1. Trang chủ
  2. » Giáo án - Bài giảng

11 de on +DA vao 10

26 175 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 26
Dung lượng 0,95 MB

Nội dung

S 1. Bài 1: 1) Cho đờng thẳng d xác định bởi y = 2x + 4. Đờng thẳng d / đối xứng với đờng thẳng d qua đờng thẳng y = x là: A.y = 2 1 x + 2 ; B.y = x - 2 ; C.y = 2 1 x - 2 ; D.y = - 2x - 4 Hãy chọn câu trả lời đúng. 2) Một hình trụ có chiều cao gấp đôi đờng kính đáy đựng đầy nớc, nhúng chìm vào bình một hình cầu khi lấy ra mực nớc trong bình còn lại 3 2 bình. Tỉ số giữa bán kính hình trụ và bán kính hình cầu là A.2 ; B. 3 2 ; C. 3 3 ; D. một kết quả khác. Bìa2: 1) Giải phơng trình: 2x 4 - 11 x 3 + 19x 2 - 11 x + 2 = 0 2) Cho x + y = 1 (x > 0; y > 0) Tìm giá trị lớn nhất của A = x + y Bài 3: 1) Tìm các số nguyên a, b, c sao cho đa thức : (x + a)(x - 4) - 7 Phân tích thành thừa số đợc : (x + b).(x + c) 2) Cho tam giác nhọn xây, B, C lần lợt là các điểm cố định trên tia Ax, Ay sao cho AB < AC, điểm M di động trong góc xAy sao cho MB MA = 2 1 Xác định vị trí điểm M để MB + 2 MC đạt giá trị nhỏ nhất. Bài 4: Cho đờng tròn tâm O đờng kính AB và CD vuông góc với nhau, lấy điểm I bất kỳ trên đoan CD. a) Tìm điểm M trên tia AD, điểm N trên tia AC sao cho I lag trung điểm của MN. b) Chứng minh tổng MA + NA không đổi. c) Chứng minh rằng đờng tròn ngoại tiếp tam giác AMN đi qua hai điểm cố định P N Bài 1: 1) Chọn C. Trả lời đúng. 2) Chọn D. Kết quả khác: Đáp số là: 1 Bài 2 : 1)A = (n + 1) 4 + n 4 + 1 = (n 2 + 2n + 1) 2 - n 2 + (n 4 + n 2 + 1) = (n 2 + 3n + 1)(n 2 + n + 1) + (n 2 + n + 1)(n 2 - n + 1) = (n 2 + n + 1)(2n 2 + 2n + 2) = 2(n 2 + n + 1) 2 Vậy A chia hết cho 1 số chính phơng khác 1 với mọi số nguyên dơng n. 2) Do A > 0 nên A lớn nhất A 2 lớn nhất. Xét A 2 = ( x + y ) 2 = x + y + 2 xy = 1 + 2 xy (1) Ta có: 2 yx + xy (Bất đẳng thức Cô si) => 1 > 2 xy (2) - 1 - M D C B A x K O N M I D C B A Từ (1) và (2) suy ra: A 2 = 1 + 2 xy < 1 + 2 = 2 Max A 2 = 2 <=> x = y = 2 1 , max A = 2 <=> x = y = 2 1 Bài3 Câu 1Với mọi x ta có (x + a)(x - 4) - 7 = (x + b)(x + c) Nên với x = 4 thì - 7 = (4 + b)(4 + c) Có 2 trờng hợp: 4 + b = 1 và 4 + b = 7 4 + c = - 7 4 + c = - 1 Trờng hợp thứ nhất cho b = - 3, c = - 11, a = - 10 Ta có (x - 10)(x - 4) - 7 = (x - 3)(x - 11) Trờng hợp thứ hai cho b = 3, c = - 5, a = 2 Ta có (x + 2)(x - 4) - 7 = (x + 3)(x - 5) Câu2 (1,5điểm) Gọi D là điểm trên cạnh AB sao cho: AD = 4 1 AB. Ta có D là điểm cố định Mà AB MA = 2 1 (gt) do đó MA AD = 2 1 Xét tam giác AMB và tam giác ADM có MâB (chung) AB MA = MA AD = 2 1 Do đó AMB ~ ADM => MD MB = AD MA = 2 => MD = 2MD (0,25 điểm) Xét ba điểm M, D, C : MD + MC > DC (không đổi) Do đó MB + 2MC = 2(MD + MC) > 2DC Dấu "=" xảy ra <=> M thuộc đoạn thẳng DC Giá trị nhỏ nhất của MB + 2 MC là 2 DC * Cách dựng điểm M. - Dựng đờng tròn tâm A bán kính 2 1 AB - Dựng D trên tia Ax sao cho AD = 4 1 AB M là giao điểm của DC và đờng tròn (A; 2 1 AB) Bài 4: a) Dựng (I, IA) cắt AD tại M cắt tia AC tại N Do MâN = 90 0 nên MN là đờng kính Vậy I là trung điểm của MN b) Kẻ MK // AC ta có : INC = IMK (g.c.g) => CN = MK = MD (vì MKD vuông cân) Vậy AM+AN=AM+CN+CA=AM+MD+CA => AM = AN = AD + AC không đổi c) Ta có IA = IB = IM = IN Vậy đờng tròn ngoại tiếp AMN đi qua hai điểm A, B cố định . - 2 - S 2. Bài 1. ( 1,5 im ) Cho ba số x, y, z thoã mãn đồng thời : 2 2 2 2 1 2 1 2 1 0x y y z z x+ + = + + = + + = Tính giá trị của biểu thức : 2007 2007 2007 A x y z= + + . Bài 2. ( 1,5 im ) Cho biểu thức : 2 2 5 4 2014M x x y xy y= + + + . Với giá trị nào của x, y thì M đạt giá trị nhỏ nhất ? Tìm giá trị nhỏ nhất đó Bài 3. ( 1,5 im ) Giải hệ phơng trình : ( ) ( ) 2 2 18 1 . 1 72 x y x y x x y y + + + = + + = Bài 4. ( 2,5 im )Cho đờng tròn tâm O đờng kính AB bán kính R. Tiếp tuyến tại điểm M bbất kỳ trên đờng tròn (O) cắt các tiếp tuyến tại A và B lần lợt tại C và D. a.Chứng minh : AC . BD = R 2 . b.Tìm vị trí của điểm M để chu vi tam giác COD là nhỏ nhất . Bài 5. ( 1, 5 im ) Cho a, b là các số thực dơng. Chứng minh rằng : ( ) 2 2 2 2 a b a b a b b a + + + + Bài 6. ( 1,5 im ) Cho tam giác ABC có phân giác AD. Chứng minh : AD 2 = AB . AC - BD . DC. P N Bài 1. Từ giả thiết ta có : 2 2 2 2 1 0 2 1 0 2 1 0 x y y z z x + + = + + = + + = Cộng từng vế các đẳng thức ta có : ( ) ( ) ( ) 2 2 2 2 1 2 1 2 1 0x x y y z z+ + + + + + + + = ( ) ( ) ( ) 2 2 2 1 1 1 0x y z + + + + + = 1 0 1 0 1 0 x y z + = + = + = 1x y z = = = ( ) ( ) ( ) 2007 2007 2007 2007 2007 2007 1 1 1 3A x y z = + + = + + = Vậy : A = -3. Bài 2.(1,5 điểm) Ta có : ( ) ( ) ( ) 2 2 4 4 2 1 2 2 2007M x x y y xy x y= + + + + + + + + - 3 - ( ) ( ) ( ) ( ) 2 2 2 1 2 1 2007M x y x y= + + + ( ) ( ) ( ) 2 2 1 3 2 1 1 2007 2 4 M x y y = + + + Do ( ) 2 1 0y và ( ) ( ) 2 1 2 1 0 2 x y + ,x y 2007M min 2007 2; 1M x y = = = Bài 3. Đặt : ( ) ( ) 1 1 u x x v y y = + = + Ta có : 18 72 u v uv + = = u ; v là nghiệm của phơng trình : 2 1 2 18 72 0 12; 6X X X X + = = = 12 6 u v = = ; 6 12 u v = = ( ) ( ) 1 12 1 6 x x y y + = + = ; ( ) ( ) 1 6 1 12 x x y y + = + = Giải hai hệ trên ta đợc : Nghiệm của hệ là : (3 ; 2) ; (-4 ; 2) ; (3 ; -3) ; (-4 ; -3) và các hoán vị. Bài 4. a.Ta có CA = CM; DB = DM Các tia OC và OD là phân giác của hai góc AOM và MOB nên OC OD Tam giác COD vuông đỉnh O, OM là đờng cao thuộc cạnh huyền CD nên : MO 2 = CM . MD R 2 = AC . BD b.Các tứ giác ACMO ; BDMO nội tiếp ã ã ã ã ;MCO MAO MDO MBO = = ( ) .COD AMB g gV : V (0,25đ) Do đó : 1 . . . . Chu vi COD OM Chu vi AMB MH = V V (MH 1 AB) Do MH 1 OM nên 1 1 OM MH Chu vi COD V chu vi AMBV Dấu = xảy ra MH 1 = OM M O M là điểm chính giữa của cung ằ AB Bài 5 (1,5 điểm) Ta có : 2 2 1 1 0; 0 2 2 a b ữ ữ a , b > 0 1 1 0; 0 4 4 a a b b + + 1 1 ( ) ( ) 0 4 4 a a b b + + + a , b > 0 - 4 - o h d c m b a 1 0 2 a b a b + + + > Mặt khác 2 0a b ab+ > Nhân từng vế ta có : ( ) ( ) ( ) 1 2 2 a b a b ab a b + + + + ( ) ( ) 2 2 2 2 a b a b a b b a + + + + Bài 6. (1 điểm) Vẽ đờng tròn tâm O ngoại tiếp ABCV Gọi E là giao điểm của AD và (O) Ta có: ABD CEDV : V (g.g) . . BD AD AB ED BD CD ED CD = = ( ) 2 . . . . AD AE AD BD CD AD AD AE BD CD = = Lại có : ( ) .ABD AEC g gV : V 2 . . . . AB AD AB AC AE AD AE AC AD AB AC BD CD = = = S 3. Câu 1: Cho hàm số f(x) = 44 2 + xx a) Tính f(-1); f(5) b) Tìm x để f(x) = 10 c) Rút gọn A = 4 )( 2 x xf khi x 2 Câu 2: Giải hệ phơng trình +=+ += )3)(72()72)(3( )4)(2()2( yxyx yxyx Câu 3: Cho biểu thứcA = + + 1 : 1 1 1 1 x x x x x x xx với x > 0 và x 1 a) Rút gọn A b) Tìm giá trị của x để A = 3 Câu 4: Từ điểm P nằm ngoài đờng tròn tâm O bán kính R, kẻ hai tiếp tuyến PA; PB. Gọi H là chân đờng vuông góc hạ từ A đến đờng kính BC. a) Chứng minh rằng PC cắt AH tại trung điểm E của AH - 5 - d e c b a b) Giả sử PO = d. Tính AH theo R và d. Câu 5: Cho phơng trình 2x 2 + (2m - 1)x + m - 1 = 0 Không giải phơng trình, tìm m để phơng trình có hai nghiệm phân biệt x 1 ; x 2 thỏa mãn: 3x 1 - 4x 2 P N Câu 1a) f(x) = 2)2(44 22 ==+ xxxx Suy ra f(-1) = 3; f(5) = 3 b) = = = = = 8 12 102 102 10)( x x x x xf c) )2)(2( 2 4 )( 2 + = = xx x x xf A Với x > 2 suy ra x - 2 > 0 suy ra 2 1 + = x A Với x < 2 suy ra x - 2 < 0 suy ra 2 1 + = x A Câu 2 ( 2) ( 2)( 4) 2 2 4 8 4 ( 3)(2 7) (2 7)( 3) 2 6 7 21 2 7 6 21 0 x y x y xy x xy y x x y x y x y xy y x xy y x x y = + = + = = + = + + = + + = = x -2 y 2 Câu 3 a) Ta có: A = + + 1 : 1 1 1 1 x x x x x x xx = + + ++ 11 )1( : 1 1 )1)(1( )1)(1( x x x xx x x xx xxx = + + 1 : 1 1 1 1 x xxx x x x xx = 1 : 1 11 ++ x x x xxx = 1 : 1 2 + x x x x = x x x x 1 1 2 + = x x2 b) A = 3 => x x2 = 3 => 3x + x - 2 = 0 => x = 2/3 Câu 4 Do HA // PB (Cùng vuông góc với BC) - 6 - O B C H E A P a) nên theo định lý Ta let áp dụng cho CPB ta có CB CH PB EH = ; (1) Mặt khác, do PO // AC (cùng vuông góc với AB) => POB = ACB (hai góc đồng vị) => AHC POB Do đó: OB CH PB AH = (2) Do CB = 2OB, kết hợp (1) và (2) ta suy ra AH = 2EH hay E là trung điểm của AH. b) Xét tam giác vuông BAC, đờng cao AH ta có AH 2 = BH.CH = (2R - CH).CH Theo (1) và do AH = 2EH ta có .)2( 2PB AH.CB 2PB AH.CB AH 2 = R AH 2 .4PB 2 = (4R.PB - AH.CB).AH.CB 4AH.PB 2 = 4R.PB.CB - AH.CB 2 AH (4PB 2 +CB 2 ) = 4R.PB.CB 2 222 222 222 2222 d Rd.2.R 4R)R4(d Rd.8R (2R)4PB 4R.2R.PB CB4.PB 4R.CB.PB AH = + = + = + = Câu 5. Để phơng trình có 2 nghiệm phân biệt x 1 ; x 2 thì > 0 <=> (2m - 1) 2 - 4. 2. (m - 1) > 0 Từ đó suy ra m 1,5 (1) Mặt khác, theo định lý Viét và giả thiết ta có: = = =+ 114x3x 2 1m .xx 2 12m xx 21 21 21 = = = 11 8m-26 77m 4 7 4m-13 3 8m-26 77m x 7 4m-13 x 1 1 Giải phơng trình 11 8m-26 77m 4 7 4m-13 3 = ta đợc m = - 2 và m = 4,125 (2) - 7 - Đối chiếu điều kiện (1) và (2) ta có: Với m = - 2 hoặc m = 4,125 thì phơng trình đã cho có hai nghiệm phân biệt thỏa mãn: x 1 + x 2 = 11 S 4. Câu 1: Cho P = 2 1 x x x + + 1 1 x x x + + + - 1 1 x x + a/. Rút gọn P. b/. Chứng minh: P < 1 3 với x 0 và x 1. Câu 2: Cho phơng trình : x 2 2(m - 1)x + m 2 3 = 0 ( 1 ) ; m là tham số. a/. Tìm m để phơng trình (1) có nghiệm. b/. Tìm m để phơng trình (1) có hai nghiệm sao cho nghiệm này bằng ba lần nghiệm kia. Câu 3: a/. Giải phơng trình : 1 x + 2 1 2 x = 2 b/. Cho a, b, c là các số thực thõa mãn : 0 0 2 4 2 0 2 7 11 0 a b a b c a b c + + = + = Tìm giá trị lớn nhất và giá trị bé nhất của Q = 6 a + 7 b + 2006 c. Câu 4: Cho ABCV cân tại A với AB > BC. Điểm D di động trên cạnh AB, ( D không trùng với A, B). Gọi (O) là đờng tròn ngoại tiếp BCDV . Tiếp tuyến của (O) tại C và D cắt nhau ở K . a/. Chứng minh tứ giác ADCK nội tiếp. b/. Tứ giác ABCK là hình gì? Vì sao? c/. Xác định vị trí điểm D sao cho tứ giác ABCK là hình bình hành. P N Câu 1: Điều kiện: x 0 và x 1. (0,25 điểm) P = 2 1 x x x + + 1 1 x x x + + + - 1 ( 1)( 1) x x x + + = 3 2 ( ) 1 x x + + 1 1 x x x + + + - 1 1x = 2 ( 1)( 1) ( 1) ( 1)( 1) x x x x x x x x + + + + + + + = ( 1)( 1) x x x x x + + = 1 x x x+ + b/. Với x 0 và x 1 .Ta có: P < 1 3 1 x x x+ + < 1 3 - 8 - 3 x < x + x + 1 ; ( vì x + x + 1 > 0 ) x - 2 x + 1 > 0 ( x - 1) 2 > 0. ( Đúng vì x 0 và x 1) Câu 2:a/. Phơng trình (1) có nghiệm khi và chỉ khi 0. (m - 1) 2 m 2 3 0 4 2m 0 m 2. b/. Với m 2 thì (1) có 2 nghiệm. Gọi một nghiệm của (1) là a thì nghiệm kia là 3a . Theo Viet ,ta có: 2 3 2 2 .3 3 a a m a a m + = = a= 1 2 m 3( 1 2 m ) 2 = m 2 3 m 2 + 6m 15 = 0 m = 3 2 6 ( thõa mãn điều kiện). Câu 3: Điều kiện x 0 ; 2 x 2 > 0 x 0 ; x < 2 . Đặt y = 2 2 x > 0 Ta có: 2 2 2 (1) 1 1 2 (2) x y x y + = + = Từ (2) có : x + y = 2xy. Thay vào (1) có : xy = 1 hoặc xy = - 1 2 * Nếu xy = 1 thì x+ y = 2. Khi đó x, y là nghiệm của phơng trình: X 2 2X + 1 = 0 X = 1 x = y = 1. * Nếu xy = - 1 2 thì x+ y = -1. Khi đó x, y là nghiệm của phơng trình: X 2 + X - 1 2 = 0 X = 1 3 2 Vì y > 0 nên: y = 1 3 2 + x = 1 3 2 Vậy phơng trình có hai nghiệm: x 1 = 1 ; x 2 = 1 3 2 Câu 4: c/. Theo câu b, tứ giác ABCK là hình thang. Do đó, tứ giác ABCK là hình bình hành AB // CK ã ã BAC ACK= Mà ã 1 2 ACK = sđ ằ EC = 1 2 sđ ằ BD = ã DCB Nên ã ã BCD BAC= Dựng tia Cy sao cho ã ã BCy BAC= .Khi đó, D là giao điểm của ằ AB và Cy. Với giả thiết ằ AB > ằ BC thì ã BCA > ã BAC > ã BDC . - 9 - O K D C B A D AB . Vậy điểm D xác định nh trên là điểm cần tìm. S 5. Câu 1. a) Xác định x R để biểu thức :A = xx xx + + 1 1 1 2 2 Là một số tự nhiên b. Cho biểu thức: P = 22 2 12 ++ + ++ + ++ zzx z yyz y xxy x Biết x.y.z = 4 , tính P . Câu 2. Cho các điểm A(-2;0) ; B(0;4) ; C(1;1) ; D(-3;2) a. Chứng minh 3 điểm A, B ,D thẳng hàng; 3 điểm A, B, C không thẳng hàng. b. Tính diện tích tam giác ABC. Câu 3. Giải phơng trình: 521 3 = xx Câu 4. Cho đờng tròn (O;R) và một điểm A sao cho OA = R 2 . Vẽ các tiếp tuyến AB, AC với đờng tròn. Một góc xOy = 45 0 cắt đoạn thẳng AB và AC lần lợt tại D và E. Chứng minh rằng: a. DE là tiếp tuyến của đờng tròn ( O ). b. RDER << 3 2 P N Câu 1: a. A = xxxxx xxxx xx xx 2)1(1 )1).(1( 1 1 22 22 2 2 =+++= +++ ++ + A là số tự nhiên -2x là số tự nhiên x = 2 k (trong đó k Z và k 0 ) b.Điều kiện xác định: x,y,z 0, kết hpọ với x.y.z = 4 ta đợc x, y, z > 0 và 2=xyz Nhân cả tử và mẫu của hạng tử thứ 2 với x ; thay 2 ở mẫu của hạng tử thứ 3 bởi xyz ta đợc: P = 1 2 2 2( 2 22 = ++ ++ = ++ + ++ + ++ xxy xyx xyxz z xxy xy xxy x (1đ) 1=P vì P > 0 Câu 2: a.Đờng thẳng đi qua 2 điểm A và B có dạng y = ax + b Điểm A(-2;0) và B(0;4) thuộc đờng thẳng AB nên b = 4; a = 2 Vậy đờng thẳng AB là y = 2x + 4. - 10 - [...]... Tơng tự: OME = 900 D, M, E thẳng hàng Do đó DE là tiếp tuyến của đờng tròn (O) b.Xét ADE có DE < AD +AE mà DE = DB + EC 2ED < AD +AE +DB + EC hay 2DE < AB + AC = 2R DE < R Ta có DE > AD; DE > AE ; DE = DB + EC Cộng từng vế ta đợc: 3DE > 2R DE > Vậy R > DE > 2 R 3 2 R 3 S 6 Câu 1: Cho hàm số f(x) = x 2 4 x + 4 a) Tính f(-1); f(5) b) Tìm x để f(x) = 10 - 11 - c) Rút gọn A = f ( x) khi x 2 x2 4... 99 3 ) 2 2 35 2) B = 35 + 335 + 3335 + + 3333 = 99 số 3 =33 +2 +333+2 +3333+2+ .+ 333 33+2 = 2.99 + ( 33+333+3333+ +333 33) = 198 + 1 ( 99+999+9999+ +999 99) 3 1 ( 102 -1 +103 - 1 +104 - 1+ +101 00 1) = 198 33 + 3 101 01 10 2 +165 B= 27 198 + Câu 2: 1)x2 -7x -18 = x2 -4 7x-14 = (x-2)(x+2) - 7(x+2) = (x+2)(x-9) (1đ) 2)(x+1)(x+2)(x+3)(x+4) -3= (x+1)(x+4)(x+2)(x+3)-3 = (x2+5x +4)(x2 +... b.Ta có : AB2 = (-2 0)2 + (0 4)2 =20 AC2 = (-2 1)2 + (0 1)2 =10 BC2 = (0 1)2 + (4 1)2 = 10 AB2 = AC2 + BC2 ABC vuông tại C 1 10 10 = 5 ( đơn vị diện tích ) 2 Câu 3: Đkxđ x 1, đặt x 1 = u; 3 2 x = v ta có hệ phơng trình: u v = 5 2 3 u + v = 1 Vậy SABC = 1/2AC.BC = Giải hệ phơng trình bằng phơng pháp thế ta đợc: v = 2 x = 10 Câu 4 a.áp dụng định lí Pitago tính đợc AB = AC = R ABOC là hình... (0,25) B 2 ã ã ã ã mà EDA = FAD EFD = FDC (0,25) EF // BC (2 góc so le trong bằng nhau) - 22 - F E D C ằ ằ b) AD là phân giác góc BAC nên DE = DF 1 1 ã ẳ ằ ằ ã sđ ACD = sđ( AED DF ) = sđ AE = sđ ADE 2 2 ã ã ã ã do đó ACD = ADE và EAD = DAC DADC (g.g) 1 ằ 1 1 ã ẳ ằ ẳ ằ ã ã ã Tơng tự: sđ ADF = sd AF = sd ( AFD DF ) = (sd AFD DE ) = sd ABD ADF = ABD 2 2 2 do đó AFD ~ (g.g c) Theo trên: + AED ~ DB... phơng trình 2x2 + (2m - 1)x + m - 1 = 0 Không giải phơng trình, tìm m để phơng trình có hai nghiệm phân biệt x1; x2 thỏa mãn: 3x1 - 4x2 = 11 P N Câu 1 a) f(x) = x 2 4 x + 4 = ( x 2) 2 = x 2 Suy ra f(-1) = 3; f(5) = 3 b) x 2 = 10 x = 12 f ( x) = 10 x 2 = 10 x = 8 c) A= x2 f ( x) = 2 x 4 ( x 2)( x + 2) Với x > 2 suy ra x - 2 > 0 suy ra A = 1 x+2 Với x < 2 suy ra x - 2 < 0 suy ra A = Câu... cố định khi M thay đổi trên đờng tròn 2 Chứng minh MA 2 AH AD = MB 2 BD BH P N Câu 1 a Bình phơng 2 vế A = c áp dụng câu a A = 1+ a + a +1 a ( a + 1) 2 (Vì a > 0) 1 1 a a +1 1 9999 = 100 100 Câu 2 a : cm 0 m B = 100 B (2 đ) áp dụng hệ thức Viet ta có: x1 + x 2 = m 2m + 1 (1) Tìm đk đẻ pt (1) có nghiệm theo ẩn P= 2 m +2 x1 x 2 = m 1 - 17 - 1 P 1 2 1 GTLN = m = 2 2 GTNN = 1 m = 1 Câu 3... 2 (m - 1) > 0 Từ đó suy ra m 1,5 (1) Mặt khác, theo định lý Viét và giả thiết ta có: 2m 1 x1 + x 2 = 2 m 1 x 1 x 2 = 2 3x 1 4x 2 = 11 Giải phơng trình 3 13 - 4m x1 = 7 7m 7 x1 = 26 - 8m 7m 7 13 - 4m 3 7 4 26 - 8m = 11 13 - 4m 7m 7 4 = 11 7 26 - 8m ta đợc m = - 2 và m = 4,125 (2) Đối chiếu điều kiện (1) và (2) ta có: Với m = - 2 hoặc m = 4,125 thì phơng trình đã cho có hai nghiệm... 32 = Vậy D = 2 +1 4 3 2 3 c) áp dụng bất đẳng thức cauchy ta có 2 a a +1 D 1 Vậy giá trị của D là 1 1 2 9 2 Câu 2: a) m = -1 phơng trình (1) x 2 + x = 0 x 2 + 2 x 9 = 0 - 19 - x = 1 10 1 x 2 = 1 + 10 b) Để phơng trình 1 có 2 nghiệm thì 0 8m + 2 0 m 1 ( ) * 4 1 2 m + 4m 1 0 2 ( ) + Để phơng trình có nghiệm khác 0 m1 4 3 2 * m 2 4 + 3 2 x + x = 0 1 1 + + = x1 + x2 ( x1 +... (x2+5x +4)(x2 + 5x+6)-3= [x2+5x +4][(x2 + 5x+4)+2]-3 = (x2+5x +4)2 + 2(x2+5x +4)-3=(x2+5x +4)2 - 1+ 2(x2+5x +4)-2 - 15 - = [(x2+5x +4)-1][(x2+5x +4)+1] +2[(x2+5x +4)-1] = (x2+5x +3)(x2+5x +7) 3) a10+a5+1 = a10+a9+a8+a7+a6 + a5 +a5+a4+a3+a2+a +1 - (a9+a8+a7 )- (a6 + a5 +a4)- ( a3+a2+a ) = a8(a2 +a+1) +a5(a2 +a+1)+ a3(a2 +a+1)+ (a2 +a+1)-a7(a2 +a+1) -a4(a2 +a+1)-a(a2 +a+1) =(a2 +a+1)( a8-a7+ a5 -a4+a3... x3 + y4 x+y2 Từ (1) (2) và (3) ta có: x 3 + y3 x 2 + y2 x + y 2 - 23 - S 11 Câu 1: xcho A= 4(x-1) + x+ 4(x-1) 1 (1- ) x - 4(x-1) x-1 a/ rút gọn biểu thức A b/ Tìm giá trị nguyên của x để A có giá trị nguyên Câu 2: Xác định các giá trị của tham số m để phơng trình x2-(m+5)x-m+6 =0 Có 2 nghiệm x1 và x2 thoã mãn một trong 2 điều kiện sau: a/ Nghiệm này lớn hơn nghiệm kia một đơn vị b/ 2x1+3x2=13 . hàng. Do đó DE là tiếp tuyến của đờng tròn (O). b.Xét ADE có DE < AD +AE mà DE = DB + EC 2ED < AD +AE +DB + EC hay 2DE < AB + AC = 2R DE < R Ta có DE > AD; DE > AE ; DE = DB. +333 33) = 198 + 3 1 ( 99+999+9999+ +999 99) 198 + 3 1 ( 10 2 -1 +10 3 - 1 +10 4 - 1+ +10 100 1) = 198 33 + B = 27 101 0 2101 +165 Câu 2: 1) x 2 -7x -18 = x 2 -4 7x-14 = (x-2)(x+2). EC Cộng từng vế ta đợc: 3DE > 2R DE > 3 2 R Vậy R > DE > 3 2 R S 6. Câu 1: Cho hàm số f(x) = 44 2 + xx a) Tính f(-1); f(5) b) Tìm x để f(x) = 10 - 11 - B M A O C D E c) Rút

Ngày đăng: 03/06/2015, 17:00

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w