Tuyển chọn đề thi học sinh giỏi toán Đề Bài (4 điểm) a) Chứng minh 76 + 75 – 74 chia hÕt cho 55 b) TÝnh A = + + 52 + 53 + + 549 + 55 Bµi (4 điểm) a) Tìm số a, b, c biết r»ng : a b c = = vµ a + 2b – 3c = -20 b) Cã 16 tờ giấy bạc loại 20 000đ, 50 000đ, 100 000đ Trị giá loại tiền Hỏi loại có tờ? Bài (4 điểm) x g(x) = 5x4 – x5 + x2 – 2x3 + 3x2 a) Cho hai ®a thøc f(x) = x5 – 3x2 + 7x4 – 9x3 + x2 - TÝnh f(x) + g(x) vµ f(x) – g(x) b) Tính giá trị đa thức sau: A = x2 + x4 + x6 + x8 + …+ x100 x = -1 Bài (4 điểm) Cho tam giác ABC có góc A 900, cạnh BC lÊy ®iĨm E cho BE = BA Tia phân giác góc B cắt AC D a)So sánh độ dài DA DE b) Tính số đo góc BED Bài (4 điểm) Cho tam giác ABC, đờng trung tuyến AD Kẻ đờng trung tuyến BE c¾t AD ë G Gäi I, K theo thø tù trung điểm GA, GB Chứng minh rằng: a) IK// DE, IK = DE b) AG = AD Tuyển chọn đề thi học sinh giỏi toán §Ị 2: Mơn: Tốn Bài 1: (3 điểm): Tính 2 3 ÷ 18 − (0, 06 : + 0,38) : 19 − 4 Bài 2: (4 điểm): Cho a) a2 + c2 a = b2 + c b a c = chứng minh rằng: c b b2 − a b − a b) 2 = a +c a Bài 3:(4 điểm) Tìm x biết: a) x + − = −2 b) − 15 x+ = x− 12 Bài 4: (3 điểm) Một vật chuyển động cạnh hình vng Trên hai cạnh đầu vật chuyển động với vận tốc 5m/s, cạnh thứ ba với vận tốc 4m/s, cạnh thứ tư với vận tốc 3m/s Hỏi độ dài cạnh hình vng biết tổng thời gian vật chuyển động bốn cạnh 59 giây µ Bài 5: (4 điểm) Cho tam giác ABC cân A có A = 200 , vẽ tam giác DBC (D nằm tam giác ABC) Tia phân giác góc ABD cắt AC M Chứng minh: a) Tia AD phân giác góc BAC b) AM = BC Bài 6: (2 điểm): Tìm x, y ∈ ¥ biết: 25 − y = 8( x − 2009)2 Tuyển chọn đề thi học sinh giỏi toán §Ị Bài 1:(4 điểm) a) Thực phép tính: A= 212.35 − 46.92 ( 3) + − 510.73 − 255.492 ( 125.7 ) + 59.143 b) Chứng minh : Với số nguyên dương n : 3n + − 2n+ + 3n − 2n chia hết cho 10 Bài 2:(4 điểm) Tìm x biết: a x − + = ( −3, ) + 5 b ( x − ) x +1 − ( x − 7) x +11 =0 Bài 3: (4 điểm) a) Số A chia thành số tỉ lệ theo : : Biết tổng bình phương ba số 24309 Tìm số A b) Cho a c a2 + c2 a = Chứng minh rằng: 2 = c b b +c b Bài 4: (4 điểm) Cho tam giác ABC, M trung điểm BC Trên tia đối của tia MA lấy điểm E cho ME = MA Chứng minh rằng: a) AC = EB AC // BE b) Gọi I điểm AC ; K điểm EB cho AI = EK Chứng minh ba điểm I , M , K thẳng hàng · · c) Từ E kẻ EH ⊥ BC ( H ∈ BC ) Biết HBE = 50o ; MEB =25o · · Tính HEM BME Bài 5: (4 điểm) µ Cho tam giác ABC cân A có A = 200 , vẽ tam giác DBC (D nằm tam giác ABC) Tia phân giác góc ABD cắt AC M Chứng minh: c) Tia AD phân giác góc BAC d) AM = BC Tun chän ®Ị thi häc sinh giái toán Đề Bài 1: (2 điểm) Cho A = 2-5+8-11+14-17++98-101 a, Viết dạng tổng quát dạng thứ n A b, Tính A Bài 2: ( điểm) Tìm x,y,z trờng hợp sau: a, 2x = 3y =5z vµ x − y =5 b, 5x = 2y, 2x = 3z vµ xy = 90 c, y + z +1 x + z + x + y − = = = x y z x+ y+z Bài 3: ( điểm) a a a a a Cho a = a = a = = a = a vµ (a1+a2+…+a9 ≠0) Chøng minh: a1 = a2 = a3=…= a9 Cho tØ lƯ thøc: a +b+c a −b+c = vµ b ≠ a +b−c a −b−c Chøng minh c = Bài 4: ( điểm) Cho số nguyên a1, a2, a3, a4, a5 Gäi b1, b2, b3, b4, b5 hoán vị số đà cho Chứng minh tích (a1-b1).(a2-b2).(a3-b3).(a4-b4).(a5-b5) M Bài 5: ( điểm) Cho đoạn thẳng AB O trung điểm đoạn thẳng Trên hai nửa mặt phẳng đối qua AB, kẻ hai tia Ax By song song với Trên tia Ax lấy hai điểm D F cho AC = BD vµ AE = BF Chøng minh r»ng : ED = CF === HÕt=== TuyÓn chọn đề thi học sinh giỏi toán Đề Bài 1: (3 điểm) 4,5 : 47,375 − 26 − 18.0, 75 ÷.2, : 0,88 Thùc hiÖn phÐp tÝnh: 17,81:1,37 − 23 :1 Tìm giá trị x y tho¶ m·n: x − 27 2007 + ( y + 10 ) 2008 =0 Tìm số a, b cho 2007ab bình phơng số tự nhiên Bài 2: ( điểm) Tìm x,y,z biÕt: x −1 y − z − = = vµ x-2y+3z = -10 Cho bốn số a,b,c,d khác thoả mÃn: b2 = ac; c2 = bd; b3 + c3 + d3 ≠ a + b3 + c a Chøng minh r»ng: 3 = b +c +d d Bài 3: ( điểm) Chứng minh rằng: 1 1 + + + + > 10 100 Tìm x,y để C = -18- x − − y + đạt giá trị lớn Bài 4: ( điểm) Cho tam giác ABC vuông cân A có trung tuyến AM E điểm thuộc cạnh BC Kẻ BH, CK vu«ng gãc víi AE (H, K thc AE) 1, Chøng minh: BH = AK 2, Cho biÕt MHK tam giác gì? Tại sao? === Hết=== Tuyển chọn đề thi học sinh giỏi toán Đề số Câu 1: Tìm số a,b,c biết rằng: ab =c ;bc= 4a; ac=9b Câu 2: Tìm số nguyên x thoả m·n: a,5x-3 < b,3x+1 >4 c, 4- x +2x =3 Câu3: Tìm giá trị nhỏ biểu thức: A =x +8 -x C©u 4: BiÕt r»ng :12+22+33+ +102= 385 TÝnh tỉng : S= 22+ 42+ +202 C©u : Cho tam gi¸c ABC ,trung tuyÕn AM Gäi I trung điểm đoạn thẳng AM, BI cắt cạnh AC t¹i D a Chøng minh AC=3 AD b Chøng minh ID =1/4BD - HÕt Tuyển chọn đề thi học sinh giỏi toán §Ị sè Thêi gian lµm bµi: 120 Câu ( 2đ) Câu (1đ) Câu (2®) a) A = a b c a+b+c a = = Cho: Chøng minh: = b c d d b+c+d a c b = = T×m A biÕt r»ng: A = b+c a+b c+a Tìm x Z để A Z tìm giá trị x+3 x2 Câu (2đ) Tìm x, biÕt: x−3 = a) b) A = b) ( x+ 2) = 81 − 2x x+3 c) x + x+ = 650 Câu (3đ) Cho ABC vuông cân A, trung tuyÕn AM E ∈ BC, BH⊥ AE, CK ⊥ AE, (H,K ∈ AE) Chøng minh MHK vuông cân HÕt TuyÓn chọn đề thi học sinh giỏi toán Đề số Thời gian làm : 120 phút Câu : ( ®iĨm) Ba ®êng cao cđa tam giác ABC có độ dài 4,12 ,a Biết a số tự nhiên Tìm a ? Chøng minh r»ng tõ tØ lÖ thøc a c = ( a,b,c ,d≠ 0, a≠b, c≠d) ta suy đợc tỉ b d lệ thức: a) a c = a−b c−d b) a+b c+d = b d Câu 2: ( điểm) Tìm số nguyên x cho: ( x2 –1)( x2 –4)( x2 –7)(x2 –10) < Câu 3: (2 điểm) Tìm giá trị nhỏ nhÊt cña: A = | x-a| + | x-b| + |x-c| + | x-d| víi a x + = x + 15 * Trêng hỵp 1: x ≥ - ⇔ 3x − > x + , ta cã: * Trêng hỵp 1: x ≥ 4x + = x + 15 3x - > x + ⇒ x = ( TM§K) * Trờng hợp 2: x < - ( TMĐK) 2 * Trêng hỵp 2: x < , ta cã: ⇒ x> , ta cã: 4x + = - ( x + 15) 3x – < - ( x + 1) 18 ( TM§K) 18 VËy: x = hc x = - ⇒ x=- c/ x + ≤ ⇔ −5 ≤ x + ≤ ⇔ −4 ≤ x ≤ C©u 2: a/.Ta cã: A= (- 7) + (-7)2 + … + (- 7)2006 + (- 7)2007 (- 7)A = (-7)2 + (- 7)3 + … + (- 7)2007 + (- 7)2008 ⇒ 8A = (- 7) – (-7)2008 Suy ra: A = , ta cã: ( TM§K) VËy: x > hc x < ⇒ x< (1) ( 2) 1 [(- 7) – (-7)2008 ] = - ( 72008 + ) 8 * Chøng minh: A M 43 Ta cã: A= (- 7) + (-7)2 + … + (- 7)2006 + (- 7)2007 , có 2007 số hạng Nhóm số liên tiếp thành nhóm (đợc 669 nhóm), ta đợc: A=[(- 7) + (-7)2 + (- 7)3] + … + [(- 7)2005 + (- 7)2006 + (- 7)2007] = (- 7)[1 + (- 7) + (- 7)2] + … + (- 7)2005 [1 + (- 7) + (- 7)2] = (- 7) 43 + … + (- 7)2005 43 = 43.[(- 7) + … + (- 7)2005] M 43 VËy : A M 43 b/ * Điều kiện đủ: Tuyển chọn ®Ị thi häc sinh giái to¸n NÕu m M n M m2 M 3, mn M n2 M 3, đó: m2+ mn + n2 M * Điều kiện cần: Ta có: m2+ mn + n2 = ( m - n)2 + 3mn (*) NÕu m2+ mn + n2 M th× m2+ mn + n2 M 3, ®ã tõ (*),suy ra: ( m - n)2 M ,do ®ã ( m n) M v× thÕ ( m - n)2 M 3mn M nên mn M ,do hai số m n chia hÕt cho mµ ( m - n) M nên số m,n chia hết cho Câu 3: Gọi độ dài cạnh tam giác a, b, c ; đờng cao tơng ứng với cạnh , hb , hc Ta cã: (ha +hb) : ( hb + hc ) : ( + hc ) = : : Hay: 1 (ha +hb) = ( hb + hc ) = ( + hc ) = k ,( víi k ≠ 0) Suy ra: (ha +hb) = 3k ; ( hb + hc ) = 4k ; ( + hc ) = 5k Cộng biểu thức trên, ta có: + hb + hc = 6k Tõ ®ã ta cã: = 2k ; hb =k ; hc = 3k Mặt khác, gọi S diện tích VABC , ta cã: a.ha = b.hb =c.hc ⇒ a.2k = b.k = c.3k ⇒ a = b = c Câu 4: Giả sử DC không lớn DB hay DC ≤ DB · · * NÕu DC = DB VBDC cân D nên DBC = BCD A Suy ra: ·ABD = · ACD Khi ®ã ta cã: VADB = VADC (c_g_c) Do ®ã: · ADC ( trái với giả thiết) ADB = à D C B · · * NÕu DC < DB th× VBDC , ta cã DBC < BCD mµ · ABC = · ACB suy ra: (1) · ACD ABD > · XÐt VADB vµ VACD cã: AB = AC ; AD chung ; DC < DB (2) · · Suy ra: DAC < DAB Tõ (1) vµ (2) VADB VACD ta lại có à ADC , điều trái với giả thiết ADB < à VËy: DC > DB Tun chän ®Ị thi häc sinh giỏi toán Câu 5: ( điểm) áp dụng bất đẳng thức: x y x - y , ta cã: A = x − 1004 - x + 1003 ≤ ( x − 1004) − ( x + 1003) = 2007 VËy GTLN cđa A lµ: 2007 DÊu “ = ” x¶y khi: x ≤ -1003 - Tun chän ®Ị thi häc sinh giỏi toán Hớng dẫn chấm đề 18 Câu 1-a (1 điểm ) Xét trờng hợp 3x-2 3x -2 kết luận : Không có giá trị x thoả mÃn b-(1 điểm ) Xét trờng hợp 2x +5 2x+5 kết luận Câu 2-a(2 điểm ) Gọi số cần tìm abc (1) abc M18=> abc M VËy (a+b+c) M Ta cã : ≤ a+b+c ≤ 27 Tõ (1) vµ (2) suy a+b+c =9 18 27 Theo (2) (3) a b c a+b+c = = = (4) Tõ (3) vµ (4) => a+b+c=18 vµ tõ (4) => a, b, c mµ abc M2 => số cần tìm : 396, 936 b-(1 điểm ) A=(7 +72+73+74) + (75+76+77+78) + + (74n-3+ 74n-2+74n-1+74n) = (7 +72+73+74) (1+74+78+ +74n-4) Trong ®ã : +72+73+74=7.400 chia hết cho 400 Nên A M400 Câu 3-a (1 điểm ) Từ C kẻ Cz//By có : ả à C + CBy = 2v (gãc cïng phÝa) (1) ¶ · ⇒ C1 + CAx = 2v Vì theo giả thiết C1+C2 + + = 4v =360 VËy Cz//Ax (2) Tõ (1) vµ (2) => Ax//By ∆ ABC c©n, ACB =1000=> CAB = CBA =400 Câu 4-(3 điểm) Trên AB lấy AE =AD Cần chứng minh AE+DC=AB (hoặc EB=DC) AED cân, DAE = 400: =200 => ADE =AED = 800 =400+EDB (gãc ngoµi cđa ∆ EDB) => EDB =400 => EB=ED (1) Trªn AB lÊy C’ cho AC’ = AC C ∆ CAD = ∆ C’AD ( c.g.c) D 0 AC’D = 100 vµ DC’E = 80 Tun chọn đề thi học sinh giỏi toán Vậy DCE cân => DC =ED (2) Từ (1) (2) cã EB=DC’ A Mµ DC’ =DC VËy AD +DC =AB Câu (1 điểm) S=(-3)0+(-3)1 + (-3)2+(-3)3+ + (-3)2004 -3S= (-3).[(-3)0+(-3)1+(-3)2 + +(-3)2004] = (-3)1+ (-3)2+ +(-3)2005] -3S-S=[(-3)1 + (-3)2+ +(-3)2005]-(3)0-(-3)1- -(-3)2005 -4S = (-3)2005 -1 S = C E (−3) 2005 − 2005 + = −4 - B Tuyển chọn đề thi học sinh giỏi toán Đáp án đề 19 1 1 1 1 − − − − − − − − 90 72 56 42 30 20 12 1 1 1 1 + + + + + + + =-( + ) 1® 1.2 3.4 5.6 6.7 7.8 8.9 9.10 1 1 1 1 1 = - ( − + − + − + + − + − ) 1® 2 3 9 10 1 −9 = -( ) = 0,5đ 10 10 Bài 1: Ta cã : - Bµi 2: A = x − + − x Víi x3 0,5đ Với x A = x-2 x+5 = 0,5đ Với x>5 A = x-2 +x –5 = 2x –7 >3 0,5® So sánh giá trị A khoảng ta thấy giá trị nhỏ A = x 1đ A Bài 3: a Trên tia đối tia OC lấy điểm N cho ON = OC Gọi M trung điểm BC G O nên OM đờng trung bình tam giác BNC H B C Do OM //BN, OM = BN Do OM vu«ng gãc BC => NB vuông góc BC Mà AH vuông góc với BC NB // AH (1đ) Tơng tự AN//BH Do ®ã NB = AH Suy AH = 2OM (1đ) b Gọi I, K theo thứ tự trung điểm AG HG IK đờng trung bình tam giác AGH nên IK// AH AH => IK // OM vµ IK = OM ; ∠ KIG = ∠ OMG (so le trong) IK = ∆ IGK = ∆ MGO nªn GK = OG IGK = MGO Ba điểm H, G, O thẳng hàng 1đ Tuyển chọn đề thi học sinh giỏi toán Do GK = OG mà GK = HG nên HG = 2GO Đờng thẳng qua điểm H, G, O đợc gọi đờng thẳng le 1đ Bài 4: Tổng hệ số đa thức P(x) giá trị đa thức x=1 Vậy tổng hệ số cđa ®a thøc: 0,5® 2006 2007 P(x) = (3-4x+x ) (3+4x + x ) 2006 B»ng P(1) = (3-4+1) (3+4+1)2007 = 0,5® Tun chän ®Ị thi học sinh giỏi toán Đáp án đề 20 Câu 1: Ta có: 220 (mod2) nên 22011969 ≡ (mod2) 119 ≡ 1(mod2) nªn 11969220 ≡ 1(mod2) 69 ≡ -1 (mod2) nªn 69220119 ≡ -1 (mod2) VËy A (mod2) hay A M (1đ) Tơng tự: A M3 (1đ) A M 17 (1đ) Vì 2, 3, 17 số nguyên tố A M 2.3.17 = 102 Câu 2: Tìm x a) (1,5đ) Với x < -2 ⇒ x = -5/2 (0,5®) Víi -2 x giá trị x thoả mÃn (0,5đ) Với x > x = ẵ (0,5đ) b) (1,5đ) Với x < -2 Không có giá trị x thoả mÃn (0,5đ) Với -2 x 5/3 Không có giá trị x thoả mÃn (0,5đ) Với x > 5/3 x = 3,5 (0,5đ) Bài 3: a) Dễ dàng chứng minh đợc IH = 0M A IH // 0M ∆ 0MN = ∆ HIK (g.c.g) I E Do ®ã: ∆IHQ = ∆ M0Q (g.c.g) ⇒ QH = Q0 F H N QI = QM P b) ∆ DIM vu«ng có DQ đờng trung K Q O tuyến ứng với cạnh huyền nên R QD = QI = QM B D M Nhng QI đờng trung bình 0HA nên c) Tơng tự: QK = QN = QE = OB/2 QR = QP = QF = OC/2 Bài 4(1đ): Vì 3|x-5| x R C Tuyển chọn đề thi học sinh giỏi toán Do ®ã A = 10 - 3|x-5| ≤ 10 VËy A có giá trị lớn 10 |x-5| = ⇔ x = Đáp án đề 21 Bài Điều kiện x a) A = - (0,25®) (0,5®) b) x + > ⇒ A = -1 ⇔ c) Ta cã: A = - x −5 = − x −3 ⇒ x = x +3 (0,5®) (0,25đ) Để A Z x + íc cđa ⇒ x = {1; 25} ®ã A = {- 1; 0} Bài (0,5đ) x ≥ x ≥ ⇔ ⇔ x = (1®) x = 3; x = −2 7 − x = ( x − 1) a) Ta cã: − x = x − ⇔ b) Ta cã: 2M = – 22 + 23 – 24 + …- 22006 + 22007 ⇒ 3M = + 22007 (0,25®) ⇒M= 2007 +1 ˆ ˆ ˆ A B C 1800 = = = = 300 (0,5®) c) Ta cã: A = x4 + 2x2 +1 ≥ víi mäi x ĐPCM Bài Ta có: (0,25đ) (1đ) ˆ ⇒ A = 300 ; B = 600 ; C = 900 (0,5đ) Vậy tam giác ABC tam giác vuông C (0,5đ) Bài GT, KL (0,5đ) a) Gãc AIC = 1200 (1®) b) LÊy H ∈ AC cho AH = AN (0,5®) Tõ ®ã chøng minh IH = IN = IM (1đ) Bài A=1+ 2000 6− x (0,5®) AMax ⇔ – x > vµ nhá nhÊt ⇒ – x = ⇒ x = VËy x = tho· m·n điều kiện toán A Max= 2001 (0,5đ) Tun chän ®Ị thi häc sinh giỏi toán Đáp án đề 22 Câu 1: (2.5®) 15 a 1 a1 2 4 25 20 15 1 1 = 2 2 30 50 30 40 1 = 2 1 1 a2 : = : = 9 3 3 3 (0.5®) 20 (0.5®) 5.9 − 2.6 210.38.(1 − 3) = 10 = A = 10 8 + 20 (1 + 5) b = 0.(21) 33 21 = c3 0,(21) = ; 99 33 c 55 (0.5®) = 0,3(18) 22 c4 5,1(6) = c1 c2 Câu 2: (2đ) Gọi khối lợng khối 7, 8, lần lợt a, b, c (m3) a + b + c = 912 m3 ⇒ Sè häc sinh cña khối : Theo đề ta có: (0.5®) (0.5®) (0.5®) a b c ; ; 1,2 1,4 1,6 b a b c = = (0.5đ) 3.4,1 1,2 4.1,4 5.1,6 a b c = = = 20 4.1,2 12.1,4 15.1,6 (0.5®) VËy a = 96 m3 ; b = 336 m3 ; c = 480 m3 Nªn số HS khối 7, 8, lần lợt là: 80 hs, 240 hs, 300 hs Câu 3: ( 1.5đ): a.T×m max A Ta cã: (x + 2)2 ≥ ⇒ (x = 2)2 + ≥ ⇒ Amax= b.T×m B Do (x – 1)2 ≥ ; (y + 3)2 ≥ ⇒ B ≥ VËy Bmin= x = vµ y = -3 x = -2 (0.5®) (0.75®) (0.75®) Tun chọn đề thi học sinh giỏi toán Câu 4: (2.5đ) Kẻ CH cắt MB E Ta có EAB cân C E EAB =300 EAM = 200 ⇒ ∠CEA = ∠MAE = 200 E (0.5®) Do ∠ACB = 800 ⇒ ∠ACE = 400 ⇒ ∠AEC = 1200 10 ( ) (0.5đ) H A Mặt khác: EBC = 200 EBC = 400 CEB = 1200 ( ) (0.5®) Tõ ( ) vµ ( ) ⇒ ∠AEM = 120 Do ∆EAC = ∆EAM (g.c.g) ⇒ AC = AM ⇒ ∆MAC cân A (0.5đ) Và CAM = 400 AMC = 700 (0.5đ) Câu 5: (1.5đ) Giả sử a2 a + b không nguyên tố a2 a + b Cùng chia hết cho số nguyên tè d: ⇒ a2 chia hÕt cho d ⇒ a chia hÕt cho d vµ a + b chia hÕt cho d ⇒ b chia hÕta cho d (0.5®) ⇒ (a,b) = d trái với giả thiết Vậy (a2,a + b) =1 (0.5®) M 300 B Tun chän ®Ị thi häc sinh giỏi toán Đề 23 Câu I : 1) Xác định a, b ,c a b + c − 5(a − 1) − 3(b + 3) − 4(c − 5) 5a − 3b − 4c − − + 20 = = = = = = −2 = 10 − 12 − 24 10 − 12 − 24 => a = -3 ; b = -11; c = -7 C¸ch : a −1 b + c − = = = t ; sau ®ã rót a, b ,c thay vào tìm t =- tìm a,b,c 2) Chứng minh Đặt a c = = k => a= kb ; c = kd Thay vào biÓu thøc : b d 2a − 3ab + 5b 2c − 3cd + 5d k − 3k + k − 3k + − = − = => ®pcm + 3k + 3k 2b + 3ab 2d + 3cd C©u II: TÝnh: 1 1 1 1 1 32 16 + + + ) = − + − + + − = − = =>A = 3.5 5.7 97.99 5 97 99 99 99 99 1 1 1 1 1 2) B = = − + − + + 50 − 51 = (−3) + (−32 ) + (−33 ) + + (−350 ) + (−351 ) 3 3 1) Ta cã :2A= 2( 1 1 1 1 − 351 − (−351 − 1) + + + + − B= => = => B = − (−352 ) (−3 ) (−33 ) (−3) (−351 ) (−352 ) −3 352 4.351 C©u III 2 + 0,(1).3 = + = 10 10 10 10 30 1 12 32 + 0,120(32) = 0,12 + 0,000(32) =0,12+ 0,(32)= 0,12+ 0,(01).32 = 1000 1000 100 1000 99 1489 = 12375 Ta cã : 0.2(3) = 0.2 + 0.0(3) = C©u IV : Gọi đa thức bậc hai : P(x) = ax(x-1)(x-2) + bx(x-1)+c(x-3) + d P(0) = 10 => -3c+d =10 (1) Tun chän ®Ị thi häc sinh giái to¸n P(1) = 12 => -2c+d =12 =>d =12+2c thay vµo (1) ta cã -3c+12+2c =10 =>c=2 , d =16 P(2)= => 2b -2+16 = > b= -5 P(3) = => 6a-30 +16 =1 => a = 5 Vậy đa thức cần tìm lµ : P(x) = x( x − 1)( x − 2) − x( x − 1) + 2( x − 3) + 16 => P(x) = 25 x - x + 12 x + 10 2 C©u V: a) DƠ thÊy ∆ ADC = ∆ ABE ( c-g-c) => DC =BE V× AE ⊥ AC; AD AB mặt khác góc ADC = góc ABE => DC ⊥ Víi BE b) Ta cã MN // DC vµ MP // BE => MN ⊥ MP MN = 1 DC = BE =MP; 2 Vậy MNP vuông cân M - Tun chän ®Ị thi học sinh giỏi toán Đáp án đề 24 Bài 1: a) 3 3 3 − + + + − 10 11 12 + A = 5 5 5 (0,25®) − + − − + − 10 11 12 1 1 1 1 3 − + + ÷ 3 + − ÷ 10 11 12 + A= (0,25®) 1 1 1 1 −5 − + + ÷ + − ÷ 10 11 12 2 4 A= −3 + =0 5 b) 4B = 22 + 24 + + 2102 (0,25đ) (0,25đ) 3B = 2102 1; Bài 2: a) Ta cã 430 = 230.415 (0,25®) 3.2410 = 230.311 (0,25đ) mà 415 > 311 430 > 311 230 + 330 + 430 > 3.2410 b) = 36 > 29 (0,25®) 33 > 14 ⇒ 36 + 33 > 29 + 14 (0,25đ) Bài 3: Gọi x1, x2 x3 lần lợt số ngày làm việc m¸y ⇒ x1 x2 x3 = = (1) (0,25đ) Gọi y1, y2, y3 lần lợt số làm việc máy y1 y2 y3 = = (2) (0,25®) Gäi z1, z2, z3 lần lợt công suất máy B= (0,25®) 2102 − (0,25®) ... |2x- 27| 20 07 x (3y+10)2008 ∀y ⇒ |2x- 27| 20 07 = vµ (3y+10)2008 = x = 27/ 2 y = -10/3 Vì 00 ab 99 vµ a,b ∈ N ⇒ 20 070 0 ≤ 2007ab ≤ 20 079 9 ⇒ 4 472 < 2007ab < 4492 ⇒ 2007ab = 4482 a = 0; b= Đặt x y − z... chän đề thi học sinh giỏi toán Đề Bài 1: (3 ®iĨm) 4,5 : 47, 375 − 26 − 18.0, 75 ÷.2, : 0,88 Thùc hiÖn phÐp tÝnh: 17, 81:1, 37 − 23 :1 Tìm giá trị x y tho¶ m·n: x − 27 20 07 + (... DE = AB, IK//AB, IK= AB 2 Do DE // IK DE = IK b) ∆ GDE = ∆ GIK (g c g) v× cã: DE = IK (c©u a) Gãc GDE = gãc GIK (so le trong, DE/ /IK) Gãc GED = gãc GKI (so le trong, DE/ /IK) ⇒ GD = GI Ta cã GD