Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 33 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
33
Dung lượng
469,24 KB
Nội dung
Phương pháp tọa độ trong mặt phẳng Giáo viên: Nguyễn Trung Nghĩa - THPT chuyên Quốc Học Huế 1 MỤC LỤC Trang • Tóm tắt kiến thức 2 • Các bài toán về điểm và đường thẳng 4 • Các bài toán về tam giác 6 • Các bài toán về hình chữ nhật 13 • Các bài toán về hình thoi 16 • Các bài toán về hình vuông 17 • Các bài toán về hình thang, hình bình hành 19 • Các bài toán về đường tròn 21 • Các bài toán về ba đường conic 31 Upload By TaiLieuTHPT.Net Phương pháp tọa độ trong mặt phẳng Giáo viên: Nguyễn Trung Nghĩa - THPT chuyên Quốc Học Huế 2 TÓM TẮT KIẾN THỨC 1. Phương trình đường thẳng • đường thẳng đi qua điểm ( ) ; o o A x y và có VTCP ( ) ;u a b= có PTTS là = + = + o o x x at y y bt . • đường thẳng đi qua điểm ( ) ; o o A x y và có VTPT ( ) = ;n a b có PTTQ là ( ) ( ) − + − = 0 o o a x x b y y . • đường thẳng đi qua hai điểm ( ) ; A A A x y và ( ) ; B B B x y có phương trình: − − = − − A A B A B A x x y y x x y y . • đường thẳng đi qua hai điểm ( ) ;0A a và ( ) 0;B b với ≠ 0a và ≠ 0b có phương trình: + = 1 x y a b . • đường thẳng song song hoặc trùng với Oy có phương trình là ( ) + = ≠0 0ax c a . • đường thẳng song song hoặc trùng với Ox có phương trình là ( ) + = ≠0 0by c b . • đường thẳng đi qua gốc tọa độ O có phương trình là + = 0ax by ( ) 2 2 0a b+ ≠ . • nếu (d) vuông góc với + + =( ') : 0d ax by c thì (d) có phương trình là − + = 0bx ay m . • nếu (d) song song với + + =( ') : 0d ax by c thì (d) có phương trình là ( ) + + = ≠0 ax by m m c . • đường thẳng có hệ số góc k có phương trình là = +y kx b . • đường thẳng đi qua điểm ( ) ; o o A x y và có hệ số góc k có phương trình là ( ) − = − o o y y k x x . • = +( ) :d y kx b vuông góc với = + ⇔ = −( ') : ' ' . ' 1d y k x b k k . • = +( ) :d y kx b song song với = + ⇒ =( ') : ' ' 'd y k x b k k . 2. Khoảng cách và góc • khoảng cách từ ( ) ; o o A x y đến ∆ + + =( ) : 0ax by c tính bởi công thức: ( ) + + ∆ = + 2 2 , o o ax by c d A a b • M, N ở cùng phía đối với đường thẳng ∆ + + =( ) : 0ax by c ( )( ) ⇔ + + + + > 0 M M N N ax by c ax by c • M, N ở khác phía đối với đường thẳng ∆ + + =( ) : 0ax by c ( )( ) ⇔ + + + + < 0 M M N N ax by c ax by c • cho hai đường thẳng ∆ + + =( ) : 0ax by c và ∆ + + =( ') : ' ' ' 0a x b y c thì: phương trình hai đường phân giác của các góc tạo bởi ∆ và ∆' là + + + + = ± + + 2 2 2 2 ' ' ' ' ' ax by c a x b y c a b a b ( ) + ∆ ∆ = + + 2 2 2 2 ' ' cos ; ' . ' ' aa bb a b a b ∆ ⊥ ∆ ⇔ + =' ' ' 0aa bb . 3. Đường tròn • đường tròn (C) tâm ( ) ; o o T x y , bán kính R có phương trình là ( ) ( ) − + − = 2 2 2 o o x x y y R . • phương trình + + + + = 2 2 2 2 0x y ax by c với + − > 2 2 0a b c là phương trình của một đường tròn với tâm ( ) − −;T a b và bán kính = + − 2 2 R a b c . • cho đường thẳng ∆ + + =( ) : 0ax by c và đường tròn (C) có tâm ( ) ; o o T x y và bán kính R . Lúc đó: ∆( ) tiếp xúc (C) ( ) + + ⇔ ∆ = ⇔ = + 2 2 ; o o ax by c d T R R a b . Upload By TaiLieuTHPT.Net Phương pháp tọa độ trong mặt phẳng Giáo viên: Nguyễn Trung Nghĩa - THPT chuyên Quốc Học Huế 3 4. Đường elip x y F 2 F 1 O M • Định nghĩa: ( ) { } = + = 1 2 | 2E M MF MF a • Phương trình chính tắc: ( ) ( ) + = < < 2 2 2 2 : 1 0 x y E b a a b • Tiêu điểm: ( ) ( ) − 1 2 ;0 , ;0F c F c với 2 2 c a b= − • Tiêu cự: = 1 2 2 F F c • Bán kính qua tiêu: = + = − 1 2 ; c c MF a x MF a x a a • Tâm sai: = < 1 c e a • Trục lớn là Ox, độ dài trục lớn: 2a • Trục bé là Oy, độ dài trục bé: 2b • Tọa độ các đỉnh: ( ) ( ) ( ) ( ) − −;0 , ;0 , 0; , 0;a a b b 5. Đường hypebol x y M(x;y) F 2 (c;0) F 1 (-c;0) O • Định nghĩa: ( ) { } = − = 1 2 | 2 H M MF MF a • Phương trình chính tắc: ( ) ( ) − = < < 2 2 2 2 : 1 0 ;0 x y H a b a b • Tiêu điểm: ( ) ( ) − 1 2 ;0 , ;0F c F c với 2 2 c a b= + • Tiêu cự: = 1 2 2 F F c • Bán kính qua tiêu: = + = − 1 2 ; c c MF a x MF a x a a • Tâm sai: = > 1 c e a • Trục thực là Ox, độ dài trục thực: 2a • Trục ảo là Oy, độ dài trục ảo: 2b • Phương trình các đường tiệm cận: = ± b y x a • Tọa độ các đỉnh: ( ) ( ) − ;0 , ;0a a 6. Đường parabol x y H P F O M • Định nghĩa: ( ) ( ) { } = = ∆| ,P M MF d M • Phương trình chính tắc: ( ) ( ) = > 2 : 2 0P y px p • Tiêu điểm: ;0 2 p F • Đường chuNn: + = 0 2 p x • Bán kính qua tiêu: = + 2 p MF x • Tọa độ đỉnh: ( ) 0;0O ***** Phương pháp tọa độ trong mặt phẳng Giáo viên: Nguyễn Trung Nghĩa - THPT chuyên Quốc Học Huế 4 CÁC BÀI TOÁN VỀ ĐIỂM VÀ ĐƯỜNG THẲNG B04: Cho hai điểm A(1; 1), B(4; –3). Tìm điểm C thuộc đường thẳng − − =2 1 0x y sao cho khoảng cách từ C đến đường thẳng AB bằng 6. ĐS: C C 1 2 43 27 (7;3), ; 11 11 − − A06: Cho các đường thẳng lần lượt có phương trình: + + = − − = − = 1 2 3 : 3 0, : 4 0, : 2 0d x y d x y d x y . Tìm toạ độ điểm M nằm trên đường thẳng d 3 sao cho khoảng cách từ M đến đường thẳng d 1 bằng hai lần khoảng cách từ M đến đường thẳng d 2 . ĐS: M(–22; –11), M(2; 1) B11: Cho hai đường thẳng : 4 0x y∆ − − = và : 2 2 0d x y− − = . Tìm tọa độ điểm N thuộc đường thẳng d sao cho đường thẳng ON cắt đường thẳng ∆ tại điểm M thỏa mãn . 8OM ON = . ĐS: ( ) 0; 2N − hoặc 6 2 ; 5 5 N Toán học & Tuổi trẻ: Cho đường thẳng : 2 2 0d x y− − = và hai điểm A(0 ; 1) và B(3 ; 4). Tìm tọa độ của điểm M trên d sao cho 2 2 2 MA MB + nhỏ nhất. ĐS: M(2 ; 0) chuyên ĐH Vinh: Cho hai điểm A(1 ; 2) và B(4 ; 3). Tìm tọa độ điểm M sao cho o 135AMB = và khoảng cách từ điểm M đến đường thẳng AB bằng 10 2 . ĐS: ( ) 0;0M hoặc ( ) 1;3M − D10: Cho điểm A(0; 2) và ∆ là đường thẳng đi qua O. Gọi H là hình chiếu vuông góc của A trên ∆. Viết phương trình ∆, biết khoảng cách từ H đến trục hoành bằng AH. ĐS: 2 đường ∆ : ( ) x y5 1 2 5 2 0− ± − = B04(dự bị): Cho điểm I(–2; 0) và hai đường thẳng d x y d x y 1 2 :2 5 0, : 3 0− + = + − = . Viết phương trình đường thẳng d đi qua điểm I và cắt hai đường thẳng d 1 , d 2 lần lượt tại A, B sao cho IA IB2= . ĐS: : 7 3 14 0d x y− + + = Toán học & Tuổi trẻ: Cho hai đường thẳng 1 2 : 1 0; : 2 1 0d x y d x y+ + = − − = . Lập phương trình đường thẳng d đi qua ( ) 1; 1M − và cắt 1 2 ;d d lần lượt tại A và B sao cho 2 MB MA = − . ĐS: : 1d x = Toán học & Tuổi trẻ: Cho hai điểm ( ) ( ) 2;5 , 5;1A B . Viết phương trình đường thẳng d đi qua A sao cho khoảng cách từ B đến d bằng 3. ĐS: : 7 24 134 0d x y+ − = Toán học & Tuổi trẻ: Cho điểm ( ) 3;4M − và hai đường thẳng 1 : 2 3 0d x y− − = và 2 : 0d x y− = . Viết phương trình đường thẳng d đi qua M cắt 1 d tại A, cắt 2 d tại B sao cho 2 MA MB = và điểm A có tung độ dương. chuyên Phan Bội Châu - Nghệ An: Cho ba điểm A(1 ; 1), B(3 ; 2) và C(7 ; 10). Viết phương trình đường thẳng ∆ đi qua A sao cho tổng khoảng cách từ B và C đến ∆ là lớn nhất. ĐS: : 4 5 9 0d x y+ − = chuyên Hạ Long - Quảng Ninh: Cho tam giác ABC có đỉnh A(0 ; 4), trọng tâm ( ) 4 / 3;2 / 3G và trực tâm trùng với gốc tọa độ. Tìm tọa độ B, C biết B C x x< . ĐS: ( ) ( ) 1; 1 , 5; 1B C− − − Phương pháp tọa độ trong mặt phẳng Giáo viên: Nguyễn Trung Nghĩa - THPT chuyên Quốc Học Huế 5 Đặng Thúc Hứa - Nghệ An - 2013: ( ) ( ) ( ) − + − = 2 2 : 1 2 10C x y có tâm là I. Viết phương trình đường thẳng d cách O một khoảng bằng 5 và cắt (C) tại hai điểm phân biệt A, B sao cho diện tích tam giác IAB lớn nhất. ĐS: − − =: 2 5 0d x y Sở GD&ĐT Vĩnh Phúc - 2014: Cho hai đường thẳng + − = 1 : 2 3 0d x y và − − = 2 : 2 1 0d x y cắt nhau tại. Viết phương trình đường thẳng d đi qua O và cắt 1 2 ,d d lần lượt tại A, B sao cho 2IA=IB. ĐS: − =: 3 4 0d x y hoặc =: 0d x chuyên ĐH Vinh - 2013: Cho hai đường thẳng − − = + − = 1 2 : 2 0, : 2 2 0d x y d x y . Gọi I là giao điểm của 1 2 ,d d . Viết phương trình đường thẳng đi qua M(-1;1) cắt 1 2 ,d d lần lượt tại A, B sao cho AB = 3IA. ĐS: + = 0x y hoặc 7 6 0x y+ − = chuyên Nguyễn Quang Diêu - Đồng Tháp - 2014: Cho điểm A(0;2) và đường thẳng : 2 2 0.d x y− + = Tìm trên d 2 điểm M, N sao cho tam giác AMN vuông tại A và AM=2AN, biết hoành độ và tung độ của N là những số nguyên. ĐS: M(2;2), N(0;1) chuyên Lý Tự Trọng - Cần Thơ - 2014: Cho điểm A(4;-7) và đường thẳng : 2 4 0x y∆ − + = . Tìm điểm B trên ∆ sao cho có đúng ba đường thẳng 1 2 3 , ,d d d thỏa mãn khoảng cách từ A đến 1 2 3 , ,d d d đều bằng 4 và khoảng cách từ B đến 1 2 3 , ,d d d đều bằng 6. ĐS: ( ) 2;1B − hoặc 6 13 ; 5 5 B ***** Upload By TaiLieuTHPT.Net Phương pháp tọa độ trong mặt phẳng Giáo viên: Nguyễn Trung Nghĩa - THPT chuyên Quốc Học Huế 6 CÁC BÀI TOÁN VỀ TAM GIÁC 1. Tam giác thường 1.1. Tìm tọa độ của điểm A04: Cho hai điểm A(0; 2) và ( ) − −3; 1B . Tìm tọa độ trực tâm và tọa độ tâm đường tròn ngoại tiếp của tam giác OAB. ĐS: ( ) ( ) H I3; 1 , 3;1− − B08: Hãy xác định toạ độ đỉnh C của tam giác ABC biết rằng hình chiếu vuông góc của C trên đường thẳng AB là điểm H(–1; –1), đường phân giác trong góc A có phương trình − + =2 0x y và đường cao kẻ từ B có phương trình + − =4 3 1 0x y . ĐS: C 10 3 ; 3 4 − D10: Cho tam giác ABC có đỉnh A(3; –7), trực tâm là H(3; –1), tâm đường tròn ngoại tiếp là I(–2; 0). Xác định toạ độ đỉnh C, biết C có hoành độ dương. ĐS: ( ) C 2 65;3− + B11: Cho tam giác ABC có đỉnh 1 ;1 2 B . Đường tròn nội tiếp tam giác ABC tiếp xúc với các cạnh BC, CA, AB tương ứng tại các điểm D, E, F. Cho D(3 ; 1) và đường thẳng EF có phương trình 3 0y − = . Tìm tọa độ đỉnh A, biết A có tung độ dương. ĐS: 13 3; 3 A D11: Cho tam giác ABC có đỉnh ( ) 4;1B − , trọng tâm ( ) 1;1G và đường thẳng chứa phân giác trong của góc A có phương trình 1 0x y− − = . Tìm tọa độ các đỉnh A và C. ĐS: ( ) ( ) 4;3 , 3; 1A C − B13: Cho tam giác ABC có chân đường cao hạ từ đỉnh A là 17 1 ; 5 5 H − , chân đường phân giác trong của góc A là ( ) 5;3D và trung điểm của cạnh AB là ( ) 0;1M . Tìm tọa độ đỉnh C. ĐS: ( ) 9;11C D13: Cho tam giác ABC có điểm ( ) 9 / 2;3 / 2−M là trung điểm của cạnh AB, điểm ( ) 2;4H − và ( ) 1;1I − lần lượt là chân đường cao kẻ từ B và tâm đường tròn ngoại tiếp tam giác ABC. Tìm tọa độ đỉnh C. ĐS: ( ) −1;6C D03(dự bị): Cho tam giác ABC có đỉnh A(1; 0) và hai đường thẳng lần lượt chứa các đường cao vẽ từ B và C có phương trình tương ứng là: x y x y 2 1 0, 3 1 0− + = + − = . Tính diện tích tam giác ABC. ĐS: B C( 5; 2), ( 1;4)− − − ⇒ S 14= D04(dự bị): Cho điểm A(2; 3) và hai đường thẳng d x y d x y 1 2 : 5 0, : 2 7 0+ + = + − = . Tìm toạ độ các điểm B trên d 1 và C trên d 2 sao cho tam giác ABC có trọng tâm G(2; 0). ĐS: ( ) ( ) 1; 4 , 5;1B C− − A06(dự bị): Cho tam giác ABC có đỉnh A thuộc đường thẳng x y d : 4 2 0− − = , cạnh BC song song với d. Phương trình đường cao BH: x y 3 0+ + = và trung điểm của cạnh AC là M(1; 1). Tìm toạ độ các đỉnh A, B, C. ĐS: A B C 2 2 8 8 ; , ( 4;1), ; 3 3 3 3 − − − Phương pháp tọa độ trong mặt phẳng Giáo viên: Nguyễn Trung Nghĩa - THPT chuyên Quốc Học Huế 7 B06(dự bị): Cho tam giác ABC có đỉnh A(2; 1), đường cao qua đỉnh B có phương trình x y 3 7 0− − = và đường trung tuyến qua đỉnh C có phương trình x y 1 0+ + = . Xác định toạ độ các đỉnh B và C của tam giác. ĐS: B(–2; –3), C(4; –5) A07(dự bị): Cho tam giác ABC có trọng tâm G(–2; 0), phương trình các cạnh AB: x y 4 14 0+ + = , AC: x y 2 5 2 0+ − = . Tìm toạ độ các đỉnh A, B, C. ĐS: A(–4; 2), B(–3; –2), C(1; 0) Toán học & Tuổi trẻ: Cho tam giác ABC biết ba chân đường cao tương ứng với ba đỉnh A, B, C lần lượt là ( ) ' 1;1A , ( ) ' 2;3B − và ( ) ' 2;4C . Viết phương trình cạnh BC. ĐS: 2 3 3 1 5 2 0 13 10 13 10 13 10 x − + + − + = Toán học & Tuổi trẻ: Cho tam giác ABC có : 5 2 7 0; : 2 1 0AB x y BC x y+ + = − − = . Phương trình đường phân giác trong góc A là 1 0x y+ − = . Tìm tọa độ điểm C. ĐS: 11 4 ; 3 3 C Toán học & Tuổi trẻ: Cho tam giác ABC biết C(4 ; 3). Đường phân giác trong và trung tuyến kẻ từ đỉnh A của tam giác lần lượt có phương trình 2 5 0x y+ − = và 4 13 10x y+ − . Tìm tọa độ điểm B. ĐS: ( ) 12;1B − Toán học & Tuổi trẻ: Cho tam giác ABC biết ( ) 1;1A − , trực tâm H(1 ; 3), trung điểm của cạnh BC là điểm M(5 ; 5). Xác định tọa độ các đỉnh B và C của tam giác ABC. Đặng Thúc Hứa - Nghệ An: Cho tam giác ABC có : 2 3 0d x y− − = là đường phân giác trong góc A. Biết ( ) ( ) 1 1 6;0 , 4;4B C− − lần lượt là hình chiếu vuông góc của B, C lên các đường thẳng AC, AB. Xác định tọa độ của A, B, C. ĐS: ( ) 21 21 31 1 1; 1 , ; , ; 4 4 4 4 A B C − − − Lê Hồng Phong - Thanh Hóa: 1. Cho tam giác ABC có A(5 ; 2). Phương trình đường trung trực đoạn BC là 6 0x y+ − = , trung tuyến CC’ là 2 3 0x y− + = . Tìm tọa độ các đỉnh B, C. 2. Cho tam giác ABC có A(1 ; 5). Phương trình : 2 6 0BC x y− − = . Tâm đường tròn nội tiếp I(1;0). Tìm tọa độ các đỉnh B, C. ĐS: 1. ( ) ( ) 23 / 5;55/3 , 28 / 3; 14 / 3C B − − 2. ( ) ( ) 4; 1 , 4; 5B C− − − chuyên ĐH Vinh: Cho tam giác ABC có trọng tâm G(1 ; 1); : 2 1 0d x y− + = là phương trình của đường cao kẻ từ đỉnh A. Các đỉnh B, C thuộc đường thẳng : 2 1 0x y∆ + − = . Tìm tọa độ các điểm A, B, C biết tam giác ABC có diện tích bằng 6. ĐS: ( ) ( ) ( ) 1;3 , 3; 1 , 1;1A B C− − hoặc ( ) ( ) ( ) 1;3 , 3; 1 , 1;1A C B− − Lý Thái Tổ - Bắc Ninh: Cho tam giác ABC biết đường cao kẻ từ đỉnh B và đường phân giác trong góc A lần lượt có phương trình là 1 2 : 3 4 10 0; : 1 0d x y d x y+ + = − + = . Điểm M(0 ; 2) thuộc đường thẳng AB đồng thời cách C một khoảng bằng 2 . Tìm tọa độ các đỉnh của tam giác ABC. ĐS: ( ) ( ) ( ) 4;5 , 3; 1/ 4 , 1;1A B C− − hoặc ( ) 31/ 25;33/ 25C THPT Cầu Xe: Cho tam giác ABC biết đường cao kẻ từ đỉnh C và đường trung trực đoạn BC lần lượt là 2 0;3 4 2 0x y x y− + = + − = . Điểm ( ) 4; 2A − . Tìm tọa độ các đỉnh B, C. ĐS: ( ) ( ) 1/ 4;9 / 4 , 7 / 4;1/ 4B C− − Phương pháp tọa độ trong mặt phẳng Giáo viên: Nguyễn Trung Nghĩa - THPT chuyên Quốc Học Huế 8 THPT Triệu Sơn 4: Cho tam giác ABC biết đường cao kẻ từ đỉnh A và đường phân giác trong góc B lần lượt có phương trình là 2 2 0; 1 0x y x y− − = − − = . Tìm tọa độ các đỉnh của tam giác ABC, biết M(0 ; 2) thuộc đường thẳng AB và AB = 2BC. ĐS: ( ) ( ) ( ) 3;1/ 2 , 2;1 , 7 / 4;3/ 2A B C Quỳnh Lưu 2 - Nghệ An: Cho tam giác ABC có diện tích bằng 12 6 6+ , ( ) ( ) 2;0 , 4;0A B− , bán kính đường tròn ngoại tiếp bằng 5. Tìm tọa độ điểm C biết tung độ của C dương. ĐS: ( ) 0;4 2 6C + hoặc ( ) 2;4 2 6C + chuyên Nguyễn Quang Diêu - Đồng Tháp: Cho tam giác ABC có 5AB = , ( ) 1; 1C − − , đường thẳng : 2 3 0AB x y+ − = . Trọng tâm G thuộc đường thẳng : 2 0d x y+ − = . Tìm tọa độ của A, B. ĐS: ( ) ( ) 4; 1/ 2 , 6; 3/ 2A B− − hoặc ( ) ( ) 4; 1/ 2 , 6; 3 / 2B A− − GSTT.VN - 2013: Cho tam giác ABC có M(0;-1) nằm trên cạnh AC. Biết AB=2AM, đường phân giác trong góc A là : 0d x y− = , đường cao đi qua đỉnh C là ' : 2 3 0d x y+ + = . Tìm tọa độ các đỉnh của tam giác ABC. ĐS: ( ) ( ) − − − − 1 1;1 , 3; 1 , ; 2 2 A B C Đặng Thúc Hứa - Nghệ An - 2013: Cho tam giác ABC có 135 o BAC = , đường cao : 3 10 0BH x y+ + = , trung điểm của cạnh BC là 1 3 ; 2 2 M − và trực tâm H(0;-10). Biết tung độ của điểm B âm. Xác định tọa độ các đỉnh của tam giác ABC. Đặng Thúc Hứa - Nghệ An - 2013: Cho tam giác ABC có trực tâm H, : 4 0BC x y− + = , trung điểm của cạnh AC là M(0;3), đường cao AH cắt đường tròn ngoại tiếp tam giác ABC tại N(7;-1). Xác định tọa độ các đỉnh của tam giác ABC và viết phương trình đường tròn ngoại tiếp tam giác HBC. chuyên Lê Quý Đôn - Quảng Trị - 2013: Cho tam giác ABC có trọng tâm G(1;2), điểm M(-2;1) nằm trên đường cao kẻ từ A. Đường thẳng BC có phương trình 1 0x y− − = . Tìm tọa độ điểm B biết 0 B x > và diện tích tam giác ABC bằng 24. ĐS: B(7;6) chuyên ĐH Vinh - 2013: Cho tam giác ABC có A(-1;-3), B(5;1). Điểm M nằm trên đoạn thẳng BC sao cho MC=2MB. Tìm tọa độ điểm C biết rằng MA = AC = 5 và đường thẳng BC có hệ số góc là một số nguyên. ĐS: C(-4;1) Toán học & Tuổi trẻ - 2014: Cho tam giác ABC có A(1;2), trọng tâm G(1;1) và trực tâm 2 10 ; 3 3 H . Tìm tọa độ hai đỉnh B và C của tam giác. ĐS: B(-1;0) và C(3;1) Hồng Quang - Hải Dương - 2014: Cho tam giác ABC có diện tích bằng 2. Phương trình của đường thẳng AB là 0x y− = . Điểm M(2;1) là trung điểm của cạnh BC. Tìm tọa độ trung điểm N của cạnh AC. ĐS: B(3;2) và C(1;0) Sở GD&ĐT Vĩnh Phúc - 2014: Cho tam giác ABC có đỉnh C(5;1), M là trung điểm của BC, điểm B thuộc đường thẳng : 6 0d x y+ + = . Điểm N(0;1) là trung điểm của AM, điểm D(-1;-7) không nằm trên đường thẳng AM và khác phía với A so với đường thẳng BC, đồng thời khoảng cách từ A và D tới đường thẳng BC bằng nhau. Xác định tọa độ các điểm A, B. ĐS: B(-3;-3) và A(-1;3) Phương pháp tọa độ trong mặt phẳng Giáo viên: Nguyễn Trung Nghĩa - THPT chuyên Quốc Học Huế 9 chuyên Nguyễn Đình Chiểu - Đồng Tháp - 204: Cho tam giác ABC có ( ) ( ) ( ) 0;2 3 , 2;0 , 2;0A B C− và BH là đường cao. Tìm tọa độ của điểm M, N trên đường thẳng chứa đường cao BH sao cho ba tam giác MBC, NBC và ABC có chu vi bằng nhau. ĐS: 8 24 3 24 6 3 8 24 3 24 6 3 ; , ; 13 13 13 13 M N − + + − − − + chuyên ĐH Vinh - 204: Cho tam giác ABC có phương trình đường thẳng chứa đường cao kẻ từ B là 3 18 0x y+ − = , phương trình đường thẳng trung trực của BC là 3 19 279 0.x y+ − = Đỉnh C thuộc đường thẳng : 2 5 0.d x y− + = Tìm tọa độ đỉnh A biết rằng 135 . o BAC = ĐS: A(4;8) chuyên Lý Tự Trọng - Cần Thơ - 2014: Cho tam giác ABC có H(1;1) là chân đường cao kẻ từ đỉnh A. Điểm M(3;0) là trung điểm của cạnh BC và .BAH HAM MAC= = Tìm tọa độ các điểm A, B, C. ĐS: ( ) ( ) ( ) 1 3;1 2 3 , 1;2 , 7; 2A B C± ± − − ĐHSP Hà Nội - 2014: Cho tam giác ABC có AC>AB, C(6;0) và hai đường thẳng : 3 10 0d x y− − = , : 3 3 16 0.x y∆ + − = Biết rằng đường thẳng d chứa đường phân giác trong của góc A, đường thẳng ∆ vuông góc với cạnh AC và ba đường thẳng ∆ , d và trung trực của cạnh BC đồng qui tại một điểm. ĐS: 4 2 ; 3 3 B chuyên ĐH Vinh - 204: Cho tam giác ABC có M(2;1) là trung điểm cạnh AC, điểm H(0;-3) là chân đường cao kẻ từ A, điểm E(23;-2) thuộc đường thẳng chứa trung tuyến kẻ từ C. Tìm tọa độ điểm B biết điểm A thuộc đường thẳng : 2 3 5 0d x y+ − = và điểm C có hoành độ dương. ĐS: ( ) 3; 4B − − Nguoithay.vn - 2014: Cho tam giác ABC có A(1;5), điểm B nằm trên đường thẳng 1 : 2 1 0d x y+ + = và chân đường cao hạ từ đỉnh B xuống đường thẳng AC nằm trên đường thẳng 2 : 2 8 0d x y+ − = . Biết M(3;0) là trung điểm của cạnh BC. Tìm tọa độ của các điểm B và C. 1.2. Viết phương trình đường thẳng D09: Cho tam giác ABC có M(2; 0) là trung điểm của cạnh AB. Đường trung tuyến và đường cao qua đỉnh A lần lượt có phương trình là − − = − − =7 2 3 0, 6 4 0x y x y . Viết phương trình đường thẳng AC. ĐS: AC x y: 3 4 5 0− + = chuyên Phan Bội Châu - Nghệ An: Cho tam giác ABC có trực tâm ( ) 1;4H − , tâm đường tròn ngoại tiếp là ( ) 3;0I − và trung điểm của cạnh BC là ( ) 0; 3M − . Viết phương trình đường thẳng AB biết B có hoành độ dương. ĐS: : 3 7 49 0AB x y+ − = chuyên Hà Nội - Amsterdam: Cho tam giác ABC và điểm ( ) 0; 1M − . Phương trình đường phân giác trong của góc A và đường cao kẻ từ C lần lượt là 0; 2 3 0x y x y− = + + = . Đường thẳng AC đi qua M và AB = 2AM. Viết phương trình cạnh BC. ĐS: : 2 5 11 0BC x y+ + = Toán học & Tuổi trẻ - 2013: Cho tam giác ABC có C(5;4), đường thẳng : 2 11 0d x y− + = đi qua A và song song với BC, đường phân giác trong AD có phương trình 3 9 0x y+ − = . Viết phương trình các cạnh còn lại của tam giác ABC. ĐS: + − = − + = − + =: 2 13 0, : 2 3 0, : 2 4 0AC x y BC x y AB x y Phương pháp tọa độ trong mặt phẳng Giáo viên: Nguyễn Trung Nghĩa - THPT chuyên Quốc Học Huế 10 Toán học & Tuổi trẻ - 2014: Cho tam giác ABC có A(-1;3), trọng tâm G(2;2). Biết điểm B, C lần lượt là thuộc các đường thẳng : 3 3 0d x y+ − = và ' : 1 0d x y− − = . Viết phương trình đường thẳng ∆ đi qua A có hệ số góc dương sao cho tổng khoảng cách từ B và C đến ∆ là lớn nhất. ĐS: ∆ − + =: 3 6 0x y chuyên Nguyễn Đình Chiểu - Đồng Tháp - 2014: Cho tam giác ABC có phương trình đường cao AH là 3 3.x = Phương trình đường phân giác trong góc ABC , ACB lần lượt là 3x y− , 3 6 3 0.x y+ − = Bán kính đường tròn nội tiếp tam giác ABC bằng 3. Viết phương trình các cạnh của tam giác ABC, biết đỉnh A có tung độ dương. ĐS: : 3 18 0, : 0, : 3 0AC y x BC y AB y x+ − = = − = 2. Tam giác cân 2.1. Tìm tọa độ của điểm B03: Cho tam giác ABC có = ,AB AC = 90 o BAC . Biết M(1; –1) là trung điểm cạnh BC và ( ) 2/3; 0G là trọng tâm tam giác ABC. Tìm tọa độ các đỉnh A, B, C. ĐS: A(0; 2), B(4; 0), C(–2; –2) B09: Cho tam giác ABC cân tại A có đỉnh A(–1; 4) và các đỉnh B, C thuộc đường thẳng ∆: − − =4 0x y . Xác định toạ độ các điểm B và C, biết diện tích tam giác ABC bằng 18. ĐS: B C 11 3 3 5 ; , ; 2 2 2 2 − hoặc B C 3 5 11 3 ; , ; 2 2 2 2 − A10: Cho tam giác ABC cân tại A có đỉnh A(6; 6); đường thẳng đi qua trung điểm của các cạnh AB và AC có phương trình + − =4 0x y . Tìm toạ độ các đỉnh B và C, biết điểm E(1; –3) nằm trên đường cao đi qua đỉnh C của tam giác đã cho. ĐS: B(0; –4), C(–4; 0) hoặc B(–6; 2), C(2; –6) A05(dự bị): Cho tam giác ABC cân tại đỉnh A có trọng tâm G 4 1 ; 3 3 , phương trình đường thẳng BC là x y 2 4 0− − = và phương trình đường thẳng BG là x y 7 4 8 0− − = .Tìm tọa độ các đỉnh A, B, C. ĐS: A(0; 3), B(0; –2), C(4; 0) chuyên Lý Tự Trọng - Cần Thơ: Cho tam giác ABC cân tại B, có : 3 2 3 0AB x y− − = . Tâm đường tròn ngoại tiếp tam giác ABC là I(0 ; 2). Điểm B thuộc trục Ox. Tìm tọa độ điểm C. ĐS: ( ) 3 1;1 3C − − Quỳnh Lưu 1 - Nghệ An: Cho tam giác ABC cân tại A có : 2 2 0; : 2 1 0AB x y AC x y+ − = + + = , điểm M(1 ; 2) thuộc đoạn BC. Tìm tọa độ điểm D sao cho .DB DC nhỏ nhất. ĐS: D(0 ; 3) Nguyễn Đức Mậu - Nghệ An: Cho tam giác ABC cân tại A, đỉnh B thuộc : 4 2 0d x y− − = , cạnh AC song song với d. Đường cao kẻ từ đỉnh A có phương trình 3 0x y+ + = , điểm M(1 ; 1) nằm trên AB. Tìm tọa độ các đỉnh của tam giác ABC. ĐS: ( ) ( ) ( ) 0; 3 , 2 / 3; 1 / 3 , 8 / 3; 11 / 3A B C− − − − chuyên Phan Bội Châu - Nghệ An - 2013: Cho tam giác ABC cân tại A. Gọi D là trung điểm của AB. Biết rằng 11 5 ; 3 3 I và 13 5 ; 3 3 E lần lượt là tâm đường tròn ngoại tiếp tam giác ABC, trọng tâm tam giác ADC. Các điểm M(3;-1), N(-3;0) lần lượt thuộc các đường thẳng DC, AB. Tìm tọa độ các điểm A, B, C biết A có tung độ dương. ĐS: ( ) ( ) ( ) − −7;5 , 1;1 , 3; 3A B C [...]... phẳng CÁC BÀI TOÁN VỀ HÌNH THANG, HÌNH BÌNH HÀNH 1 Tìm tọa độ của điểm B13: Cho hình thang cân ABCD có hai đường chéo vuông góc với nhau và AD = 3BC Đường thẳng BD có phương trình x + 2 y − 6 = 0 và tam giác ABD có trực tâm H ( −3; 2 ) Tìm tọa độ các đỉnh C và D ĐS: C ( −1;6 ) và D ( 4;1) hoặc D ( −8;7 ) chuyên Vĩnh Phúc: Cho hình bình hành ABCD có diện tích bằng 4 Biết A ( 2;0 ) , B ( 3;0 ) và giao... F và điểm C có hoành độ dương Tìm tọa độ các đỉnh của hình chữ nhật ABCD Nguoi thay.vn - 2014: Cho hình chữ nhật ABCD có diện tích bằng 30 và đỉnh B nằm trên đường thẳng d : x − 2 y − 2 = 0 Trung điểm của AB là M(4;3) và điểm N(1;-3) nằm trên đường thẳng CD Tìm tọa độ các đỉnh của hình chữ nhật ABCD, biết điểm B có tung độ dương Nguoi thay.vn - 2014: Cho hình chữ nhật ABCD có diện tích bằng 30 và. .. độ trong mặt phẳng CÁC BÀI TOÁN VỀ HÌNH CHỮ NHẬT 1 Tìm tọa độ của điểm 1 B02: Cho hình chữ nhật ABCD có tâm I ; 0 , phương trình đường thẳng AB là x – 2y + 2 = 0 và AB = 2 2AD Tìm tọa độ các đỉnh A, B, C, D biết rằng đỉnh A có hoành độ âm ĐS: A(–2; 0), B(2; 2), C(3; 0), D(–1; –2) D12: Cho hình chữ nhật ABCD Các đường thẳng AC và AD lần lượt có phương trình là x + 3 y = 0 và x − y + 4 = 0 ... Huế 16 Phương pháp tọa độ trong mặt phẳng CÁC BÀI TOÁN VỀ HÌNH VUÔNG 1 Tìm tọa độ của điểm A05: Cho hai đường thẳng d1 : x − y = 0 và d2 : 2 x + y − 1 = 0 Tìm toạ độ các đỉnh hình vuông ABCD biết rằng đỉnh A thuộc d1, đỉnh C thuộc d2 và các đỉnh B, D thuộc trục hoành ĐS: A(1; 1), B(0; 0), C(1; –1), D(2; 0) hoặc A(1; 1), B(2; 0), C(1; –1), D(0; 0) A12: Cho hình vuông ABCD Gọi M là trung điểm của cạnh... = 0 và đường thẳng ∆ : x + y + 2 = 0 Gọi I là tâm của (C), M là điểm thuộc ∆ Qua M kẻ các tiếp tuyến MA và MB đến (C) (A và B là các tiếp điểm) Tìm tọa độ điểm M, biết tứ giác MAIB có diện tích bằng 10 ĐS: M ( 2; −4 ) , M ( −3;1) D13: Cho đường tròn (C ) : ( x − 1)2 + ( y − 1)2 = 4 và đường thẳng ∆ : y − 3 = 0 tam giác MNP có trực tâm trùng với tâm của (C), các đỉnh N và P thuộc ∆ , đỉnh M và trung... thẳng d : 5 x − y + 7 = 0 và điểm D có hoành độ âm Tìm tọa độ các đỉnh A và D 2 ĐS: A − ;5 , D ( −2;1) 5 Sở GD&ĐT Bắc Ninh - 2014: Cho hình chữ nhật ABCD có AD : 2 x + y − 1 = 0 , điểm I(-3;2) thuộc BD sao cho IB = −2 ID Tìm tọa độ các đỉnh của hình chữ nhật biết x D > 0 và AD = 2 AB ĐS: A ( −5;11) , B ( −11;8 ) , C ( −5; −4 ) , D (1; −1) Sở GD&ĐT Bắc Ninh - 2014: Cho hình chữ nhật ABCD có... ; 1) Tìm tọa độ các đỉnh của hình chữ nhật ĐS: A (1;0 ) , B ( 7;3) , C ( 6;5) , D ( 0;2 ) Đô Lương 4 - Nghệ An: Cho hình chữ nhật ABCD có diện tích bằng 12, tâm I thuộc đường thẳng 9 d : x − y − 3 = 0 và x I = , trung điểm của một cạnh là giao điểm của d và trục Ox Tìm tọa độ các đỉnh 2 của hình chữ nhật ĐS: A ( 2;1) , B ( 5;4 ) , C ( 7;2 ) , D ( 4; −1) Nguyễn Đức Mậu - Nghệ An: Cho hình chữ nhật ABCD... 0 Tìm tọa độ các đỉnh của hình bình hành biết hoành độ của A và B dương và diện tích của hình bình hành bằng 36 ĐS: A(7; –3), B(7; 5), C(1; 3), D(1; –1) chuyên Lý Tự Trọng - Cần Thơ - 2014: Cho hình bình hành ABCD có A(4;0), phương trình đường thẳng chứa trung tuyến kẻ từ B của tam giác ABC là 7 x + 4 y − 5 = 0 Phương trình đường trung trực của đoạn BC là 2 x + 8 y − 5 = 0 Tìm tọa độ các điểm B, C,... −4 ) ( ) ( ) Lạng Giang 1 - Bắc Giang: Cho hình thoi ABCD có phương trình cạnh AC là x + 7 y − 31 = 0 , hai đỉnh B, D lần lượt thuộc các đường thẳng d1 : x + y − 8 = 0 và d2 : x − 2 y + 3 = 0 Tìm tọa độ các đỉnh của hình thoi biết diện tích của hình thoi bằng 75 và đỉnh A có hoành độ âm ĐS: A (10;3) , B ( 0;8) , C ( −11;6 ) , D ( −1;1) GSTT.VN - 2013: Cho hình thoi ABCD biết AB : x + 3 y + 1 = 0; BD... Viết phương trình chính tắc của elip (E) có độ dài trục lớn bằng 8 và (E) cắt (C) tại 4 điểm tạo thành bốn đỉnh của một hình vuông x 2 y2 ĐS: ( E ) : + =1 16 16 3 B12: Cho hình thoi ABCD có AC = 2BD và đường tròn tiếp xúc với các cạnh của hình thoi có phương trình x 2 + y 2 = 4 Viết phương trình chính tắc của elip (E) đi qua các đỉnh của hình thoi biết A thuộc Ox ĐS: ( E ) : x 2 y2 + =1 20 5 A06(dự bị): . • Các bài toán về điểm và đường thẳng 4 • Các bài toán về tam giác 6 • Các bài toán về hình chữ nhật 13 • Các bài toán về hình thoi 16 • Các bài toán về hình vuông 17 • Các bài. Cho hình thang cân ABCD có AB=2CD. Phương trình các đường thẳng AC là 4 0x y+ − = và đường thẳng BD là 2 0x y− − = . Tìm tọa độ các đỉnh của hình bình hành biết hoành độ của A và B dương và. D12: Cho hình chữ nhật ABCD. Các đường thẳng AC và AD lần lượt có phương trình là 3 0x y+ = và 4 0x y− + = . Đường thẳng BD đi qua điểm ( ) −1 / 3;1M . Tìm tọa độ các đỉnh của hình chữ nhật.