BAØI TAÄP LÖÔÏNG GIAÙC 1) 2sin 2 x-5sinxcosx-cos 2 x=-2 Π+=Π+ Π =⇔ kxkx 4 1 arctan; 4 2) 2sin 2 x+sinxcosx-3cos 2 x=0 Π+ − =Π+ Π =⇔ kxkx 2 3 arctan; 4 3) 3sin 2 x-4sinxcosx+5cos 2 x=2 Π+=Π+ Π =⇔ kxkx 3arctan; 4 4) sin 2 x+sin2x-2cos 2 x=1/2 Π+−=Π+ Π =⇔ kxkx )5arctan(; 4 5) 4sin 2 x+3 3 sin2x-2cos 2 x=4 Π+ Π =Π+ Π =⇔ kxkx 6 ; 2 6) 25sin 2 x+15sin2x+9cos 2 x=25 Π+=Π+ Π =⇔ kxkx 15 8 arctan; 2 7) 4sin 2 x-5sinxcosx-6cos 2 x=0 Π+−=Π+=⇔ kxkx ) 4 3 arctan(;2arctan 8) sin 2 x- 3 sinxcosx+2cos 2 x=1 Π+ Π =Π+ Π =⇔ kxkx 6 ; 2 9) 2sin 2 x+3 3 sinxcosx-cos 2 x=4 VN 10) 3sin 2 x+4sin2x+ ( ) 938 − cos 2 x=0 Π+ −=Π+ Π −=⇔ kxkx 3 8 3arctan; 3 11/ 4sin 2 x+2sin2x+2cos 2 x=1 Π+ − =Π+ Π −=⇔ kxkx 3 1 arctan; 4 12/ 4sin 2 x+3 3 sin2x-2cos 2 x=4 13/ 4cos 2 x+3sinxcosx-sin 2 x=3 Π+ − =Π+ Π =⇔ kxkx 4 1 arctan; 4 14/ 2sin 2 x-sinxcosx-cos 2 x=2 Π+−=Π+ Π =⇔ kxkx )3arctan(; 2 15/ 4sin 2 x-2sin2x+3cos 2 x=1 VN 16/ 5sin 2 x+2sinxcosx+cos 2 x=2 Π+=Π+ Π −=⇔ kxkx 3 1 arctan; 4 17/ sin 2 x-2sin2x+3cos 2 x=1 Π+=Π+ Π =⇔ kxkx 2 1 arctan; 2 18/ 3sin 2 x-3sinxcosx+4cos 2 x=1 VN 20/sin2x-2sin 2 x=2cos2x Π+ Π =Π+ Π =⇔ kxkx 4 ; 2 21/2sin 2 2x-3sin2xcos2x+cos 2 2x=2 2 )3cot( 2 1 ; 24 Π +−= Π + Π =⇔ karcxkx 22) 3)10cos(12)10sin(2 00 =+−+ xx 23) xxx 3cos25cos35sin =+ 448 ; 12 Π + Π =Π+ Π =⇔ kxkx 24) 13cos3sin3 =− xx 3 2 3 Π + Π −=⇔ kx 25) xxxx cossin42cos34sin13 =+ 36 ; 2 Π + +Π =Π+−=⇔ kxkx αα víi: = = 13 2 cos 13 3 sin α α 26) 5cos4sin3 =+ xx Π+=⇔ 2kx α víi: 2 0/ 5 4 cos 5 3 sin Π << = = α α α 27) 24cos34sin =+ xx 248 ; 248 5 Π + Π −= Π + Π =⇔ kxkx 28) 2sin2cos3 =+ xx Π+ Π =⇔ kx 2 29) 3sin2cos3 =+ xx Π+±=Π=Π+ Π =⇔ 2 13 5 arccos;2; 2 kxkxkx 30) 2cos 3 x+cos2x+sinx=0 Π+ Π =Π+ Π =⇔ kxkx 4 ;2 2 30) 1 3 cot 3 2tan = Π + Π − xx Π+ Π =Π=⇔ kxkx 3 ; 31) cos7xcos6x=cos5xcos8x 32) 2 cos 2 sin1 2 sin1 2 sin x x x x − = + Π+ Π =⇔ kx 2 33) 2 cos 2 tan1 2 tan2 2 x x x = + 3 4 3 Π + Π =⇔ kx 34) cos6xcos2x=1 2 Π =⇔ kx 35) sin6xsin2x=1 VN 36) 2(sin 2 2x+sin 2 x)=3 Π+ Π = Π + Π =⇔ kxkx 3 ; 24 37) 6cos 2 x-cosx=-cos3x Π+ Π =Π+ Π =⇔ 2 3 ; 2 kxkx 38) 2tanx+tan2x=tan4x 3 Π =⇔ kx 39) 2 3 cos 2 cos 2 3 sin 2 sin 4 5 sin 4 3 sin2 xxxxxx −= Π+Π=⇔ 2kx 40) xxxx 3cot) 2 2sin()2sin(5cos2 Π ++Π+= 3 2 4 ; 3 2 12 ; 510 Π + Π = Π + Π = Π + Π =⇔ kxkxkx 41) ) 4 sin() 4 cos() 4 2cos(2 Π +− Π += Π + xxx 3 2 12 5 ;2 4 Π + Π =Π+ Π =⇔ kxkx 42) ( ) ( ) 3tan3133tan 2 ++=−+ xx Π+ Π− =Π+ Π =⇔ kxkx 13 ; 4 43) 2 cos sin 2sin =+ x x x Π+ Π =⇔ kx 4 44) cos2xsin 2 x+1=0 Π+ Π =⇔ kx 2 45) tan2x-2sin 2 x=sin2x 28 ; Π + Π =Π=⇔ kxkx