = α ° ° N H ∆SHN = ∆SHP ⇒ HN = HP ∆AHP vuông có: HP = HA.sin 60o = a 3 4 ϕ C P A a 3 tgα 4 1 1 a 3 a 2 3 a3 ° Thể tích hình chóp S.ABC... MC = CN = NA / ⇒ A / MCN là hình thoi ° D/ A/ B/ Hai hình chóp B/A/MCN và B/.A/NC có chung đường cao vẽ từ đỉnh B/ và SA / MCN = 2.SA/ NC D nên: VB/ A / MCN = 2.VB/ A/ NC ° ° A M 1 1 1 a3 a3 Mà: VB/ ANC = VC.A/ B/ N = CC/ SA/ B/ N = a .a.a = ⇒ VB/ A/ MCN = 3 3 2 6 3 1 Ta có: SA / MCN = A / C.MN, với A / C = a 3; MN = BC/ = a 2 2 a2 6 = 2 ⇒ SA/ MCN ° 1 Gọi H là hình chiếu của B/ trên (A/MCN), ta có: . 2: Cho hình chóp SABC có đáy là tam giác ABC vuông cân tại A, AB = AC = a (a > 0), hình chiếu của S trên đáy trùng với trọng tâm G của ∆ABC. Đặt SG = x (x > 0). Xác đònh giá trò của x. Trong không gian Oxyz cho 2 đường thẳng: (d 1 ) : += += = t26z t4y t x ; và (d 2 ) : −= −= = 1'tz 6't3y ' t x Gọi K là hình chiếu vuông góc của điểm. Trang 1 BÀI 1 Câu 1: Trong không gian Oxyz, viết phương trình mặt phẳng (P) chứa đường thẳng (d) : x y 2 0 2x z 6 0 − − = − − = sao cho giao tuyến của mặt phẳng (P) và mặt cầu (S)