Cùng với các ngôn ngữ như tiếng Trung, tiếng Hàn, tiếng Nhật, phân tách từ trong tiếng Việt là một công việc không hề đơn giản.. Phương pháp tách tách từ tiếng Việt dựa trên thống kê từ
Trang 1ĐẠI HỌC QUỐC GIA THÀNH PHỐ HỒ CHÍ MINH
Trường Đại Học Công Nghệ Thông Tin
BÀI THU HOẠCH
Môn: Khai phá dữ liệu và kho dữ liệu Tìm hiểu một vài phương pháp tách từ trong văn bản tiếng việt
Giảng viên: PGS.TS Đỗ Phúc Sinh viên thực hiện: Nguyễn Xuân Nghĩa – CH1101108
HCM Tháng 11 năm 2012
Trang 2Mục lục
Mục lục 2
Trang 2
Trang 3I Tổng quan
1 Đặt vấn đề
Xử lý ngôn ngữ tự nhiên (natural language processing - NLP) là một nhánh của trí tuệ nhân tạo tập trung vào các ứng dụng trên ngôn ngữ của con người Trong trí tuệ nhân tạo thì xử lý ngôn ngữ tự nhiên là một trong những phần khó nhất vì nó liên quan đến việc phải hiểu ý nghĩa ngôn ngữ-công cụ hoàn hảo nhất của tư duy và giao tiếp
Thực chất của xử lý ngôn ngữ tự nhiên là chuyển đổi âm thanh thành ngữ nghĩa Với mục đích là hiểu được ngôn ngữ, ý nghĩa
Các bước phân tích của xử lý ngôn ngữ tự nhiên:
• Phân tích hình thái học (Morphology): cách từ được xây dụng, các tiền tố hậu tố
• Phân tích cú pháp (Syntax): mối liên hệ về cấu trúc ngữ pháp giữa các từ và ngữ
• Phân tích ngữ nghĩa (Semantics ): nghĩa của từ, cụm từ và cách diễn đạt
• Diễn ngôn (Discourse): quan hệ giữa các ý hoặc các câu
• Thực chứng: mục đích phát ngôn, cách sử dụng ngôn ngữ trong giao tiếp
• Tri thức thế giới: Các tri thức về thế giới vá các tri thức ngầm
Trong phân tích hình thái học từng từ sẽ được phân tích và các ký tự không phải chữ (như các dấu câu) sẽ được tách ra khỏi các từ Trong tiếng Anh và nhiều ngôn ngữ khác, các từ được phân tách với nhau bằng dấu cách Tuy nhiên trong tiếng Việt, dấu cách được dùng để phân tách các tiếng (âm tiết) chứ không phải từ Cùng với các ngôn ngữ như tiếng Trung, tiếng Hàn, tiếng Nhật, phân tách từ trong tiếng Việt là một công việc không hề đơn giản
2 Tách từ tiếng Việt
Đối với tiếng Anh hoặc các ngôn ngữ không đơn lập khác “từ là một nhóm các kí tự
có nghĩa được tách biệt bằng khoảng trắng trong câu” do vậy việc tách từ trở nên rất đơn giản
Còn đối với ngôn ngữ đơn lập như tiếng Việt, tiếng Hán, tiếng Thái … lại là một bài toán khó Bởi những đặc tính chính của ngôn ngữ đơn lập như sau:
• Từ ở dạng nguyên thể, hình thức và ý nghĩa của từ độc lập với cú pháp
• Từ được cấu trúc từ tiếng
• Từ bao gồm từ đơn và từ phức (bao gồm từ láy và từ ghép)
Phương pháp tách tách từ tiếng Việt dựa trên thống kê từ Internet như một hướng tiếp cận mới trong tách từ với mục đích phân loại văn bản mà không cần dùng đến một từ điển hay tập ngữ liệu học nào
Trang 4II Các phương pháp tách từ hiện nay
1 Vấn đề tách từ tiếng Việt
a So sánh giữa tiếng Anh và tiếng Việt
Những đặc điểm chính của tiếng anh và tiếng Việt:
- Là ngôn ngữ đơn lập (isolate) hay còn
gọi là loại hình phi hình thái, không biến
hình, đơn âm tiết
- Từ không biến đổi hình thái, ý nghĩa
ngữ pháp nằm ngoài từ
- Phương thức ngữ pháp chủ yếu : trật tự
từ và hư từ
- Ranh giới từ không được xác định mặc
nhiên bằng khoảng trắng
- Tồn tại loại từ đặc biệt “từ chỉ loại”
hay còn gọi là phó danh từ chỉ loại kèm
theo với danh từ
- Có hiện tượng láy và nói lái trong tiếng
việt
- Là ngôn ngữ không đơn lập- loại hình biến cách hay còn gọi là loại hình chiết khuất
- Từ có biến đổi hình thái, ý nghĩa ngữ pháp nằm ở trong từ
- Phương thức ngữ pháp chủ yếu là phụ
tố
- Kết hợp giữa các hình vị là chặt chẽ, khó xác định, được nhận diện bằng khoảng trắng hoặc dấu câu
- Hiện tượng cấu tạo bằng từ ghép thêm phụ tố (affix) vào từ gốc là rất phổ biến
b Nhận xét
• Tiếng Việt là loại hình phi hình thái nên việc phân loại từ (danh từ, động từ, tính từ… ) và ý nghĩa từ là rất khó khăn, cho dù có sử dụng từ điển
• Việc tiền xử lý văn bản (tách từ, tách đoạn, tách câu…) sẽ thêm phức tạp với phần xử lý các hư từ, phụ từ, từ láy…
• Phương thức ngữ pháp chủ yếu là trật tự từ nên nếu áp dụng phương pháp tính xác xuất xuất hiện của từ có thể không chính xác như mong đợi
• Ranh giới từ không được xác định mặc định bằng khoảng trắng Điều này khiến cho việc phân tích hình thái (tách từ) tiếng Việt trỏe nên khó khăn Việc nhận diện ranh giới từ là quan trọng và làm tiền đề cho các xử lý tiếp theo sau đó như: kiểm tra lỗi chính tả, gán nhãn từ loại, thống kê tần suất từ
• Vì tiếng Anh và tiếng Việt có những điểm khác biệt nên chúng ta không thể áp dụng y nguyên các thuật toán tiếng Anh cho tiếng Việt
2 Các hướng tiếp cận của kĩ thuật tách từ tiếng Việt
Dựa vào các kĩ thuật tách từ của tiếng Hán, và những điểm tương đồng giữa tiếng Việt và tiếng Hán Chúng ta có thể xây dựng sơ đồ các hướng tiếp cận của kĩ thuật tách từ tiếng Việt:
Trang 4
Hybrid Hybrid
Vietnamese segmentation
Vietnamese segmentation
Word-based Word-based Character-basedCharacter-based
Statistic
Statistic DictionaryDictionary UnigramUnigram N-gramN-gram
Full word/ Phrase Full word/ Phrase Component
Component
Shortest Match
Shortest Match Longest MatchLongest Match Overlap MatchOverlap Match
Trang 5c Hướng tiếp cận dựa trên từ (Word-based approaches)
Hướng tiếp cận dựa trên từ với mục tiêu tách được các từ hoàn chỉnh trong câu Hướng tiếp cận này có thể chia ra theo 3 hướng : dựa trên thống kê (statistics - based), dựa trên từ điển ( dictionary – based) và hydrid ( kết hợp nhiều phương pháp)
• Hướng tiếp cận dựa trên thống kê (statistic-based): dựa trên các thông tin như tần số xuất hiện của từ trong tập huấn luyện ban đầu
• Hướng tiếp cận dựa trên từ điển (dictionary- based): ý tưởng của hướng tiếp cận này là những cụm từ được tách ra từ văn bản phải được so khớp với các từ trong
từ điển
• Tùy thuộc vào loại từ điển sử dụng để so khớp lại có 2 hướng tiếp cận: full word/ pharse và component Trong đó full word/ pharse cần sử dụng một từ điển hoàn chỉnh Còn component thì sử dụng từ điển thành phần
Trang 6• Tùy theo cách chọn so khớp từ (match) hướng tiếp cận ‘full word/ pharse’ có thể chia ra làm 3 loại: so khớp dài nhất (longest match), so khớp ngắn nhất (shortest match) và so khớp kết hợp (overlap) Trong so khớp kết hợp mỗi chuỗi được phát sinh từ văn bản có thể chồng lấp lên chuỗi khác nếu chuỗi đó có trong
từ điển
• Hiện nay thì hướng tiếp cận so khớp dài nhất được xem là phương pháp quan trọng và có hiệu quả nhất trong hướng tiếp cận dựa trên từ điển
• Hướng tiếp cận hybrid:Với mục đích kết hợp các hướng tiếp cận khác nhau để thừa hưởng được các ưu điểm của nhiều kỹ thuật và các hướng tiếp cận khác nhau nhằm nâng cao kết qủa Hướng tiếp cận này thường kết hợp giữa hướng dựa trên thống kê và dựa trên từ điển nhằm tận dụng các mặt mạnh của các phương pháp này Tuy nhiên hướng tiếp cận Hybrid lại mất nhiều thời gian xử
lý, không gian đĩa và đòi hỏi nhiều chi phí
d Hướng tiếp cận dựa trên kí tự
Trong tiếng việt, hình vị nhỏ nhất là “tiếng” được hình thành bởi nhiều ký tự trong bảng chữ cái Hướng tiếp cận này đơn thuần rút trích ra một số lượng nhất định các tiếng trong văn bản như rút trích từ 1 ký tự (unigram) hay nhiều ký tự (n-gram) và cũng mang lại một số kết qủa nhất định được minh chứng thông qua một số công trình nghiên cứu đã được công bố, như của tác giả Lê An Hà [2003] xây dựng tập ngữ liệu thô 10MB bằng cách sử dụng phương pháp qui hoạch động để cực đại hóa xác suất xuất hiện của các ngữ Rồi công trình nghiên cứu của H Nguyễn[2005] làm theo hướng tiếp cận là thay vì sử dụng ngữ liệu thô, công trình tiếp cận theo hướng xem Internet như một kho ngữ liệu khổng lồ, sau đó tiến hành thống kê và sử dụng thuật giải di truyền để tìm cách tách từ tối ưu nhất, và một số công trình của một số tác giả khác Khi so sánh kết qủa của tác giả Lê An Hà và H Nguyễn thì thấy công trình của H Nguyễn cho được kết quả tốt hơn khi tiến hành tách từ, tuy nhiên thời gian xử lý lâu hơn Ưu điểm nổi bật của hướng tiếp cận dựa trên nhiều ký tự là tính đơn giản, dễ ứng dụng, ngoài ra còn có thuận lợi là ít tốn chi phí cho thao tác tạo chỉ mục và xử lý nhiều câu truy vấn Qua nhiều công trình nghiên cứu của các tác giả đã được công bố, hướng tiếp cận tách từ dựa trên nhiều ký tự, cụ thể là cách tách từ hai
ký tự được cho là sự lựa chọn thích hợp
3 Một số phương pháp tách từ tiếng Việt hiện nay
a So khớp từ dài nhất (Longest Matching)
Longest Matching là thuật toán dựa trên tử tưởng tham lam Nó xét các tiếng từ trái qua phải, các tiếng đầu tiên dài nhất có thể mà xuất hiện trong từ điển sẽ được tách
ra làm một từ Thuật toán sẽ dừng khi xét hết các tiếng Thuật toán chỉ đúng khi không có sự nhập nhằng những tiếng đầu của tù sau có thể ghép với từ trước tạo thành một từ có trong từ điển
Giải thuật:
V là danh sách các tiếng chưa xét
T là bộ từ điển
While V≠⍉ do
Begin
Wmax= từ đầu danh sách V; // từ dài nhất
Foreach (v thuộc từ gồm các tiếng bắt đầu trong V)
If(length(v)> length(Wmax) and v thuộc T) then Wmax= v;
Trang 6
Trang 7Loại đi các tiếng trong Wmax ở đầu danh sách V;
End
Ví dụ : Tôi là công dân nước Việt Nam
Bước Từ dài nhất có thể Các tiếng còn lại
5 Việt Nam
Ưu điểm:
• Tách từ nhanh đơn giản chỉ cần dựa vào từ điển
• Độ chính xác tương đối cao
Hạn chế:
• Độ chính xác phụ thuộc vào hoàn toàn vào tính đầy đủ và chính xác của từ điển Phương pháp này sẽ không đạt được kết quả nếu cuối từ trước có liên hệ với các từ sau Ví dụ : một ông quan tài giỏi => một ||ông|| quan tài|| giỏi
b Học dựa trên sự cải biến (Transformation-based Learning -TBL)
Đây là cách tiếp cận dựa trên ngữ liệu đã đánh dấu Theo cách tiếp cận này, để huấn luyện cho máy tính biết cách nhận diện ranh giới từ tiếng Việt, ta có thể cho máy
“học” trên ngữ liệu hàng vạn câu tiếng Việt đã được đánh dấu ranh giới từ đúng Sau khi học xong, máy sẽ xác định được các tham số (các xác suất) cần thiết cho
mô hình nhận diện từ
Ưu điểm:
• Đặc điểm của phương pháp này là khả năng tự rút ra quy luật của ngôn ngữ
• Nó có những ưu điểm của cách tiếp cận dựa trên luật nhưng nó khác phục được khuyết điểm của việc xây dựng các luật một cách thủ công bởi các chuyên gia
• Các luật được thử nghiệm tại chỗ để đánh giá độ chính xác và hiệu của luật (dựa trên ngữ liệu huấn luyện)
• Có khả năng khử một số nhập nhằng của các mô hình ngôn ngữ theo kiểu thống
kê
Hạn chế:
• Phương pháp này “dùng ngữ liệu có gán nhãn ngôn ngữ để học tự động các quy luật đó” Mà việc xây dựng một tập ngữ liệu đạt được đầy đủ các tiêu chí của tập ngữ liệu trong tiếng Việt là điểu rất khó, tốn kém nhiều về mặt thời gian và công sức
• Hệ phải trải qua một thời gian huấn luyện khá lâu để có thể rút ra các luật tương đối đầy đủ
• Cài đặt phức tạp
c Chuyển đổi trạng thái trọng số hữu hạn (Weighted- Finite State Transducer- WFST)
Trang 8Mô hình mạng chuyển dịch trạng thái hữu hạn có trọng số WFST đã được đề xuất năm 1996 Ý tưởng cơ bản là áp dụng WFST kết hợp với trọng số là xác suất xuất hiện của mỗi từ trong ngữ liệu Dùng WFST để duyệt qua câu cần xét Cách duyệt
có trọng số lớn nhất sẽ là cách tách từ được chọn Phương pháp này cũng đã được
sử dụng trong công trình đã được công bố của tác giả Đinh Điền [2001], tác giả đã
sử dụng WFST kèm với mạng Neural để khử nhập nhằng khi tách từ, trong công trình tác giả đã xây dựng hệ thống tách từ gồm tầng WFST để tách từ và xử lý các vấn đề liên quan đến một số đặc thù riêng của ngôn ngữ tiếng Việt như từ láy, tên riêng, và tầng mạng Neural dùng để khử nhập nhằng về ngữ nghĩa sau khi đã tách
từ (nếu có)
Sơ đồ các bước sử lý của WFST
Tầng WFST: gồm 3 bước
Xây dựng từ điển trọng số: theo mô hình WFST, việc phân tách từ được xem như
một sự chuyển dịch trạng thái có xác suất (Stochastic Transduction) Chúng ta miêu
tả từ điển D là một đồ thị biên độ trạng thái hữu hạn có trọng số Giả sử:
- H: là tập các từ chính tả tiếng Viêt (còn gọi là “tiếng”)
- P: là từ loại của từ (POS: part - Of – Speech)
Mỗi cung của D có thể là:
- Từ một phần từ của H tới một phần từ của H, hoặc
- Từ З (ký hiệu kết thúc từ) tới một phần từ của P
Các nhãn trong D biểu thị một chi phí ước lượng (estimated cost) bằng công thức:
Cost = - log(f/N)
- Với f: tần số của từ, N: kích thước tập mẫu
Đối với các trường hợp từ mới chưa gặp, tác giả áp dụng xác suất có điều kiện Goog – Turning (Baayen) để tính toán trọng số
Xây dụng khả năng phân đoạn từ: để giảm bớt sự bùng nổ tổ hợp khi sinh ra các dãy
các từ có thể từ một dãy các tiếng trong câu, tác giả đề xuất một phương pháp mới là kết hợp dùng từ điển để hạn chế sinh ra các bùng nổ tổ hợp Khi phát hiện thấy một cách phân đoạn từ nào đó không phù hợp (không có trong từ điển, không phải là từ láy, không phải là danh từ riêng…) thì tác giả loại bỏ các nhánh xuất phát từ cách phân đoạn từ đó
Lựa chọn khả năng phân đoạn từ tối ưu: Sau khi được
một danh sách các cách phân đoạn từ có thể có của câu,
tác giả chọn trường hợp phân đoạn có trọng số bé nhất
như sau:
- Ví dụ: input = “Tốc độ truyền thông tin sẽ cao”
Dictionary “tốc độ” 8 68
“truyền” 12 31
“truyền thông” 12 31
Trang 8 Bắt đầu
Bắt đầu
Tiền xử lý Tiền xử lý Tiền xử lý Tiền xử lý
Tiền xử lý Tiền xử lý t<T0 t<T0
Trang 9“thông tin” 7 24
Id(D)*D* = “Tốc độ # truyền thông # tin # sẽ # tăng #
cao” 48 79
(8 68 + 12 31 +7 33 +6 09 + 7 43 + 6 95 = 48 79)
Id(D)*D* = “ Tốc độ # truyền # thông tin # sẽ # tăng# cao ” 48 70
(8 68 + 12 31 +7 24 +6 09 + 7 43 + 6 95 = 48 70)
Do đó, ta có được phân đoạn tối ưu là “Tốc độ # truyền # thông tin # sẽ # tăng # cao ”
Tầng mạng neural: mô hình mạng neural mà tác giả đề xuất được dùng để lượng giá
3 dãy từ loại: NNV, NVN, VNN (N: Noun, V: Verb) Mô hình này được học bằng chính các câu mà cách phân đoạn từ vẫn còn nhập nhằng sau khi qua mô hình thứ nhất
Ưu điểm
• Độ chính xác trên 97% [Đinh Điền et al, 2001]
• Mô hình cho kết quả phân đoạn từ với độ tin cậy (xác suất) kèm theo
• Nhờ có tầng mạng neural nên mô hình có thể khử nhập nhằng các trường hợp tần WFST cho ra nhiều ứng viên có kết quả ngang nhau
• Phương pháp này cho kết quả với độ chính xác khá cao vì mục đích của tác giả muốn nhắm đến việc tách từ thật chính xác để là nền tảng cho việc dịch máy Hạn chế
• Cũng tương tự như phương pháp TBL, việc xây dụng tập ngữ liệu là rất công phu, nhưng thật sự cần rất cần thiết để phục vụ cho mục đích dịch máy sau này
d Phương pháp tách từ dựa trên thống kê từ trên Internet và giải thuật di truyền (Internet and Genetics Algorithm-based Text Categorization for Documents in Vietnamese - IGATEC)
Phương pháp tách từ tiếng Việt dựa trên thống kê từ Internet và thuật giải di truyền – IGATEC (Internet and Genetics Algorithm based Text Categorization for Documents in Vietnamese) do H Nguyễn đề xuất năm 2005 như một hướng tiếp cận mới trong tách từ với mục đích phân loại văn bản mà không cần dùng đến một từ điển hay tập ngữ liệu học nào Trong hướng tiếp cận này, tác giả kết hợp giữa thuật toán di truyền với dữ liệu thống kê được lấy từ Internet
Trang 9
segmentation segmentation Online Extractor
Online Extractor
segmentation segmentation
segmentation segmentation
Online Extractor
Online Extractor
Online Extractor Online Extractor
segmentation segmentation
Trang 10Hệ thống bao gồm :2 phần
- Online Extractor : Thành phần này có tác dụng lấy thông tin về tần số xuất hiện của các từ trong văn bản bằng cách sử dụng một search engine nổi tiếng như Google hay Yahoo chẳng hạn Sau đó, tác giả sử dụng các công thức dưới đây để tính toán mức độ phụ thuộc lẫn nhau (mutual information) để làm cơ sở tính fitness cho GA engine
• Tính xác suất các từ xuất hiện trên Internet :
( )
MAX
) w2
&
w1 count(
) w2
&
w1 p(
MAX
count(w) w
p
=
=
Trong đó MAX = 4 * 109
count(w) số lượng văn bản trên Internet được tìm thấy có chứa từ w hoặc cùng chứa w1 và w2 đối với count(w1&w2)
• Tính xác suất độ phụ thuộc của một từ lên một từ khác :
( )w1
p
) w2
&
w1 p(
) w2
| w1
Thông tin phụ thuộc lẫn nhau (mutual information) của các từ ghép được cấu tạo bởi n tiếng ( cw = w1w2…wn)
( )
∑
=
n 1 j
) wn
&
&
w2
&
w1 p(
w j p
) wn
&
&
w2
&
w1 p(
MI(cw)
- GA Engine for Text Segmentation : mỗi cá thể trong quan thể được biểu diễn bởi chuỗi các bit 0, 1, trong đó, mỗi bit đại diện cho một tiếng trong văn bản, mỗi nhóm bit cùng loại đại diện cho cho một segment Các cá thể trong quần thể được khởi tạo ngẫu nhiên, trong đó mỗi segment được giới hạn trong khoảng 5
GA engine sau đó thực hiện các bước đột biến và lai ghép nhằm mục đích làm tăng
Trang 10