1. Trang chủ
  2. » Giáo án - Bài giảng

BT Hình 8-Chương 3-Hấp dẫn

16 252 1

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 16
Dung lượng 1,1 MB

Nội dung

Bài tập Toán 8 – Chương 3 Phần II: Hình học Chương III: TAM GIÁC ĐỒNG DẠNG  Tóm tắt lý thuyết 1. Đoạn thẳng tỉ lệ : Cặp đoạn thẳng AB và CD tỉ lệ với cặp đoạn thẳng A’B’ và C’D’ 'D'C 'B'A CD AB =⇔ 2. Một số tính chất của tỉ lệ thức: • CD'.B'A'D'C.AB 'D'C 'B'A CD AB =⇒= •        == == ⇒= AB CD 'B'A 'D'C ; AB 'B'A CD 'D'C 'D'C CD 'B'A AB ; 'D'C 'B'A CD AB CD'.B'A'D'C.AB •        ± = ± ± = ± ⇒= 'D'C'B'A 'B'A 'D'CAB AB 'D'C 'D'C'B'A CD CDAB 'D'C 'B'A CD AB • 'D'CCD 'B'AAB 'D'C 'B'A CD AB ± ± == 3. Đònh lý Ta-lét thuận và đảo: •          = = = ⇔    AC 'CC AB 'BB 'CC 'AC 'BB 'AB AC 'AC AB 'AB BC//a ABC ∆ 4. Hệ quả của đònh lý Ta-lét • BC 'C'B AC 'AC AB 'AB BC//a ABC ==⇒    ∆ 5. Tính chất đường phân giác trong tam giác : • AD là tia phân giác của BÂC, AE là tia phân giác của BÂx EC EB DC DB AC AB ==⇒ 6. Tam giác đồng dạng: a. Đònh nghóa : ∆ A’B’C’ ~ ∆ ABC      === === ⇔ k CA 'A'C BC 'C'B AB 'B'A 'CÂCÂ;'BÂBÂ;' (k là tỉ số đồng dạng) b. Tính chất : Gọi h, h’, p, p’, S, S’ lần lượt là chiều cao, chu vi và diện tích của 2 tam giác ABC và A’B’C’ k h 'h = ; k p 'p = ; 2 k S 'S = Trang 17 A B C B ' C ' a Bài tập Toán 8 – Chương 3 Phần II: Hình học 7. Các trường hợp đồng dạng : a. Xét ∆ ABC và ∆ A’B’C’ có: CA 'A'C BC 'C'B AB 'B'A ==• ⇒ ∆ A’B’C’ ~ ∆ ABC (c.c.c) b. Xét ∆ ABC và ∆ A’B’C’ có:      =• =• ( )BÂ'B ( ) BC 'C'B AB 'B'A ⇒ ∆ A’B’C’ ~ ∆ ABC (c.g.c) c. Xét ∆ ABC và ∆ A’B’C’ có:    =• =• ( )BÂ'B ( )' ⇒ ∆ A’B’C’ ~ ∆ ABC (g.g) 8. Các trường hợp đồng dạng của hai ∆ vuông : Cho ∆ ABC và ∆ A’B’C’( = Â’ = 90 0 )         = == = ( ) BC 'C'B AB 'B'A )c ( )'CÂhoặcCÂ'BÂBÂ)b ( ) AC 'C'A AB 'B'A )a ⇒ ∆ A’B’C’ ~ ∆ ABC (c.g.c) BÀI TẬP Bài 1. Viết tỉ số các cặp đoạn thẳng có độ dài như sau: a. AB = 9cm và CD = 27cm b. EF = 36cm và 12dm c. MN = 4,8m và RS = 96cm Bài 2. Cho biết 4 3 CD AB = và CD = 12cm. Tính độ dài của đoạn thẳng AB. Bài 3. Cho ∆ABC, các trung tuyến AD, BE, CF cắt nhau tại G. a. Tính AC AE b. Tính GD AG c. Kể tên 2 cặp đoạn thẳng tỷ lệ với AG và GD. Bài 4. Cho biết độ dài của đoạn thẳng AB gấp 12 lần độ dài của đoạn thẳng CD, đoạn thẳng A’B’ gấp 5 lần độ dài của đoạn thẳng CD. Tính tỉ số của hai đoạn thẳng AB và A’B’. Bài 5. Cho đoạn thẳng AB, M là một điểm trong đoạn AB. Tính các tỉ số AB AM và AB BM nếu: a. 2 1 MB MA = b. 4 7 MB MA = c. n m MB MA = (với m, n ∈ N * ) Bài 6. Đoạn thẳng AB gấp năm lần đoạn thẳng CD, đoạn thẳng A’B’ gấp bảy lần đoạn thẳng CD. a. Tính tỉ số của hai đoạn thẳng AB và A’B’. b. Cho biết đoạn thẳng MN = 505cm và đoạn thẳng M’N’ = 707cm, hỏi hai đoạn thẳng AB, A’B’ có tỉ lệ với hai đoạn thẳng MN và M’N’ hay không ? Bài 7. Cho 5 điểm A, B, C, D, E, theo thứ tự trên một đường thẳng. Biết AB = 6cm, BC = 9cm, CD = 4cm và DE CD BC AB = . Tính AE. Bài 8. Cho ∆ABC, B’ ∈ AB và C’ ∈ AC. Cho biết: AC 'AC AB 'AB = . C/minh: C'C 'AC B'B 'AB = ; AC 'CC AB 'BB = Trang 18 Bài tập Toán 8 – Chương 3 Phần II: Hình học Bài 9. Cho ∆ABC có AC = 8,5cm. Lấy M, N lần lược thuộc AB và AC sao cho AM = 4cm và AN = 5cm. Biết MN // BC. Tính độ dài đoạn thẳng BM. Bài 10. Cho ∆DEF có DF = 24cm. Lấy P, Q lần lược thuộc DE và DF sao cho EP = 10,5cm và DQ = 9cm. Biết PQ // EF. Tính độ dài đoạn thẳng DP. Bài 11. Cho ∆ABC, đường thẳng song song với cạnh BC cắt AB, AC lần lượt tại M và N. Biết AM = 17cm, BM = 10cm, CN = 9cm. Tính độ dài đoạn thẳng AN. Bài 12. Cho ∆PQR, đường thẳng song song với cạnh QR cắt PQ, PR lần lượt tại E và F. Biết PF = 20cm, FR = 15cm, EP = 16cm. Tính độ dài đoạn thẳng PQ. Bài 13. Trên một đường thẳng, đặt 4 đoạn thẳng liên tiếp: AB = BC = 2CD = 4DE. Tính các tỉ số: BE AB ; AE AC ; AE AD ; BD AE . Bài 14. Cho đoạn thẳng AB thuộc đường thẳng d. Trên d lấy điểm C thuộc đoạn thẳng AB và điểm D nằm ngoài AB sao cho 5 3 DB DA CB CA == . a. Tính AC AB ; CB AB b) Cho AB = 24cm, Tính CA, DA. Bài 15. Cho 4 điểm A, B, C, D theo thứ tự trên một đường thẳng và 3 2 CD CB AD AB == . a. Nếu BD = 1cm. Tính CB, DA. b. Chứng minh: 5 AD2AB3 AC + = c. Gọi O là trung điểm của BD. Chứng minh: OB 2 = OA . OC. Bài 16. Cho ∆ABC, có AB = 5cm, BC = 6,5cm. Trên AB lấy điểm D sao cho DB = 3cm, từ D vẽ đường thẳng song song với BC cắt AC tại E. Tính DE. Bài 17. Cho ∆OPQ, có PQ = 5,2cm. Trên tia đối của tia OP lấy điểm N so cho ON = 2cm. Từ N vẽ đường thẳng song song với PQ cắt đường thẳng OQ tại M. Tính độ dài đoạn thẳng OP khi MN = 3cm. Bài 18. Cho ∆ABC, có AB = 11cm, AC = 20cm và BC = 28cm. Trên các cạnh AB, BC, CA lần lượt lấy các điểm P, N, M sao cho AP = 3cm, BN = BC 4 1 , 3AM = MC. C/m: BNMP là h.b.hành. Bài 19. Cho ∆OAB vuông tại A, có OA = 6cm. Trên tia đối của tia OA lấy điểm A’ sao cho OA 2 1 'OA = . Từ A’ vẽ đường thẳng vuông góc với AA’ tại A’, đường thẳng này cắt OB kéo dài tại B’. Tính OB và AB, biết A’B’ = 4,2cm. Bài 20. Cho góc xÔy. Trên tia Ox lấy theo thứ tự 2 điểm A, B sao cho: OA = 2cm, AB = 3cm. Trên tia Oy lấy điểm C với OC = 3cm. Từ B kẻ đường thẳng song song với AC cắt Oy tại D. a. Tính độ dài đoạn thẳng CD. b. Nếu OA = m, AB = n, OC = p. Tính CD theo m, n, p. Bài 21. Gọi G là trọng tâm của ∆ABC. Từ G kẻ các đường thẳng song song với 2 cạnh AB và AC, cắt BC lần lượt tại D và E. a. So sánh các tỉ số BC BD và BC EC . b. So sánh 3 đoạn thẳng BD, DE, EC. Bài 22. Cho ∆ABC có đường cao AH. Đường thẳng d song song với BC, cắt các cạnh AB, AC và đường cao AH theo thứ tự tại các điểm B’, C’ và H’. Trang 19 Bài tập Toán 8 – Chương 3 Phần II: Hình học a. Chứng minh: BC 'BC AH 'AH = b. Cho AH’ = 3 1 AH và diện tích ∆ABC là 67,5cm 2 . Tính diện tích ∆AB’C’. Bài 23. Cho ∆ABC có AB = 7,5cm. Trên AB lấy điểm D với: 2 1 DA DB = . a. Tính độ dài đoạn thẳng DA, DB. b. Gọi DH, BK lần lượt là khoảng cách từ D, B đến cạnh AC. Tính BK DH . c. Cho biết AK = 4,5cm. Tính HK. Bài 24. Cho ∆ABC có BC = a. Trên đường cao AH lấy các điểm I, K sao cho AK = KI = IH. Qua I và K vẽ các đường EF // BC, MN // BC. a. Tính độ dài các đoạn thẳng MN và EF theo a. b. Tính S MNFE , biết a = 15cm và S ∆ ABC = 270cm 2 . Bài 25. Cho hình bình hành ABCD. Gọi E, F, G lần lượt là trung điểm của AB, BC, CD. Dùng đònh lý Talét để chứng minh: a. 2 đoạn thẳng DE và BG chia AC thành 3 đoạn bằng nhau. b. AG và AF chia BD thành 2 đoạn bằng nhau. Bài 26. Cho hình thang ABCD (AB // CD). Một đường thẳng song song với 2 đáy, cắt cạnh bên AD ở M và cắt cạnh BC ở N. Biết n m NB CN MA DM == . Chứng minh: nm nCDmAB MN + + = Bài 27. Cho hình thang cân ABCD (AB // CD) có hai đường chéo AC và BD cắt nhau tại O. Gọi M, N theo thứ tự là trung điểm của BD và AC. Cho biết MD = 3MO, đáy lứn CD = 5,6cm. a. Tính độ dài đoạn thẳng MN và đáy nhỏ AB. b. So sánh độ dài đoạn thẳng MN với nửa hiệu các độ dài của CD và AB. Bài 28. Cho hình thang ABCD (AB // CD, AB < CD). Gọi trung điểm của các đường chéo AC, BD theo thứ tự là N và M. Chứng minh: a. MN // AB b. 2 ABCD MN − = Bài 29. Cho ∆ABC. Từ D trên cạnh AB, kẻ đường thẳng song song với BC cắt AC tại E. a. Chứng minh: AC AB CE BD = . b. Trên tia đối của tia CA, lấy điểm F sao cho CF = DB. Gọi M là giao điểm của DF và BC. Chứng minh: AB AC MF DM = . Bài 30. Cho hình bình hành ABCD. Một đường thẳng qua A lần lượt cắt BD ở I, BC ở J và CD ở K. a. So sánh ID IB và IK IA b. Chứng minh: IA 2 = IJ . IK c. Chứng minh: BC BJ DK DC = Bài 31. Cho hình thang ABCD (AB // CD) có các đường chéo cắt nhau tại O. a. Chứng minh: OA . OD = OB . OC b. Kẻ một đường thẳng bất kỳ qua O cắt AB ở M, CD ở N. Biết n m MB MA = . Tính NC ND . Áp dụng để chứng minh đònh lý: “ Trong một hình thang, đường thẳng đi qua giao điểm của 2 đường chéo và trung điểm của một đáy thì đi qua trung điểm của đáy kia” Trang 20 Bài tập Toán 8 – Chương 3 Phần II: Hình học c. Qua O, kẻ đường thẳng song song với AB, cắt AD và BC lần lượt tại P và Q. Chứng minh: O là trung điểm của đường thẳng PQ. Bài 32. Cho tứ giác ABCD. Qua E ∈ AD kẻ đường thẳng song song với DC cắt AC ở G. Qua G kẻ đường thẳng song song với CB cắt AB ở H. Chứng minh: a. HE // BD b. AE . BH = AH . DE Bài 33. Cho ∆ABC. Điểm D thuộc cạnh BC. Qua D kẻ các đường thẳng song song với AC, AB cắt AB, AC lần lượt tại E và F. a. Chứng minh: 1 AC AF AB AE =+ b. Xác đònh điểm D trên BC để EF // BC. c. Nếu 2 1 DC DB = , chứng minh: EF song song với trung tuyến BM. Bài 34. Cho tứ giác ABCD. Trên các cạnh AB, BC, CD, DA lấy theo thứ tự các điểm E, F, G, H sao cho: AE = 2EB, BF = 2 1 FC, CG = 2CD, DH = 2 1 HA. Chứng minh: EFGH là hình bình hành. Bài 35. Cho hình thang ABCD (AB // CD). M là trung điểm của CD. Gọi I là giao điểm của AM và BD, K là giao điểm của BM và AC. a. Chứng minh: IK // AB. b. Đường thẳng IK cắt AD, BC theo thứ tự tại E và F. Chứng minh: EI = IK = KF. Bài 1. Cho hình bình hành ABCD. Qua A vẽ tia Ax cắt BD ở I, BC ở J và cắt tia DC ở K. Chứng minh: IA 2 = IJ . IK và KD . BJ không đổi. Bài 36. Cho hình thang ABCD, đáy nhỏ CD. Từ D vẽ đường thẳng song song với BC cắt AC ở M, AB ở N. Từ C kẻ đường thẳng song song với AD cắt AB ở F. Qua N kẻ đường thẳng song song với AC cắt BC ở P. Chứng minh: MP // AB và 3 đường thẳng MP, CF và DB đồng qui. Bài 37. Cho ∆ABC (AC > AB). Lấy các điểm D, E tùy ý thứ tự nằm trên các cạnh AB, AC sao cho BD = CE. Gọi K là giao điểm của các đường thẳng DE và BC. Chứng minh: tỉ số KE KD không phụ thuộc vào cách chọn các điểm D và E. Bài 38. Cho ∆ABC, trung tuyến AM. Gọi I là điểm bất kỳ trên cạnh BC. Đường thẳng qua I và song song với AC cắt AB ở K, đường thẳng qua I và song song với AB cắt AM, AC lần lượt ở D và E. Chứng minh: DE = BK. Bài 39. Cho ∆ABC cân tại A có BC = 8cm, tia phân giác của góc B cắt đường cao AH ở K. Biết 5 3 AH AK = . Tính độ dài AB. Bài 40. Cho ∆ABC vuông tại A, C = 30 0 , kẻ phân giác BD. Tính DC DA . Bài 41. Cho ∆ABC cân tại A, phân giác BD. Biết BC = 10cm, AB = 15cm. a. Tính AD, DC. b. Phân giác ngoài của B cắt AC ở E. Tính EC. Bài 42. Cho ∆ABC cân, có BA = BC = a, AC = b. Đườmg phân giác góc A cắt BC tại M, đường phân giác góc C cắt BA tại N. a. Chứng minh: MN // AC. b. Tính MN theo a, b. Bài 43. Cho ∆ABC, đường phân giác của góc  cắt BC tại D. Biết AB = 4,5cm, AC = 7,2cm, BD = 3,5cm. Tính CD. Trang 21 Bài tập Toán 8 – Chương 3 Phần II: Hình học Bài 44. Cho ∆MNP, đường phân giác của góc P cắt MN tại Q. Biết PM = 6,2cm, PN = 8,7cm, MN = 12,5cm. Tính QN. Bài 45. Cho ∆ABC, p/giác góc  cắt BC tại E. Biết AB = 5cm, AC = 6cm, BC = 7cm. Tính EB, EC. Bài 46. Cho ∆ABC có các đường phân giác AD, BE và CF. Chứng minh: 1 FB FA EA EC DC DB =⋅⋅ . Bài 47. Cho ∆ABC, trung tuyến AM. Đường phân giác của AMÂB cắt AB ở D, đường phân giác của AMÂC cắt AC ở E. a. Chứng minh: DE // BC. b. Gọi I là giao điểm của AM và DE. Chứng minh: DI = IE. Bài 48. Cho ∆ABC có AB = 12cm, AC = 20cm, BC = 28cm. Đường phân giác góc A cắt BC tại D. Qua D kẻ DE // AB (E ∈ AC). a. Tính độ dài các đoạn thẳng BD, DC và DE. b. Cho biết diện tích ∆ABC là S, tính diện tích ∆ABD, ∆ADE và ∆DCE. Bài 49. Cho ∆ABC vuông tại A có AB = 21cm, AC = 28cm. Đường phân giác góc A cắt BC tại D. Qua D kẻ DE // AB (E ∈ AC). a. Tính độ dài các đoạn thẳng BD, DC và DE. b. Tính diện tích ∆ABD và ∆ACD. Bài 50. Cho ∆ABC cân tại A, phân giác góc B cắt AC tại D và cho biết AB = 15cm, BC = 10cm. a. Tính AD, DC. b. Đường vuông góc với BD tại B cắt đường thẳng AC kéo dài tại E. Tính EC. Bài 51. Cho ∆ABC có  = 90 0 , AB = 12cm, AC = 16cm. Đường phân giác góc A cắt BC tại D. a. Tính BC, BD, CD. b. Vẽ đường cao AH, tính AH, HD và AD. Bài 52. Cho ∆ABC vuông tại A, AB = a, AC = b, (a < b), trung tuyến AM, đường phân giác AD (M và D thuộc BC). a. Tính độ dài các đoạn thẳng BC, BD, DC, AM và DM theo a, b. b. Hãy tính các đoạn thẳng trên đây chính xác đến chữ số thập phân thứ hai khi biết a = 4,15cm và b = 7m,25cm. Bài 53. Cho ∆ABC có độ dài các cạnh AB = m, AC = n và AD là đường phân giác. Chứng minh: n m S S ACD ABD = ∆ ∆ . Bài 54. Cho hình thang ABCD (AB // CD). Đường thẳng a song song với DC, cắt các cạnh AD và BC theo thứ tự tại E và F. Chứng minh: a. FC BF ED AE = b. BC BF AD AE = c. CB CF DA DE = Bài 55. Cho hình bình hành ABCD. Vẽ một đường thẳng cắt AB ở E, AD ở F, AC ở G. Chứng minh: AG AC AF AD AE AB =+ Bài 56. a. Cho ∆ABC với đường trung tuyến AM và đường phân giác AD. Tính diện tích ∆ADM, biết AB = m, AC = n (n > m) và diện tích của ∆ABC là S. b. Cho n = 7cm, m = 3cm, hỏi diện tích ∆ADM chiếm bao nhiêu phần trăm diện tích ∆ABC. Bài 57. Cho hình thang cân ABCD, đáy lớn CD, D = 60 0 . Phân giác của D cắt AC tại I, chia AC theo tỉ số 11 4 và cắt AB tại M. Biết MA – MB = 6cm. Tính AB, CD. Trang 22 Bài tập Toán 8 – Chương 3 Phần II: Hình học Bài 58. Cho hình thang ABCD (AB // CD). Hai đường chéo AC và BD cắt nhau tại O. Đường thẳng a qua O và song song với đáy của hình thang cắt các cạnh bên AD, BC theo thứ tự tại E và F. Chứng minh: OE = OF. Bài 59. Cho ∆ABC, I là trung điểm của BC. Đường phân giác của góc AIÂB cắt AB ở M và phân giác của góc AIÂC cắt cạnh AC ở N. a. Chứng minh: MN // BC. b. ∆ABC phải thỏa điều kiện gì để MN = AI ? c. Với điều kiện nào thì tứ giác AMIN là hình vuông ? Bài 60. Cho ∆ABC. Trên hai cạnh AB, AC lần lượt lấy 2 điểm M và N sao cho: AC AN AB AM = . Gọi I là trung điểm của BC, AI cắt MN ở K. Chứng minh: K là trung điểm của MN. Áp dụng chứng minh: Trong một hình thang có 2 cạnh bên không song song, giao điểm của các đường thẳng chứa hai cạnh bên, giao điểm của 2 đường chéo và trung điểm của 2 đáy cùng nằm trên một đường thẳng. Bài 61. Cho hình bình hành ABCD. Trên cạnh AB lấy một điểm M và trên cạnh CD lấy một điểm N sao cho DN = BM. Chứng minh: MN, DB, AC đồng qui. Bài 62. Cho ∆ABC, lấy M∈ AB, N ∈ AC sao cho: 3 2 MB AM = và 3 2 NC AN = . a. Hai đường thẳng MN và BC có song song với nhau không ? Vì sao ? b. Cho biết chu vi và diện tích ∆ABC lần lượt P và S. Tính chu vi và diện tích ∆AMN. Bài 63. Tỉ số các cạnh bé nhất của hai tam giác đồng dạng là 5 2 . Tính chu vi của hai tam giác đó, biết hiệu hai chu vi của chúng bằng 42dm. Bài 64. Cho ∆ABC, điểm D thuộc cạnh BC sao cho: 2 1 DC DB = . Kẻ DE // AC, DF // AB (E∈AB,F∈AC) a. Nêu tất cả các cặp tam giác đồng dạng. Đối với mỗi cặp, hãy viết các góc bằng nhau và các tỉ số tương ứng. b. Tính chu vi ∆BED, biết rằng hiệu chu vi của hai ∆DFC và ∆BED là 30cm. Bài 65. Cho ∆ABC có AB = 16,2cm; BC = 24,3cm; AC = 32,7cm. Tính độ dài các cạnh của ∆A’B’C’, biết rằng ∆A’B’C’ đồng dạng với ∆ABC và: a. A’B’ lớn hơn AB là 10,8cm. b. A’B’ bé hơn AB là 5,4cm. Bài 66. Cho hình thang ABCD (AB // CD) có CD = 2AB. Gọi E là trung điểm của DC. Chứng minh rằng 3 tam gíac ADE, ABE và BEC đồng dạng với nhau. Bài 67. Cho ∆ABC và ∆A’B’C’. Biết AB = 6cm, BC = 12cm, CA = 9cm, A’B’ = 4cm, B’C’ = 8cm, C’A’= 6cm. a. ∆ABC và ∆A’B’C’ có đồng dạng với nhau không ? b. Tính tỉ số chu vi của hai ∆. Bài 68. Hai tam giác mà các cạnh có độ dài như sau có đồng dạng không ? a. 4cm, 5cm, 6cm và 8cm, 10cm, 12cm. b. 3cm, 4cm, 6cm và 9cm, 15cm, 18cm. c. 1dm, 2dm, 2dm và 1dm, 1dm, 0,5dm. Bài 69. Cho ∆ABC ( = 90 0 ) có AB = 6cm, AC = 8cm và ∆A’B’C’ (Â’ = 90 0 ) có A’B’ = 9cm, B’C’ =15cm. Hỏi hai tam giác vuông đó có đồng dạng hay không ? Vì sao ? Trang 23 Bài tập Toán 8 – Chương 3 Phần II: Hình học Bài 70. Cho ∆ABC có G là trọng tâm. Gọi P, Q, R lần lượt là trung điểm của GA, GB, GC. Chứng minh: ∆PQR và ∆ABC đồng dạng. Bài 71. Cho ∆ABC có H là trực tâm. Gọi K, M, N lần lượt là trung điểm của HA, HB, HC. Chứng minh: ∆KMN và ∆ABC đồng dạng với tỉ số đồng dạng k = 2 1 . Bài 72. Cho ∆ABC, điểm O nằm trong ∆. Gọi D, E, F theo thứ tự là trung điểm của OA, OB, OC. a. Chứng minh: ∆DEF và ∆ABC đồng dạng. b. Tính chu vi của ∆DEF, biết rằng chu vi của ∆ABC bằng 543cm. Bài 73. Cho ∆ABC có độ dài các cạnh là AB = 3cm, BC = 7cm, CA = 5cm. ∆A’B’C’đồng dạng với ∆ABC và có chu vi bằng 55cm. Hãy tính độ dài các cạnh của ∆A’B’C’ (làm tròn số đến chữ số thập phân thứ hai). Bài 74. Cho hai tam giác đồng dạng có tỉ số chu vi là 17 15 và hiệu độ dài hai cạnh tương ứng của chúng là 12,5cm. Tính hai cạnh đó. Bài 75. Cho hình bình hành ABCD. Trên đường chéo AC lấy điểm E sao cho AC = AE. Qua E vẽ đường thẳng song song với CD, cắt AD và BC theo thứ tự ở M và N. a. Tìm ∆ đồng dạng với ∆ADC và tìm tỉ số đồng dạng. b. Điểm E ở vò trí nào trên AC thì E là trung điểm của MN ? Bài 76. Cho ∆ABC. Dựng ∆ đồng dạng với ∆ đó, biết tỉ số đồng dạng k = 3 2 . Có thể dựng được bao nhiêu ∆ như thế ? Bài 77. Cho ∆ABC có AB = 12cm, Ac = 15cm, BC = 18cm. Trên cạnh AB, đặt đoạn thẳng AM = 10cm, trên cạnh AC đặt đoạn thẳng AN = 8cm. Tính độ dài đoạn thẳng MN. Bài 78. Cho ∆ABC có AC = 12cm, BC = 16cm. Điểm D ∈ BC sao cho: ADÂC = BÂC. Tính DC. Bài 79. Hình thang ABCD có AB // CD,  = CBÂD. Chứng minh: BD 2 = AB . CD. Bài 80. Cho ∆ABC có 3 đường cao AD, BE, CF với H là trực tâm. Chứng minh: a. ∆AHE đồng dạng với ∆BHD. b. HA . HD = HB . HE = HC . HF. Bài 81. Cho ∆ABC có  = 2BÂ. Tính AB, biết AC = 9cm, BC = 12cm. Bài 82. Hình thang ABCD (AB // CD) có AB = 2cm, BD = 4cm, CD = 8cm. Chứng minh: a.  = DBÂC. b. BC = 2AD. Bài 83. Cho ∆ABC có AB = 10cm, AC = 20cm. Trên cạnh AC, đặt đoạn thẳng AD = 5cm. Chứng minh: ABÂD = ACÂB. Bài 84. Trên một cạnh của xÔy (xÔy ≠ 180 0 ), lấy các điểm A và B sao cho OA = 5cm, AB = 11cm. Trên cạnh thứ hai lấy các điểm C và D sao cho OC = 8cm và OD = 10cm. a. Chứng minh: ∆OCB và ∆OAD đồng dạng. b. Gọi giao điểm của các cạnh AD và BC là I. Chứng minh: ∆IAB và ∆ICD có các góc bằng nhau từng đôi một. Bài 85. Chứng minh rằng nếu ∆ABC đồng dạng với ∆A’B’C’ theo tỉ số k thì: a. Tỉ số của hai đường trung tuyến tương ứng của hai tam giác đó cũng bằng k. b. Tỉ số của hai đường phân giác tương ứng của hai tam giác đó cũng bằng k. c. Tỉ số của hai đường cao tương ứng của hai tam giác đó cũng bằng k. Bài 86. Cho hình thang ABCD (AB // CD) có AB = 12,5cm; CD = 28,5cm; DÂB = DBÂC. Tính độ dài BD (làm tròn đến chữ số thập phân thứ nhất). Bài 87. Cho hình thang ABCD (AB // CD) có AB = 2,5cm; AD = 3,5cm; BD = 5cm; DÂB = DBÂC. Trang 24 Bài tập Toán 8 – Chương 3 Phần II: Hình học a. Chứng minh: ∆ADB và ∆BCD đồng dạng. b. Tính độ dài các cạnh BC, CD. c. Sau hki tính hãy vẽ lại hình chính xác bằng thướt và compa. Bài 88. Trên đoạn thẳng AC = 27cm lấy điểm B sao cho AB = 15cm. Từ A và C vẽ hai tia Ax và Cy cùng vuông góc với AB và nằm cùng phía với nhau. Lấy E ∈ Ax, D ∈ Cy sao cho AE = 10cm, ABÂE = BDÂC. a. Chứng minh: ∆BDE vuông. b. Tính CD, BE, BD và ED (làm tròn đến chữ số thập phân thứ nhất). c. So sánh diện tích ∆BDE với tổng diện tích của hai tam giác AEB và BCD. Bài 89. Cho ∆ABC có AB = 3cm, AC = 2cm. Trên tia đối của tia CB lấy điểm D sao cho CD = 3,5cm. Từ D kẽ đường thẳng song song với AB cắt AC kéo dài tại E. Tính BC, CE biết DE = 6cm. Bài 90. Cho ∆ABC có AB = 8cm, AC = 16cm, D ∈ AB, E ∈ AC sao cho: BD = 2cm, CE = 13cm. Chứng minh: a. ∆AED đồng dạng với ∆ABC. b. AB . CD = AC . BE Bài 91. Cho hình thang ABCD (AB // CD). Gọi O là giao điểm của 2 đường chéo AC và BD. a. Chứng minh: OA . OD = OB . OC b. Đường thẳng qua O và vuông góc với AB và CD theo thứ tự tại H và K. C/m: CD AB OK OH = . Bài 92. ∆ABC có AB = 2 1 BC, M là trung điểm của BC, D là trung điểm của BM. C/m: AD = 2 1 AC. Bài 93. Cho ∆ABC vuông tại A, đường cao AD và phân giác BE cắt nhau tại F. C/minh: EC EA FA FD = . Bài 94. Cho ∆ABC có AB = 24cm, Ac = 28cm. Tia phân giác của  cắt cạnh BC tại D. Gọi M, N theo thứ tự là hình chiếu của B và C trên đường thẳng AD. a. Tính tỉ số: CN BM . b. Chứng minh: DN DM AN AM = . Bài 95. Cho hình bình hành ABCD có độ dài các cạnh AB = 12cm, BC = 7cm. Trên cạnh AB lấy một điểm E sao cho AE = 8cm. Đường thẳng DE cắt cạnh CB kéo dài tại F. a. Hãy chỉ ra các cặp tam giác đồng dạng với nhau và chứng minh. b. Tính độ dài các đoạn thẳng EF và BF, biết DE = 10cm. Bài 96. Cho tứ giác ABCD, có  = C = 90 0 , hai đường chéo AC và BD cắt nhau tại O, BÂO = BDÂO. a. Chứng minh: ∆ABO và ∆DCO đồng dạng. b. Chứng minh: ∆BCO và ∆ADO đồng dạng. Bài 97. Cho ∆ABC vuông tại A, AC = 9cm, BC = 24cm. Đường trung trực của BC cắt các đường thẳng AC tại D, BC tại M. Tính CD. Bài 98. Cho hình chữ nhật ABCD có AB = a = 12cm, BC = b = 9cm. Gọi H là chân đường vuông góc kẻ từ A xuống BD. a. Chứng minh: ∆AHB và ∆BCD đồng dạng. b. Tính AH và S ∆ AHB . Bài 99. Cho ∆ABC vuông tại A, AC = 4cm, BC = 6cm. Kẻ tia Cx ⊥ BC (Cx và A khác phía so với đường thẳng BC). Lấy trên tia Cx điểm D sao cho BD = 9cm. Chứng minh: BD // AC. Trang 25 Bài tập Toán 8 – Chương 3 Phần II: Hình học Bài 100. Cho ∆ABC vuông tại A, AH là đường cao, M là trung điểm của BC, gọi N là hình chiếu của M trên AC. a. Hãy tìm và chứng minh các cặp ∆ đồng dạng với nhau. b. Biết BH = 4cm, CH = 9cm, tính diện tích ∆AMH. Bài 101. ∆ABC và ∆DEF có  = DÂ, B = Ê, AB = 8cm, BC = 10cm, DE = 6cm. Tính độ dài các cạnh AC, DF, EF, biết rằng cạnh AC dài hơn cạnh DF là 3cm. Bài 102. Cho hình bình hành ABCD. Gọi E và F lần lượt là trung điểm của AB và CD. Chứng minh: ∆ADE và ∆CBF đồng dạng. Bài 103. Cho ∆ABC ( = 90 0 ), đường cao AH = 8cm, BC = 20cm. Gọi D là hình chiếu của H trên AC a. Hỏi trong hình đã cho có bao nhiêu ∆ đồng dạng ? Viết các tỉ lệ thức giữa các cạnh tương ứng của chúng. b. Gọi E là hình chiếu của H trên AB. Tính diện tích ∆ADE. Bài 104. Cho ∆ABC vuông tại A, đường cao AH. Tính chu vi và diện tích ∆ABC nếu biết HB = 25cm và HC = 36cm. Bài 105. Cho một tam giác vuông trong đó cạnh huyền dài 20cm và một cạnh góc vuông dài 12cm. Tính độ dài hình chiếu cạnh góc vuông kia trên cạnh huyền. Bài 106. Cho tam giác ABC vuông tại A, đường cao AH. Chứng minh: a. AH 2 = HB . HC b. AB 2 = BH . BC c. AC 2 = CH . CB d. AH . BC = AB . AC e. BC 2 = AC 2 + AB 2 (Đònh lý Pi-ta-go) Bài 107. Cho ∆ABC có các đường cao BD và CE. a. Chứng minh: ∆ABD đồng dạng với ∆ACE. b. Chứng minh: ∆ADE đồng dạng với ∆ABC. c. Tính AÊD biết ACÂB = 48 0 . Bài 108. Tứ giác ABCD có AB = 3cm, BC = 10cm, CD = 12cm, AD = 5cm, đường chéo BD = 6cm. Chứng minh: a. ∆ABD và ∆BDC đồng dạng b. ABCD là hình thang. Bài 109. Cho ∆ABC cân tại A, O là trung điểm của BC. D ∈ AB, E ∈ AC sao cho OB 2 = BD . CE a. Chứng minh: ∆OBD và ∆ECO đồng dạng, góc DÔE có số đo không đổi. b. Chứng minh: 3 tam giác EOD, OBD và ECO đồng dạng. c. Chứng minh: DO là tia phân giác của BDÂE, EO lài tia phân giác của CÊD. d. Chứng minh: khi D, E di động (vẫn thỏa OB 2 = BD . CE) thì khoảng cách từ O đến DE không đổi và chu vi ∆ADE < 2AB. Bài 110. Cho hình thang ABCD (AB // CD). Gọi I là giao điểm của AC và BD. Đường thẳng qua I và song song với 2 đáy cắt BC ở J, AD ở K. a. Chứng minh: CD 1 AB 1 IJ 1 += . Suy ra I là trung điểm của KJ. b. Cho AB = m, CD = n. tính tỉ số AIB ABCD S S ∆ theo m và n. c. Bây giờ cho ABCD là hình thang cân. Chứng minh: AC 2 = AB . CD + AD 2 . Bài 111. Cho ∆ABC, M và N lần lượt trung điểm của BC, CA. Gọi H là trực tâm , G là trọng tâm, O là giao điểm của các đường trungtrực của các cạnh BC, AC. Chứng minh: a. ∆ABH và ∆MNO đồng dạng, ∆AHG và ∆MOG đồng dạng. b. H, G, O thẳng hàng. Trang 26 [...]... Cho 2 ∆A’B’C’ và ∆ABC có 3 góc nhọn Kẻ 2 đường cao A’H’ và AH Biết A' B' AB A' H' AH = và Chứng minh: ∆ABC và ∆A’B’C’ đồng dạng A' C' AC Bài 119 Cho hình bình hành ABCD Hình chiếu của A trên CD là H, trên BC là K a Chứng minh: ∆AHD và ∆AKB đồng dạng b Hình bình hành ABCD có thêm điều kiện gì để các ∆AHC và ∆AKC đồng dạng ? Bài 120 Tứ giác ABCD có hai đường chéo AC và BD cắt nhau tại O, ABÂD = ACÂD... vi của hai ∆ đồng dạng bằng bình phương tỉ số đồng dạng  Các tam giác đều đều bằng nhau 31 Trang Bài tập Toán 8 – Chương 3 Phần II: Hình học Câu 2 Chọn câu đúng:  Độ dài đoạn thẳng AN trên hình bên là  x = 18,9  x = 15,3  x = 5,3  Một kết quả khác B BÀI TẬP Cho hình vuông ABCD cố đònh, M là 1 điểm lấy trên cạnh BC (M ≠ B) Tia AM cắt DC tại P Trên tia đối của tia DC lấy điểm N sao cho DN = BM...Bài tập Toán 8 – Chương 3 Phần II: Hình học Bài 112 Cho hình bình hành ABCD có B tù Từ C kẻ các đường CE, CF vuông góc với AB, AD Chứng minh: AB AE + AD AF = AC2 (Đề thi vô đòch Toán Hungari – 1918) Bài 113 Trên các cạnh BC, CA, AB của ∆ABC, ta... (D ∈ AC) 27 Trang Bài tập Toán 8 – Chương 3 Phần II: Hình học AD CD b Biết AB = 12,5cm, tính chu vi và diện tích ∆ABC a Tính tỉ số: Bài 125 Tứ giác ABCD có AB = 4cm, BC = 20cm, CD = 25cm, DA = 8cm, đường chéo BD = 10cm a Nêu cách vẽ tứ giác ABCD b Các tam giác ABD và BDC có đồng dạng với nhau không ? Vì sao ? c Chứng minh: AB // CD Bài 126 Cho hình thang ABCD (AB // CD), AB = 15cm, CD = 30cm, đường... vuông của tam giác vuông kia thì đồng dạng  Tỉ số diện tích của hai ∆ đồng dạng bằng tỉ số đồng dạng Câu 2 Chọn câu đúng:  Độ dài AC, DE và AB trên hình vẽ bên cạnh lần lượt là:  6 3 6  6 3,5 4,5 29 Trang Bài tập Toán 8 – Chương 3   2 6 Phần II: Hình học 6 3 8 4,5 B BÀI TẬP Cho ∆ABC có  = 900, AB = 80cm, AC = 60cm, AH là đường cao, AI là phân giác (I ∈ BC) a Tính BC, AH, BI, CI b Chứng minh:... điều PB QC RA ⋅ ⋅ = 1 (Đ.lý kiện cần và đủ để 3 điểm P, Q và R thẳng hàng là có hệ thức PC QA RB Menelaus) Bài 116 Cho hình bình hành ABCD Lấy điểm M trên cạnh AD sao cho AM = 2MD, điểm N trên AS CD sao cho DN = 3NC Hai đường thẳng BM và AN cắt nhau tại S Tính tỉ số SN Bài 117 Cho hình thang vuông ABCD ( = D = 90 0), AB = 6cm, CD = 12cm, AD = 17cm, E ∈ AD sao cho AE = 8cm Chứng minh: BEEC = 900 A'... tam giác có 3 góc nhọn ABC cắt nhau tại O trên các đoạn thẳng OB và OC người ta lấy các điểm B’, C’ sao cho ABÂ’C = ACÂ’B = 90 0 Chứng minh: AB’ = AC’ 28 Trang Bài tập Toán 8 – Chương 3 ĐỀ 1 Phần II: Hình học CÁC ĐỀ ÔN TẬP 1 LÝ THUYẾT Câu 1 Trong các câu sau câu nào đúng, câu nào sai ?  Hai ∆ cân có 1 cặp cạnh bằng nhau thì đồng dạng  Tỉ số hai đường cao tương ứng của hai ∆ đồng dạng bằng tỉ số đồng... số k2 thì ∆ABC đồng dạng với ∆RQS theo tỉ số k1/k2  Nếu một đường thẳng cắt hai cạnh của một ∆ thì nó tạo thành một ∆ mới đồng dạng với ∆ đã cho Câu 2 Chọn câu đúng:  Độ dài đoạn thẳng MN và AC trên hình bên là  x = 18 và y = 64  x = 64 và y = 40  x = 18 và y = 40  x = 20 và y = 35 B BÀI TẬP Cho ∆ABC có đường cao AH (H nằm giữa B và C) Từ H vẽ HM ⊥ AB (M ∈ AB) và HN ⊥ AC (N ∈ AC) a Biết HA = 15cm,... = AC AN; ∆ABC và ∆ANM đồng dạng c Chứng minh: AB CM = AC BN d CM cắt BN tại K Chứng minh: ∆MKN và ∆BKC đồng dạng e Chứng minh: MN BC + BM CN = CM BN 30 Trang Bài tập Toán 8 – Chương 3 f Phần II: Hình học Nếu cho A, H cố đònh , B và C di chuyển trên đường thẳng vuông góc với AH tại H sao cho H vẫn nằm giữa B và C Chứng minh rằng trung trực của đoạn thẳng MN luôn đi qua 1 điểm cố đònh ĐỀ 4 A LÝ... của một ∆ thì nó tạo thành một ∆ mới đồng dạng với ∆ đã cho  Nếu hai cạnh của ∆ này tỉ lệ với hai cạnh của ∆ kia và hai góc bằng nhau, thì hai ∆ đó đồng dạng Câu 2 Chọn câu đúng:  Độ dài NC và BC trên hình bên lần lượt là  x = 12 và y = 19,2  x = 6 và y = 30  x = 8 và y = 30  Một kết quả khác B BÀI TẬP Cho ∆ABC Trên nửa mặt phẳng không chứa A có bờ là BC, vẽ tia Cx sao cho BCÂx = BÂC Gọi D là phân . tập Toán 8 – Chương 3 Phần II: Hình học Bài 58. Cho hình thang ABCD (AB // CD). Hai đường chéo AC và BD cắt nhau tại O. Đường thẳng a qua O và song song với đáy của hình thang cắt các cạnh bên. minh: ∆ABC và ∆A’B’C’ đồng dạng. Bài 119. Cho hình bình hành ABCD. Hình chiếu của A trên CD là H, trên BC là K. a. Chứng minh: ∆AHD và ∆AKB đồng dạng. b. Hình bình hành ABCD có thêm điều kiện gì. Toán 8 – Chương 3 Phần II: Hình học Câu 2. Chọn câu đúng:  Độ dài đoạn thẳng AN trên hình bên là  x = 18,9  x = 15,3  x = 5,3  Một kết quả khác B. BÀI TẬP Cho hình vuông ABCD cố đònh, M

Ngày đăng: 01/05/2015, 17:00

TỪ KHÓA LIÊN QUAN

w