1. Trang chủ
  2. » Luận Văn - Báo Cáo

Vấn đề xác thực trên mạng truyền thông không dây dựa trên hệ mật đường cong Elliptic

112 928 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 112
Dung lượng 1,01 MB

Nội dung

ĐẠI HỌC QUỐC GIA HÀ NỘI Trường Đại Học Công Nghệ Luận văn thạc sỹ VẤN ĐỀ XÁC THỰC TRÊN MẠNG TRUYỀN THÔNG KHÔNG DÂY DỰA TRÊN HỆ MẬT ĐƯỜNG CONG ELLIPTIC Người trình bày: Phạm Văn Tồn Cán hướng dẫn: PGS.TS Trịnh Nhật Tiến Hà Nội – 09/2006 MỤC LỤC Danh mục từ viết tắt GIỚI THIỆU Chương - CÁC KHÁI NIỆM CƠ BẢN 1.1 Các khái niệm toán học .5 1.1.1 Số học số nguyên 1.1.2 Khái niệm đồng dư 1.1.3 Thặng dư thu gọn phần tử nguyên thủy .9 1.1.4 Phương trình đồng dư bậc hai thặng dư bậc hai 10 1.1.5.Khái niệm thuật toán xác suất 14 1.1.6 Khái niệm độ phức tạp .17 1.1.7 Bài toán kiểm tra số nguyên tố 19 1.1.8 Bài tốn phân tích thành thừa số nguyên tố .24 1.1.9 Bài tốn tính logarit rời rạc theo modulo 26 1.2 Vấn đề mã hóa .30 1.2.1 Hệ mã hóa đối xứng 30 1.2.2 Hệ mã hóa phi đối xứng (mã hóa khóa cơng khai) .35 1.3 Vấn đề ký số 41 1.3.1 Bài toán xác nhận sơ đồ chữ ký .41 1.3.2 Sơ đồ chữ ký RSA 43 1.3.3 Sơ đồ chữ ký ElGamal 44 1.3.4 Chuẩn chữ ký số (Digital Signature Standard) .49 1.3.5 Đại diện thông điệp 51 1.3.6 Chữ ký không phủ định không chối bỏ .53 Chương - VẤN ĐỀ XÁC THỰC ĐIỆN TỬ .55 2.1 Xác thực điện tử 55 2.1.1 Khái niệm xác thực .55 2.1.2 Khái niệm xác thực số (điện tử) .56 2.2 Công cụ xác thực: CHỨNG CHỈ SỐ 58 2.2.1 Khái niệm chứng số .58 2.2.2 Định dạng X.509 chứng số 59 2.3 Hạ tầng sở mật mã khóa cơng khai – PKI 69 2.3.1 Khái niệm PKI 69 2.3.3 Các chức quản lý PKIX 74 2.3.4 Các giao thức quản lý PKIX 77 2.3.5 Các giao thức kiểm tra trạng thái chứng số 77 Chương - XÁC THỰC TRÊN MẠNG TRUYỀN THÔNG .78 KHÔNG DÂY DỰA TRÊN HỆ MẬT ĐƯỜNG CONG ELLIPTIC 78 3.1 Hệ mật đường cong elliptic .78 3.1.1 Đường cong elliptic 78 3.1.2 Hệ mã hóa đường cong Elliptic 82 3.1.3 Sơ đồ chữ ký đường cong Elliptic 83 3.2 Mạng truyền thông không dây .86 3.2.1 Yêu cầu an toàn truyền tin .86 3.2.2 Đặc điểm mạng truyền thông không dây .87 3.3 Các giao thức xác thực 88 3.3.1 Các giao thức xác thực phổ biến 88 3.3.2 Giao thức xác thực dựa ECC 92 3.4 Thử nghiệm ECC .101 3.4.1 Giới thiệu 101 3.4.2 Kết thử nghiệm 102 3.4.3 Đánh giá, nhận xét 103 3.4.4 Một số giao diện mã nguồn chương trình thử nghiệm 104 KẾT LUẬN 109 TÀI LIỆU THAM KHẢO 110 Danh mục từ viết tắt CA Certification Authority CRL Certificate Revocation List DSS Digital Signature Standard ECC Elliptic Curve Cryptography ECDSA Elliptic Curve Digital Signate Argorithm MSR Modular Square Root OCSP Online Certificate Status Protocol PKI Public Key Infrastructure PKIX Public-Key Infrastructure X.509 RA Registration Authority GIỚI THIỆU Trong năm gần phát triển công nghệ thông tin, truyền thơng nói chung Internet nói riêng mang lại cho người nhiều lợi ích vơ to lớn Công nghệ thông tin đã, vấn đề có tầm quan trọng lớn hoạt động xã hội loài người Cũng phương thức trao đổi thông tin truyền thống, việc trao đổi, cung cấp thông tin điện tử nhiều lĩnh vực địi hỏi tính bí mật, tính tồn vẹn, tính xác thực trách nhiệm người gửi nhằm đảm bảo người gửi thơng tin khơng thể thối thác trách nhiệm thơng tin trao đổi Bên cạnh tốc độ xử lý máy tính ngày nâng cao với trợ giúp máy tính tốc độ cao, khả công hệ thống thơng tin có độ bảo mật dễ xảy Với mạng truyền thông không dây việc bảo đảm an tồn truyền tin cịn gặp nhiều khó khăn đặc thù riêng Chính người ta nghiên cứu đưa nhiều kỹ thuật, mô hình cho phép áp dụng để đảm bảo an tồn Trong số phương pháp kỹ thuật luận văn tập trung nghiên cứu việc áp dụng hệ mã hóa đường cong elliptic, hệ mã hóa xem hệ mã hóa an tồn; hiệu nhất, vào mạng truyền thông không dây Luận văn chia làm ba chương Chương 1: Các khái niệm Chương 2: Vấn đề xác thực điện tử Chương 3: Xác thực mạng truyền thông không dây dựa hệ mật đường cong Elliptic Chương - CÁC KHÁI NIỆM CƠ BẢN 1.1 CÁC KHÁI NIỆM TOÁN HỌC 1.1.1 Số học số nguyên Gọi Z tập hợp số nguyên, Z = { -2, -1, 0, 1, }, Z+ tập hợp số nguyên không âm Z+ ={0, 1, } Phần trình bày số kiến thức số học số nguyên cần lý thuyết mật mã Tập hợp Z đóng kín phép cộng, trừ nhân khơng đóng kín phép chia: chia số nguyên cho số nguyên số nguyên Trong số học, tính chất chia hết chia số nguyên a cho số nguyên b thương số nguyên q (a = b.q) có ý nghĩa đặc biệt Khi ta nói a chia hết cho b, b chia hết cho a, a bội số b, b ước số a, ký hiệu b|a Với định nghĩa ta thấy số ước số nguyên bất kỳ, số không bội số nguyên bất kỳ, số nguyên a ước số, đồng thời bội số Cho hai số nguyên a b, b> Thực phép chia a cho b ta hai số q r cho a= b.q +r, 01 gọi số nguyên tố, a ước số ngồi a Số a gọi hợp số số nguyên tố Các số 2, 3, 5, 7, 11 số nguyên tố; số 4, 6, 8, 10, 12 hợp số Hai số a b gọi ngun tố với chúng khơng có ước chung khác 1, tức gcd(a, b)=1 Một số nguyên n>1 dược viết dạng: n= p1a p 2a , p ka k Trong p p , p k số nguyên tố khác nhau, a1, a2 , ak số mũ nguyên dương Nếu khơng kể thứ tự thừa số ngun tố dạng biểu diễn nhất, ta gọi dạng triển khai tắc n Các số nguyên tố vấn đề số nguyên tố có vai trị quan trọng số học ứng dụng vào lý thuyết mật mã Số nguyên m gọi bội số chung a b a|m b|m Số m gọi bội số chung bé a b, ký hiệu lcm(a, b) m>0, m bội số chung a b, bội số chung a b bội m Với hai số nguyên dương a b ta có quan hệ lcm(a, b).gcd(a, b) = a.b Nếu b>0 b|a gcd(a, b)=b Nếu a= bq +r gcd(a, b) = gcd(b, r) Từ tính chất người ta xây dựng thuật toán thực việc tìm ước số chung lớn hai số nguyên sau Thuật toán Euclide INPUT: hai số nguyên không âm a b, với a ≥b OUTPUT: ước số chung lớn a b Trong b>0, thực hiện: Đặt r:= a mod b; a:=b; b:=r Cho kết (a) Ta biết gcd(a, b) = d, phương trình bất định a.x + b.y = d có nghiệm nguyên (x, y) Một nghiệm nguyên (x, y) tìm thuật tốn Euclide mở rộng Thuật tốn Euclide mở rộng INPUT: hai số ngun khơng âm a b với a≥b OUTPUT: d=gcd (a, b) hai số x, y cho a.x + b.y = d Nếu b = đặt d←a, x←1, y←0, cho (d, x, y) Đặt x2 =1, x1= 0, y2 =0, y1=1 Trong b >0 thực hiện: q:=a div b; r:=a mod b; x:=x2 - qx1; y:=y2 – qy1; q:=b; b:=r; x2:=x1; x1:=x; y2:=y1; y1:=y; Đặt d:=a; x:=x2; y:=y2 cho kết (d, x, y) 1.1.2 Khái niệm đồng dư Cho n số nguyên dương Ta nói hai số nguyên a b đồng dư với theo modulo n, viết a≡b (mod n), n|a-b (tức a-b chia hết cho n, hay chia a b cho n ta số dư) Quan hệ đồng dư (theo modulo n) tập hợp số ngun có tính chất phản xạ, đối xứng bắc cầu, tức quan hệ tương đương Do tạo phân hoạch tất tập hợp số nguyên Z thành lớp tương đương: hai số nguyên thuộc lớp tương đương chúng cho số dư chia cho n Mỗi lớp tương đương đại diện số tập hợp Zn ={0, 1, 2, n-1}, số dư chia số lớp cho n Vì vậy, ta đồng Zn với tập hợp các lớp tương đương số nguyên theo mod n Cho a ∈ Zn Một số nguyên x ∈ Zn gọi nghịch đảo a theo mod n, a.x ≡1 (mod n) Nếu có số x ta nói a khả nghịch, ký hiệu a-1 mod n Từ suy a khả nghịch theo mod n gcd(a, n)=1, tức a n nguyên tố với Ta định nghĩa phép chia Zn sau: a: b (mod n) = a.b-1 mod n Phép chia thực b khả nghịch theo mod n Bây ta xét phương trình đồng dư tuyến tính Phương trình đồng dư tuyến tính có dạng: a.x ≡ b(mod n), (1) a, b, n số nguyên, n>0, x ẩn số Phương trình có nghiệm d = gcd(a, n)|b, có d nghiệm theo mod n Thực vậy, đặt a’= a/d, b’= b/d, n’= n/d, ta thấy phương trình đồng dư (1) tương đương với phương trình: a’.x ≡ b’(mod n’) Vì gcd (a’, n’) = 1, nên phương trình có nghiệm theo mod n’ X= x0 ≡ b’a’-1(mod n’) Và phương trình (1) có d nghiệm theo mod n là: X= x0, x0+ n’, x0+ (d-1)n’ (mod n) Tất d nghiệm khác theo mod n, đồng dư theo mod n’ Bây ta xét hệ thống phương trình đồng dư tuyến tính Một hệ đưa dạng x1a1 (mod n1) x2a2 (mod n2) (2) xkak (mod nk) Ta ký hiệu n= n1.n2 nk, N = n/ni Ta có định lý sau Định lý số dư trung quốc Giả sử số nguyên n1, n2, , nk cặp số nguyên tố với Khi đó, hệ phương trình đồng dư tuyến tính (2) có nghiệm theo mod n Nghiệm nói Định lý số dư trung quốc cho biểu thức: x = ∑ki=1 Ni Mi mod n, Mi = Ni-1 mod ni (có Mi Ni ni nguyên tố với nhau) Nếu (n1, n2) = cặp phương trình x ≡ a (mod n1) x ≡ a (mod n2) có nghiệm x ≡ a (mod n) theo mod n với n = n1.n2 1.1.3 Thặng dư thu gọn phần tử nguyên thủy Tập Zn= {0, 1, 2, , n-1} thường gọi tập thặng dư đầy đủ theo mod n, số nguyên tìm thấy Zn số đồng dư với (theo mod n) Tập Zn đóng phép cộng, trừ nhân theo mod n, khơng đóng phép chia, phép chia cho a theo mod n thực a n nguyên tố với Bây ta xét tập Z n* = { a ∈ Zn: gcd(a, n) = 1}, tức Z n* tập Zn bao gồm phần tử nguyên tố với n Z n* gọi tập thặng dư thu gọn theo mod n Mọi số nguyên tố với n tìm thấy Z n* đại diện đồng dư với theo mod n Dễ thấy p số nguyên tố Z *p = {0, 1, 2, , p-1} Tập Z n* lập thành nhóm phép nhân Zn, Z n* phép chia theo mod n thực được, Z n* gọi nhóm nhân Zn Theo đại số học, ta gọi số phần tử nhóm cấp nhóm Ta ký hiệu Φ(n) số số nguyên dương bé n nguyên tố với n Như vậy, nhóm Z n* có cấp Φ(n), p số ngun tố nhóm Z *p có cấp p – Ta nói phần tử g € Z n* có cấp m, m số nguyên dương bé cho gm = Z n* Người ta chứng minh rằng: m |Φ(n) Vì vậy, với b € Z n* ta ln có bΦ(n) ≡ mod n Nếu p số nguyên tố Φ(p) = p-1, với b € Z n* ta có: bp-1 ≡ 1(mod p) (3) ... Chương - XÁC THỰC TRÊN MẠNG TRUYỀN THÔNG .78 KHÔNG DÂY DỰA TRÊN HỆ MẬT ĐƯỜNG CONG ELLIPTIC 78 3.1 Hệ mật đường cong elliptic .78 3.1.1 Đường cong elliptic 78 3.1.2 Hệ mã... áp dụng hệ mã hóa đường cong elliptic, hệ mã hóa xem hệ mã hóa an tồn; hiệu nhất, vào mạng truyền thông không dây Luận văn chia làm ba chương Chương 1: Các khái niệm Chương 2: Vấn đề xác thực điện... hóa đường cong Elliptic 82 3.1.3 Sơ đồ chữ ký đường cong Elliptic 83 3.2 Mạng truyền thông không dây .86 3.2.1 Yêu cầu an toàn truyền tin .86 3.2.2 Đặc điểm mạng

Ngày đăng: 25/03/2015, 10:32

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[1] Phan Đình Diệu (1999), Lý thuyết mật mã và an toàn thông tin, Đại Học Quốc Gia Hà Nội Sách, tạp chí
Tiêu đề: Lý thuyết mật mã và an toàn thông tin
Tác giả: Phan Đình Diệu
Năm: 1999
[2] Phạm Huy Điển, Hà Duy Khoái (2003), Mã hóa thông tin: Cơ sở toán học & Ứng dụng, Nhà Xuất Bản Đại Học Quốc Gia Hà Nội Sách, tạp chí
Tiêu đề: Mã hóa thông tin: Cơ sở toán học & "Ứng dụng
Tác giả: Phạm Huy Điển, Hà Duy Khoái
Nhà XB: Nhà Xuất Bản Đại Học Quốc Gia Hà Nội
Năm: 2003
[3] Trịnh Nhật Tiến, Nguyễn Đình Nam, Trương Thị Thu Hiền (2005), “Về một quy trình bỏ phiếu từ xa”, Tạp Chí Khoa Học ĐHQGHN, (Số 2PT 2005) Sách, tạp chí
Tiêu đề: Về một quy trình bỏ phiếu từ xa"”, Tạp Chí Khoa Học ĐHQGHN
Tác giả: Trịnh Nhật Tiến, Nguyễn Đình Nam, Trương Thị Thu Hiền
Năm: 2005
[4] Trịnh Nhật Tiến, Trương Thị Thu Hiền (2003), “Một số kỹ thuật bỏ phiếu từ xa”, Báo cáo tại hội thảo QG về CNTT, Thái Nguyên.Tiếng Anh Sách, tạp chí
Tiêu đề: Một số kỹ thuật bỏ phiếu từ xa”, Báo cáo tại hội thảo QG về CNTT
Tác giả: Trịnh Nhật Tiến, Trương Thị Thu Hiền
Năm: 2003
[5] Alfred Menezes, Minghua Qu, Doug Stinson, Yongge (2001), Evaluation of Security Level of Cryptography: ECDSA Signature Scheme, Certicom Research, Canada Sách, tạp chí
Tiêu đề: Evaluation of Security Level of Cryptography: ECDSA Signature Scheme
Tác giả: Alfred Menezes, Minghua Qu, Doug Stinson, Yongge
Năm: 2001
[6] Don Johnson and Alfred Menezes, and Scott Vanstone, “The Elliptic Curve Digital Signature Algorithm”, Dept. of Combinatorics & Optimization, University of Waterloo, Canada Sách, tạp chí
Tiêu đề: The Elliptic Curve Digital Signature Algorithm”
[7] Gerardo Orlando (2002), “Efficient Elliptic Curver Processor Architectures for Field Programmable Logic”, A Dissertation Submitted to the Faculty of theWorcesrer Polytechnic Institute Sách, tạp chí
Tiêu đề: Efficient Elliptic Curver Processor Architectures for Field Programmable Logic
Tác giả: Gerardo Orlando
Năm: 2002
[8] Harald Baier (2002), “Effcient Algorithms for Generating Elliptic Curves over Finite Fields Suitable for Use in Cryptography”, Vom Fachbereich Informatik der Technischen Universitat Darmstadt Genehmigte Sách, tạp chí
Tiêu đề: Effcient Algorithms for Generating Elliptic Curves over Finite Fields Suitable for Use in Cryptography”
Tác giả: Harald Baier
Năm: 2002
[9] Jalal Feghhi, Jalil Feghhi, Peter Williams (1998), “Digital Certificates”, An Imprint Of Addison Wesley Longman, Inc Sách, tạp chí
Tiêu đề: Digital Certificates”
Tác giả: Jalal Feghhi, Jalil Feghhi, Peter Williams
Năm: 1998
[10] Johannes A.Buchmann (2002), “Introduction to cryptography”, Springer – Verlag Sách, tạp chí
Tiêu đề: Introduction to cryptography”
Tác giả: Johannes A.Buchmann
Năm: 2002
[11] Murat Aydos (2000), “Efficient Wireless Security Protocols based on Elliptic Curve Cryptography”, An Abstract of the thesis of Murat Aydos for the degree of Doctor of Philosophy in Electrical & Computer Engineering Sách, tạp chí
Tiêu đề: Efficient Wireless Security Protocols based on Elliptic Curve Cryptography”
Tác giả: Murat Aydos
Năm: 2000
[12] Sattam S.Al-Riyami (2004), “Cryptographic Schemes baseb on Elliptic Curver Pairings”, Thesis submited to the University of London for the degree of Doctor of Philosophy Sách, tạp chí
Tiêu đề: Cryptographic Schemes baseb on Elliptic Curver Pairings”
Tác giả: Sattam S.Al-Riyami
Năm: 2004
[13] Sattam S.Al – Riyami and Kenneth G.Paterson (2003), “Certificateless Public Key Cryptography”, University of London Sách, tạp chí
Tiêu đề: Certificateless Public Key Cryptography”
Tác giả: Sattam S.Al – Riyami and Kenneth G.Paterson
Năm: 2003
[14] S. Chokhani (1999), “Internet X.509 Public Key Infrastructure Certificate Policy and Certification Practices Framework”, CygnaCom Solutions, Inc Sách, tạp chí
Tiêu đề: Internet X.509 Public Key Infrastructure Certificate Policy and Certification Practices Framework”
Tác giả: S. Chokhani
Năm: 1999
[15] William Stallings (2003), “Cryptography And Network Security”, Pearson Education, Inc Sách, tạp chí
Tiêu đề: Cryptography And Network Security”
Tác giả: William Stallings
Năm: 2003

TỪ KHÓA LIÊN QUAN

TRÍCH ĐOẠN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w