1. Trang chủ
  2. » Giáo án - Bài giảng

lUYỆN THI HHKG CÓ BÀI GIẢI

22 117 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 22
Dung lượng 1,27 MB

Nội dung

Trường THPT Đại Từ GV: TTD BÀI 1 Câu 1: Trong không gian Oxyz, viết phương trình mặt phẳng (P) chứa đường thẳng (d) : x y 2 0 2x z 6 0 − − =   − − =  sao cho giao tuyến của mặt phẳng (P) và mặt cầu (S) : 2 2 2 x y z 2x 2y 2z 1 0+ + + − + − = là đường tròn có bán kính r = 1. Câu 2: Cho lăng trụ ABC.A'B'C' có các mặt bên đều là hình vuông cạnh a. Gọi D, F lần lượt là trung điểm các cạnh BC, C'B'. Tính khoảng cách giữa hai đường thẳng A'B và B'C'. GI ẢI Câu 1: Mặt phẳng (P) chứa (d) có dạng: m(x – y – 2) + n(2x – z – 6) = 0 (P): (m 2n)x my nz 2m 6n 0⇔ + − − − − = ° Mặt cầu (S) có tâm I(-1; 1; -1), bán kính R = 2. ° (P) cắt (S) theo một đường tròn giao tiếp (C) có bán kính r = 1 2 2 d(I; P) R r 3⇔ = − = 2 2 2 m 2n m n 2m 6n 3 (m 2n) m n − − − + − − ⇔ = + + + 2 2 4m 7n 3. 2m 5n 4m.n⇔ − − = + + 2 2 5m 22m.n 17n 0⇔ + + = ° Cho 2 17 n 1 5m 22m 17 0 m 1 hay m 5 = ⇒ + + = ⇔ = − = − ° Vậy, có 2 mặt phẳng (P): 1 2 (P ): x y z 4 0 (P ): 7x 17y 5z 4 0 + − − =   − + − =  Câu 2 : . Cách 1: ° Vì các mặt bên của lăng trụ là các hình vuông ⇒ / / / / / / AB BC CA A B B C C A a= = = = = = ⇒ các tam giác ABC, A / B / C / là các tam giác đều. ° Ta có: / / / / / B C // BC B C //(A BC)⇒ / / / / / / / d(A B; B C ) d(B C ; (A BC)) d(F; (A BC))⇒ = = ° Ta có: / / / / BC FD BC (A BC) BC A D ( A BC cân tại A ) ⊥  ⇒ ⊥  ⊥ ∆  ° Dựng / FH A D⊥ ° Vì / / BC (A BC) BC FH H (A BC)⊥ ⇒ ⊥ ⇒ ⊥ ° ∆A / FD vuông có: 2 / 2 2 2 2 2 1 1 1 4 1 7 a 21 FH . 7 FH A F FD 3a a 3a = + = + = ⇒ = ° Vậy, / / / a 21 d(A B; B C ) FH 7 = = Trang 1 A / B / C / C B A H F D Trường THPT Đại Từ GV: TTD Cách 2: ° Vì các mặt bên của lăng trụ là các hình vuông ⇒ ∆ABC, ∆A / B / C / là các tam giác đều cạnh a. ° Dựng hệ trục Axyz, với Ax, Ay, Az đôi một vuông góc, A(0; 0; 0), / / / a a 3 a a 3 B ; ; 0 , C ; ; 0 , A (0; 0; a), 2 2 2 2 a a 3 a a 3 B ; ; a , C ; ; a 2 2 2 2     −  ÷  ÷         −  ÷  ÷     ° Ta có: / / / / / B C // BC, B C //(A BC) / / / / / / / / d(B C ; A B) d(B C ; (A BC)) d(B ; (A BC))⇒ = = ° / / a a 3 a a 3 A B ; ; a , A C ; ; a 2 2 2 2     = − = − −  ÷  ÷     uuuur uuuur ° 2 / / 2 2 2 a 3 3 [A B; A C] 0; a ; a 0;1; a .n, 2 2     = = =  ÷  ÷     uuuur uuuur r với 3 n 0; 1; 2   =  ÷   r ° Phương trình mp (A / BC) qua A / với pháp vectơ n r : 3 0(x 0) 1(y 0) (z a) 0 2 − + − + − = / 3 a 3 (A BC): y z 0 2 2 ⇔ + − = ° / / a 3 3 a 3 a 3 .a a 21 2 2 2 2 d(B (A BC)) . 7 3 7 1 4 2 + − = = = + ° Vậy, / / / a 21 d(A B; B C ) . 7 = BÀI 2 Câu 1: Trong không gian Oxyz cho A(0; 1; 0), B(2; 2; 2), C(-2; 3; 1) và đường thẳng (∆) : x 1 y 2 z 3 2 1 2 − + − = = − 1. Tìm điểm M thuộc (∆) để thể tích tứ diện MABC bằng 3. 2. Tìm điểm N thuộc (∆) để thể tích tam giác ABN nhỏ nhất. Câu 2: (1,0 điểm) Trang 2 A / C / B / A B C D x a z y Trường THPT Đại Từ GV: TTD Cho hình chóp S.ABC đáy ABC là tam giác đều cạnh a. SA = SB = SC, khoảng cách từ S đến mặt phẳng (ABC) là h. Tính h theo a để hai mặt phẳng (SAB) và (SAC) vuông góc nhau. GIẢI Câu 1: 1. Phương trình tham số của (D): x 1 2t y 2 t z 3 2t = +   = − −   = +  ° M ( ) M(1 2t; 2 t; 3 2t)∈ ∆ ⇒ + − − + ° AB (2; 1; 2), AC ( 2; 2;1)= = − uuur uuur ° [AB; AC] ( 3; 6; 6) 3(1; 2; 2) 3.n= − − = − − = − uuur uuur r , với n (1; 2; 2)= − r ° Phương trình mp (ABC) qua A với pháp vectơ n r : (ABC): x + 2y – 2z – 2 = 0. ° 2 2 2 ABC 1 1 9 S [AB; AC] ( 3) ( 6) 6 . 2 2 2 = = − + − + = uuur uuur ° Đường cao MH của tứ diện MABC là khoảng từ M đến (ABC): 1 2t 2( 2 t) 2(3 2t) 2 4t 11 MH d(M(ABC)) 3 1 4 4 + + − − − + − − − = = = + + ° Thể tích tứ diện MABC bằng 3 4t 11 1 9 V . . 3 3 2 3 + ⇔ = = 5 17 4t 11 6 t hay t . 4 4 ⇔ + = ⇔ = − = − ° Vậy, có 2 điểm M cần tìm là: 3 3 1 15 9 11 M ; ; hay M ; ; 2 4 2 2 4 2     − − −  ÷  ÷     2. N ( ) N(1 2t; 2 t; 3 2t)∈ ∆ ⇒ + − − + ° 2 2 ABN 1 1 2 3 2 S [NA; NB] 32t 128t 146 (4t 8) 9 2 2 2 2 = = + + = + + ≥ uuur uuur ABN 3 2 maxS 4t 8 0 t 2. 2 ⇒ = ⇔ + = ⇔ = − ° Vậy, điểm N cần tìm là N(-3; 0; 1). Câu 2: Cách 1: ° Gọi O là tâm của ∆ABC ° Ta có: SA SB SC OA OB OC ( ABC đều) = =   = = ∆  ⇒ SO là trục của đường tròn (ABC) SO (ABC)⇒ ⊥ ° Mà : AO BC; SO BC BC (SOA) BC SA⊥ ⊥ ⇒ ⊥ ⇒ ⊥ ° Dựng BI SA⊥ , suy ra: SA (IBC) SA IC.⊥ ⇒ ⊥ · BIC⇒ là góc phẳng nhò diện (B, SA, C). Trang 3 S I A O B M C Trường THPT Đại Từ GV: TTD ° ∆SOA vuông có: 2 2 2 2 2 2 2 2 2 a 3h a 3h a SA SO OA h SA 3 3 3 + + = + = + = ⇒ = ° Gọi M là trung điểm BC Ta có: BM (SOA), BI SA⊥ ⊥ IM SA⇒ ⊥ (đònh lý 3 đường vuông góc) ⇒ MIA SOA∆ ∆: 2 2 2 2 AM a 3 3 3ah MI SO. h. . SA 2 3h a 2 3h a ⇒ = = = + + ° SAB SAC (c.c.c) IB IC IBC∆ = ∆ ⇒ = ⇒ ∆ cân tại I. ° (SAB) (SAC) IBC⊥ ⇔ ∆ vuông cân tại I 1 IM BC 2 ⇔ = 2 2 2 2 2 2 2 3ah 1 a 3h 3h a 2 2 3h a a 6 9h 3h a h . 6 ⇔ = ⇔ = + + ⇔ = + ⇔ = ° Vậy, a 6 h . 6 = Cách 2: ° Gọi H là tâm của ∆ABC và M là trung điểm của BC ° Ta có: SA SB SC HA HB HC ( ABC đều) = =   = = ∆  ° Dựng hệ trục tọa độ Axyz, với Ax, Ay, Az đôi một vuông góc A(0; 0; 0), a a 3 a a 3 a 3 a 3 B ; ; 0 , C ; ; 0 , H 0; ; 0 , S 0; ; h 2 2 2 2 2 3         −  ÷  ÷  ÷  ÷         . ° a 3 a a 3 a a 3 SA 0; ; h , SB ; ; h , SC ; ; h 3 2 6 2 6       = = − = − −  ÷  ÷  ÷       uuur uur uuur ° 2 1 ah 3 ah a 3 a a [SA; SB] ; ; (3h 3; 3h; a 3) .n , 2 2 6 6 6   = − − = − − = −  ÷   uuur uur r với 1 n (3h 3; 3h; a 3)= − r ° 2 2 ah 3 ah a 3 a a [SA; SC] ; ; (3h 3; 3h; a 3) .n , 2 2 6 6 6   = − − = − − = −  ÷   uuur uuur r với 2 n (3h 3; 3h; a 3)= − r . ° Mặt phẳng (SAB) có cặp vectơ chỉ phương SA; SB uuur uur nên có pháp vectơ 1 n r . ° Mặt phẳng (SAC) có cặp vectơ chỉ phương SA; SC uuur uuur nên có pháp vectơ 2 n r . ° 1 2 (SAB) (SAC) cos(n ; n ) 0⊥ ⇔ = r r Trang 4 S z A z H B M y C Trường THPT Đại Từ GV: TTD 2 2 2 2 2 3h 3.3h 3 3h.3h a 3( a 3) 0 27h 9h 3a 0 a 6 18h 3a h . 6 ⇔ − + − = ⇔ − − = ⇔ = ⇔ = ° Vậy: a 6 h . 6 = BÀI 3 Câu 1: Trong không gian Oxyz cho đường thẳng (d) và mặt cầu (S): 2 2 2 2x 2y z 1 0 (d): ; (S):x y z 4x 6y m 0 x 2y 2z 4 0 − − + =  + + + − + =  + − − =  Tìm m để (d) cắt (S) tại hai điểm M, N sao cho MN = 8. Câu 2: Cho tứ diện OABC có đáy là ∆OBC vuông tại O, OB = a, OC = a 3, (a 0)> và đường cao OA a 3= . Gọi M là trung điểm cạnh BC. Tính khoảng cách giữa hai đường thẳng AB và OM. GIẢI Câu 1: Mặt cầu (S): 2 2 2 (x 2) (y 3) z 13 m− + − + = − có tâm I(-2; 3; 0), bán kính R IN 13 m= = − , với m < 13. ° Dựng IH MN MH HN 4⊥ ⇒ = = 2 2 IH IN HN 13 m 16 m 3⇒ = − = − − = − − , với m < -3. ° Phương trình tham số của đường thẳng (d): x t 1 y 1 t 2 z 1 t =    = +   = − +   ° (d) có vectơ chỉ phương 1 1 u 1; ; 1 (2; 1; 2) 2 2   = =  ÷   r và đi qua điểm A(0; 1; -1) ° AI ( 2; 2;1); [AI; u] (3; 6; 6)= − = − uur uur r ° Khoảng cách h từ I đến đường thẳng (d): 2 2 2 2 2 2 [AI; u] 3 6 6 81 h 3. u 9 2 1 2 + + = = = = + + uur r r Trang 5 H NM I Trường THPT Đại Từ GV: TTD ° Ta có: IH = h m 3 3 m 3 9⇔ − − = ⇔ − − = m 12⇔ = − (thỏa điều kiện) ° Vậy, giá trò cần tìm: m = -12. Câu 2: Cách 1: ° Gọi N là điểm đối xứng của C qua O. ° Ta có: OM // BN (tính chất đường trung bình) ⇒ OM // (ABN) ⇒ d(OM; AB) = d(OM; (ABN)) = d(O; (ABN)). ° Dựng OK BN, OH AK (K BN; H AK)⊥ ⊥ ∈ ∈ ° Ta có: AO (OBC); OK BN AK BN⊥ ⊥ ⇒ ⊥ BN OK; BN AK BN (AOK) BN OH⊥ ⊥ ⇒ ⊥ ⇒ ⊥ OH AK; OH BN OH (ABN) d(O; (ABN) OH⊥ ⊥ ⇒ ⊥ ⇒ = ° Từ các tam giác vuông OAK; ONB có: 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 5 a 15 OH 5 OH OA OK OA OB ON 3a a 3a 3a = + = + + = + + = ⇒ = ° Vậy, a 15 d(OM; AB) OH . 5 = = Cách 2: ° Dựng hệ trục Oxyz, với Ox, Oy, Oz đôi một vuông góc O(0; 0; 0), A(0; 0; a 3); B(a; 0; 0), C(0; a 3; 0), a a 3 M ; ; 0 2 2    ÷   và a 3 a 3 N 0; ; 2 2    ÷   là trung điểm của AC. ° MN là đường trung bình của ∆ABC ⇒ AB // MN ⇒ AB // (OMN) ⇒ d(AB; OM) = d(AB; (OMN)) = d(B; (OMN)). ° a a 3 a 3 a 3 OM ; ; 0 , ON 0; ; 2 2 2 2     = =  ÷  ÷     uuuur uuur ° ( ) 2 2 2 2 2 3a a 3 a 3 a 3 a 3 [OM; ON] ; ; 3; 1; 1 n 4 4 4 4 4   = = =  ÷   uuuur uuur r , với n ( 3; 1; 1) = r ° Phương trình mp (OMN) qua O với pháp vectơ n : 3x y z 0+ + = r ° Ta có: 3.a 0 0 a 3 a 15 d(B; (OMN)) 5 3 1 1 5 + + = = = + + ° Vậy, a 15 d(AB; OM) . 5 = Trang 6 z A a 3 a 3 y C N O M a x B Trường THPT Đại Từ GV: TTD BÀI 4 Câu 1: Trong không gian Oxyz cho mặt phẳng (α) : 2x – y + z – 5 = 0. Viết phương trình mặt phẳng (P) qua giao tuyến của (α) và mặt phẳng (xOy) và (P) tạo với 3 mặt phẳng tọa độ một tứ diện có thể tích bằng 36 125 . Câu 2: Cho hình chóp SABC có đáy là tam giác ABC vuông cân tại A, AB = AC = a (a > 0), hình chiếu của S trên đáy trùng với trọng tâm G của ∆ABC. Đặt SG = x (x > 0). Xác đònh giá trò của x để góc phẳng nhò diện (B, SA, C) bằng 60 o . GIẢI Câu 1: Phương trình mặt phẳng (xOy): z = 0 ° Phương trình mặt phẳng (P) thuộc chùm xác đònh bởi (α) và (xOy) có dạng: m(2x – y + z – 5) – nz = 0 (P): 2mx my (m n)z 5m 0⇔ − + + − = ° Giao điểm A, B, C của (P) và 3 trục Ox, Oy, Oz lần lượt có tọa độ: 5 5m A ; 0; 0 , B(0; 5; 0), C 0; 0; 2 m n     −  ÷  ÷ +     ° Thể tích tứ diện OABC bằng 125 36 1 1 5 5m 125 V .OA.OB.OC . .5. 6 6 2 m n 36 ⇔ = = = + m n 3m m 1, n 2 m n 3 m m n 3m m 1, n 4 + = = =   ⇔ + = ⇔ ⇒   + = − = = −   ° Vậy, có 2 phương trình mặt phẳng (P): 1 2 (P ): 2x y 3z 5 0 (m 1; n 2) (P ): 2x y 3z 5 0 (m 1; n 4) − + − = = =   − − − = = = −  Câu 2 : . Cách 1: ° Gọi M là trung điểm của BC AM BC⇒ ⊥ (∆ABC vuông cân) ° Ta có: SG (ABC) SG BC⊥ ⇒ ⊥ . Suy ra: BC (SAM)⊥ ° Dựng BI SA IM SA⊥ ⇒ ⊥ và IC SA⊥ · BIC⇒ là góc phẳng nhò diện (B; SA; C). ° SAB SAC (c.c.c)∆ = ∆ IB IC IBC⇒ = ⇒ ∆ cân tại I. Trang 7 G M C S I A B Trường THPT Đại Từ GV: TTD ° 1 a 2 a 2 BC a 2; AM BM MC BC ; AG 2 2 3 = = = = = = ° 2 2 2 2 AM a 2 1 ax 2 AIM ~ AGS IM SG. x. . AS 2 SG AG 2a 2 x 9 ∆ ∆ ⇒ = = = + + 2 2 3ax 2 IM 2 9x 2a ⇔ = + . ° Ta có: · o BIC 60= · o o 2 2 a 2 3.3ax 2 BIM 30 BM IM.tg30 2 2 9x 2a ⇔ = ⇔ = ⇔ = + 2 2 2 2 2 2 2 2 2 9x 2a 3x 3 9x 2a 27x a 18x 2a 9x a x . 3 ⇔ + = ⇔ + = ⇔ = ⇔ = ⇔ = ° Vậy, a x . 3 = Cách 2: ° BC a 2= ° Gọi M là trung điểm BC a 2 a 2 AM ; AG 2 3 ⇒ = = ° Gọi E, F lần lượt là hình chiếu của G trên AB, AC. Tứ giác AEGF là hình vuông a AG AE 2 AE AF . 3 ⇒ = ⇒ = = ° Dựng hệ trục tọa độ Axyz, với Ax, Ay, Az đôi một vuông góc, A(0; 0; 0), B(a; 0; 0), C(0; a; 0), a a a a G ; ; 0 , S ; ; x 3 3 2 2      ÷  ÷     . ° a a 2a a a 2a SA ; ; x , SB ; ; x , SC ; ; x 3 3 3 3 3 3       = = − − = − −  ÷  ÷  ÷       uuur uur uuur ° 2 1 a a [SA; SB] 0; ax; a 0; x; a.n 3 3     = − = − =  ÷  ÷     uuur uur r , với 1 a n 0; x; 3   = −  ÷   r ° 2 2 a a [SA; SC] ( ax; 0; ) a x; 0; a.n , 3 3   = − = − − = −  ÷   uuur uuur r với 2 a n x; 0; 3   = −  ÷   r . ° Mặt phẳng (SAB) có cặp vectơ chỉ phương SA, SB uuur uur nên có pháp vectơ 1 n r ° Mặt phẳng (SAC) có cặp vectơ chỉ phương SA, SC uuur uuur nên có pháp vectơ 2 n r ° Góc phẳng nhò diện (B; SA; C) bằng 60 o . Trang 8 z x x y C B A E F G M Trường THPT Đại Từ GV: TTD 2 o 2 2 2 2 2 2 a a a 0.x x.0 3 3 9 cos60 9x a a a 0 x x 0 9 9 9 + + ⇔ = = + + + + + 2 2 2 1 a 2 9x a ⇔ = + 2 2 2 2 2 a 9x a 2a 9x a x . 3 ⇔ = = ⇔ = ⇔ = ° Vậy, a x . 3 = BÀI 5 Câu 1: Trong không gian Oxyz, tìm trên Ox điểm A cách đều đường thẳng (d) : 2 2z 2 y 1 1x + == − và mặt phẳng (α) : 2x – y – 2z = 0. Câu 2: Cho hình chóp SABC có đáy ABC là tam giác đều có cạnh bằng 2a 2 , SA vuông góc với (ABC) và SA = a. Gọi E, F lần lượt là trung điểm của cạnh AB, BC. Tính góc và khoảng cách giữa hai đường thẳng SE và AF. GIẢI Câu 1: Gọi A(a; 0; 0) Ox∈ . ° Khoảng cách từ A đến mặt phẳng (α) : 2 2 2 2a 2a d(A; ) 3 2 1 2 α = = + + ° (∆) qua 0 M (1; 0; 2)− và có vectơ chỉ phương u (1; 2; 2)= r ° Đặt 0 1 M M u= uuuuuur r ° Do đó: d(A; ∆) là đường cao vẽ từ A trong tam giác 0 1 AM M 0 1 2 0 AM M 0 1 [AM ; u] 2.S 8a 24a 36 d(A; ) M M u 3 − + ⇒ ∆ = = = uuuuur r r ° Theo giả thiết: d(A; α) = d(A; ∆) 2 2 2 2 2 2a 8a 24a 36 4a 8a 24a 36 4a 24a 36 0 3 3 4(a 3) 0 a 3. − + ⇔ = ⇔ = − + ⇔ − + = ⇔ − = ⇔ = Trang 9 Trường THPT Đại Từ GV: TTD ° Vậy, có một điểm A(3; 0; 0). Câu 2: Cách 1: ° Gọi M là trung điểm của BF ⇒ EM // AF · · · (SA; AF) (EM; AF) SEM⇒ = = ° ∆SAE vuông tại A có: 2 2 2 2 2 SE SA AE a 2a 3a= + = + = SE a 3⇒ = ° 2a 2. 3 AF a 6 2 = = a 6 EM BM MF ; BF a 2 2 ⇒ = = = = ° 2 2 2 2 2 2 SB SA AB a 8a 9a SB 3a= + = + = ⇒ = ° 2 2 2 2 2 2 SF SA AF a 6a 7a SF a 7= + = + = ⇒ = ° Áp dụng đònh lý đường trung tuyến SM trong ∆SBF có: 2 2 2 2 1 SB SF 2.SM BF 2 + = + 2 2 2 2 2 2 1 15a 9a 7a 2SM .2a SM 2 2 ⇔ + = + ⇔ = ° Gọi α là góc nhọn tạo bởi SE và AF ° Áp dụng đònh lý hàm Côsin vào ∆SEM có: · 2 2 2 2 2 2 3a 15a 3a ES EM SM 2 2 2 2 cos cosSEM . 2.ES.EM 2 2 a 6 2. .a 3 2 + − + − α = = = = − = o 45 .⇒ α = ° Dựng AK ME; AH SK.⊥ ⊥ Ta có: a 2 AK MF 2 = = và AH (SME)⊥ ° Vì AF// ME d(SE; AF) d(AF; (SME)) AH.⇒ = = ° ∆SAK vuông có: 2 2 2 2 2 2 1 1 1 1 2 3 a 3 AH 3 AH SA AK a a a = + = + = ⇒ = ° Vậy, a 3 d(SE; AF) 3 = . Cách 2: ° Dựng hệ trục Axyz, với Ax, Ay, Az đôi một vuông góc, A(0; 0; 0), B(a 2; a 6; 0), C( a 2; a 6; 0), S(0; 0; a), a 2 a 6 E ; ; 0 ; F(0; a 6; 0) 2 2 −    ÷   và a 2 M ; a 6; 0 2    ÷   . Trang 10 z a S A x E B M F y C C S F M B E K H A [...]... là trung điểm của AB và C'D' Tính khoảng cách từ B' đến (A'MCN) Trang 15 Trường THPT Đại Từ GV: TTD GIẢI Câu 1: r r/ r/ (P) có pháp vectơ n P = (3; 12; − 3) = 3(1; 4; − 1) = 3n P , với n P = (1; 4; − 1) r ° (Q) có pháp vectơ n Q = (3; − 4; 9) r u1 = (2; − 4; 3) r ° (d1) có vectơ chỉ phương np r P ° (d2) có vectơ chỉ phương u2 = (−2; 3; 4) ° ° ° ° ° ∆/ r nq Q ∆ r (∆ / ) = (P) ∩ (Q) Q/ u  / P/ / (P... = − Ta có: AB AI = 2  2  2 2 2 4 4 4 uuu / uu r r Vậy, ∆AB/I vuông tại A ⇒ AB ⊥ AI r Phương trình mp(ABC): z = 0 có pháp vectơ n1 = (0; 0; 1) uuu / uu r r mp (AB/I) có cặp vectơ chỉ phương AB , AI , nên có pháp vectơ: uuu / uu r r  a2 3a2 3 2a2 3  a2 a2 r [AB ; AI] =  − ; − ; ÷ = − (1; 3 3; − 2 3) = − n 2 4 4  4 4  4 r với n 2 = (1; 3 3; − 2 3) ° Gọi α là góc giữa (ABC) và (AB/I), ta có: 0+0−2... Đường thẳng (d) qua I và vuông góc với (P) có phương trình: x −1 y +1 z −1 = = 2 2 1 x = 3 2x + 2y + z − 10 = 0   Tọa độ tiếp điểm là nghiệm của hệ:  x − 1 y + 1 z − 1 ⇒ y = 1 z = 2  2 = 2 = 1   Vậy, tọa độ tiếp điểm M(3; 1; 2) S Câu 2: Cách 1: ° Ta có: SA ⊥ (ABC) ⇒ SA ⊥ AC Do đó ∆SAC vuông tại A có AM là 1 trung tuyến nên MA = SC 2 SA ⊥ (ABC) ° Ta lại có:  AB ⊥ BC (∆ABC vuông tại B) M A H... r r/ r r/ (∆) có vectơ chỉ phương u = [n P ; n Q ] = (32; − 12; − 16) = 4(8; − 3; − 4) = 4u , r/ với u = (8; − 3; − 4) r r/ mp (P/) có cặp vectơ chỉ phương u1 và u nên có pháp vectơ: r r r/ n P / = [u1; u ] = (25; 32; 26) r Phương trình mp (P/) chứa (d1) đi qua điểm A(-5; 3; -1) ∈ (d1 ) với n P / là: 25(x + 5) + 32(y – 3) + 26(z + 1) = 0 ⇔ (P ) : 25x + 32y + 26z + 55 = 0 r r/ mp (Q/) có cặp vectơ chỉ... đứng ABC.A'B'C' có đáy ABC là tam giác cân với AB = AC = a, góc · BAC = 120o , cạnh bên BB' = a Gọi I là trung điểm CC' Chứng minh ∆AB'I vuông tại A và tính cosin của góc giữa hai mặt phẳng (ABC) và (AB'I) GIẢI Câu 1: 1 ° ° ° ° ° x = 3 − 7t1 r  (∆1 ) : y = 1 + 2t1 có vectơ chỉ phương u1 = (−7; 2; 3) z = 1 + 3t 1  x = 7 + 7t 2 qua A (7; 3; 9), B(8; 5; 8) và  r (∆ 2 ) : y = 3 + 2t 2 có vectơ chỉ... tam giác đều cạnh AB = a ⇒ AH = a và 2 a 3 ⇒ BC = a 3 2 ∆IB/ C/ vuông có: a2 13a2 /2 /2 / /2 2 IB = IC + B C = + 3a = 4 4 BH = ° ° ° ° ° a2 5a2 ∆AIC vuông có: AI = IC + AC = + a2 = 4 4 2 2 5a 13a + 2a2 = = IB/ 2 Ta có: AI2 + AB/ 2 = 4 4 / (AB là đường chéo của hình vuông AA/B/B cạnh a) Vậy, ∆AB/I vuông tại A 1 1 a 5 a2 10 / a 2 = Ta có: SAB/ I = AI.AB = 2 2 2 4 2 1 1 a a 3 SABC = AH.BC = a 3 = 2 2... minh (d1) và (d2) chéo nhau Viết phương trình mặt cầu (S) có đường kính là đoạn vuông góc chung của (d1) và (d2) GIẢI Câu 1: Cách 1: ° Gọi H là trung điểm của BC ° Do S.ABC đều và ∆ABC đều nên chân đường cao đỉnh S trùng với giao điểm ba đường cao là trực tâm O của ∆ABC và có ∆SBC cân tại S · suy ra: BC ⊥ SH, BC ⊥ AH, nên SHA = ϕ ° 1 a 3 Ta có: OH = AH = 3 6 Trang 13 S A C ϕ O H B Trường THPT Đại... / MN ⊥ u1   t / = −1 M(2; 1; 4)  2(3 + t − 2) − (t + t) = 0 ⇔ ⇒ r Ta có:  uuuu r ⇒  / / N(2; 1; 0) 3 + t − 2t + (t + t) = 0 MN ⊥ u2 t = 1   1 MN = 2 2 2 2 2 Vậy, phương trình mặt cầu (S): (x − 2) + (y − 1) + (z − 2) = 4 Tọa độ trung điểm I của MN: I(2; 1; 2), bán kính R = BÀI 8 Câu 1: Trong không gian Oxyz có 2 mặt phẳng (P): 3x + 12y – 3z – 5 = 0, (Q): 3x – 4y + 9z + 7 = 0 và 2 đường... đó ∆SBC vuông tại B có BM là trung tuyến nên MB = SC 2 Suy ra: MA = MB ⇒ ∆MAB cân tại M Dựng MH // SA và HK // BC (H ∈ AC; K ∈ AB) 1  MH = SA = a  SA ⊥ (ABC) MH ⊥ (ABC)  2 ⇒ ⇒  vì:  BC ⊥ AB HK ⊥ AB HK = 1 BC = a   2 2 2 2 2 2 2 ∆MHK vuông tại H có: MK = MH + HK = a + a = 2a ⇒ MK = a 2 1 1 a2 2 Diện tích ∆MAB: SMAB = MK.AB = a 2.a = 2 2 2 Cách 2: z ° ∆ABC vuông tại B có: 2 2 2 2 2 2 S AC... ⇒ MB = 2 5 2 5   suy ra: MA = MB ⇒ ∆MAB cân tại M uuuu uuur  a2 r uuuu uuur r 2a2 2  [MA; MB] =  ;− ; a ÷ ⇒ [MA; MB] = a2 2 ° Ta có: 5  5  r 1 uuuu uuur 1 2 a2 2 ° Diện tích ∆MAB: SMAB = [MA; MB] = a 2 = 2 2 2 BÀI 7 Câu 1: Cho hình chóp đều S.ABC, đáy ABC có cạnh bằng a, mặt bên tạo với đáy một góc o o bằng ϕ (0 < ϕ < 90 ) Tính thể tích khối hình chóp S.ABC và khoảng cách từ đỉnh A đến mặt . 3)= − r . ° Mặt phẳng (SAB) có cặp vectơ chỉ phương SA; SB uuur uur nên có pháp vectơ 1 n r . ° Mặt phẳng (SAC) có cặp vectơ chỉ phương SA; SC uuur uuur nên có pháp vectơ 2 n r . ° 1 2 (SAB). −  ÷   r . ° Mặt phẳng (SAB) có cặp vectơ chỉ phương SA, SB uuur uur nên có pháp vectơ 1 n r ° Mặt phẳng (SAC) có cặp vectơ chỉ phương SA, SC uuur uuur nên có pháp vectơ 2 n r ° Góc phẳng. THPT Đại Từ GV: TTD GIẢI Câu 1: (P) có pháp vectơ / P P n (3; 12; 3) 3(1; 4; 1) 3n ,= − = − = r r với / P n (1; 4; 1)= − r ° (Q) có pháp vectơ Q n (3; 4; 9)= − r ° (d 1 ) có vectơ chỉ phương

Ngày đăng: 27/05/2015, 17:00

w