1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Buckling and Postbuckling of Composite Plates

401 306 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 401
Dung lượng 8,98 MB

Nội dung

[...]... death has prevented his witnessing the final outcome G J Turvey and I H Marshall Lancaster and Paisley, September 1994 Part One Basic Theory 1 Buckling and postbuckling theory for laminated composite plates A w Leissa 1.1 INTRODUCTION Laminated composite plates are fabricated oflaminae (also called layers or plies), where each lamina consists of high-strength fibres (e.g glass, boron, graphite) embedded... overview of the present (up to 1994) state of knowledge of laminated composite plate buckling response Other more mature engineers and academics engaged in the development and application of composite structures may find particular sections of the book useful in their day-to-day endeavours Lastly, we would like to believe (but shall never really know!) that we have managed to do justice to the vision of. .. presents the theory governing the buckling and postbuckling behaviour of laminated composite plates The resulting differential equations, boundary conditions and energy functionals may be used to analyse these behaviours by various solution techniques The subjeCt is divided into three parts Section 1.2 deals with the bifurcation buckling of thin laminates, where the effects of shear deformation in the transverse... values of the initial, tangential, body force components p~ and P:/, and given values of u' and v' and/ or their derivatives (i.e in-plane stresses) on the plate boundaries, one could solve eqns (1.19a) and (1.19b) for the displacement field u i and Vi and, if desired, the corresponding initial stress field For an unsymmetrically laminated plate, the B,} are not all zero, and the solutions for u i and. .. Equations (1.32) and (1.33) form a set of differential equations which are also of eighth order For symmetrically laminated plates B'J = 0, and equations (1.32) and (1.33) uncouple Equation (1.32) becomes the anisotropic, stress function form of the compatibility equation for plane elasticity, and equation (1.33) reduces to equation (1.23) 16 Buckling theory for laminated composite plates The classical,... in equations (1.38) and (1.39) For cross-ply plates having fibres parallel to the x and y axes, D 16 = D 26 = 0 in equations (1.38) and (1.39) The differential equations of buckling equilibrium and boundary conditions shown above may also be derived by means of variational principles based upon the potential energy of the system while it undergoes buckling Moreover, for many plate buckling problems,... been found to be less pronounced for laminated composite plates than for metal plates Theoretical analysis of postbuckling behaviour of plates is non-linear, even though the transverse displacements considered may be only 'moderately large' (i.e of the order of a few times the plate thickness) The initial non-linearity is due to additional in-plane strains (and stresses) caused by the transverse displacements... EO and K are 3 x 1 subvectors and A, Band D are the 3 x 3 submatrices delineated in equation (1.8) Multiplying through the first of the two sub matrix equations of equations (1.27) by A -I and solving for EO yields EO=A-IN-A-IBK (1.28) Substituting equation (1.28) into the second of equations (1.27) results in M = BA -IN - (D - BA -IB)K (1.29) 15 Thin plate buckling theory and equations (1.28) and. .. rotations t/lx and t/ly are independent of w, as discussed previously Moreover, uo, vo, t/lx, t/I,,, and w are all independent functions of x and y Substituting equations (1.47) into the strain-displacement and stressstrain equations of elasticity for the individual layers and integrating over the plate thickness as in equations (1.6) and (1.7), one obtains in-plane stress resultants (Nx,Ny,Nxy) and moment... isotropic plates these factors are usually taken to be either k = 5/6 = 0.833 [16] or 1[2/12 = 0.822 [17], and these values are often used for composite plates as well Substituting the kinematic relations (1.4) and (1.48) into the stiffness equations (1.8) and (1.49), and then these into the five equations of neutral equilibrium for a plate element in the buckled state arising from equations (1.10) and (1.11), . src=" 2H4 cV27jbFYWGV4xQetZVp8y 1h2 cuWNso1aptDtQW5Wmi3F14QolJ7Zg+Fz/ax5YPlByxi5WH40zlAiQ+Owbk3kXhjdoLOuZVC6O6JbaJszLdGN7UybluiQm9HA8O/B57cP333153S6c +w4 r9ejxKfTSd9/euv75/OduH37dgYAAHbufSYBAABSEgAAKQkAgJQEAEBKAgCAlAQAQEoCACAlAQCQkgAASEkAAJCSAABISQAApCQAAFISAAApCQAAUhIAACkJAICUBABASgIAgJQEAEBKAgAgJQEAkJIAAEhJAACQkgAASEkAAKQkAABSEgAAKQkAAFISAAApCQCAlAQAQEoCAICUBABASgIAICUBAJCSAABISQAAkJIAAEhJAACkJAAAUhIAACkJAABSEgAAKQkAgJQEAEBKAgCAlAQAQEoCACAlAQCQkgAASEkAAJCSAABISQAApCQAAFISAAApCQAAUhIAACkJAICUBABASgIAgJQEAEBKAgAgJQEAkJIAAEhJAACQkgAASEkAAKQkAABSEgAAKQkAAFISAAApCQCAlAQAQEoCACAlAQBASgIAICUBAJCSAABISQAAkJIAAEhJAACkJAAAUhIAACkJAABSEgAAKQkAgJQEAEBKAgAgJQEAQEoCACAlAQCQkgAASEkAAJCSAABISQAApCQAAFISAAApCQAAUhKA+8/Gxsby8vLW1pZJAXfLr5gEJN26dWt9fX11dfXll1/++Mc//sUvfnH0311dXb1x48b3v//9f/iHfzh+/Pji4qLpeSfcuHHjxo0b3/3ud//1X/81k8lcv379vTYFfvazn333u99dXV1dXV09cuTIM888c4+vU5ubm9///vf//d//vdlsnjp1am5ubvR3+v3vf399fX15ebnZbD7zzDOnTp2yCsQJ+xd/8Rff/OY 3w/ +urKwUi8XxVqjXX399Y2Pjxo0b 3W4 3k8lMTU1ls9kjR47s27dvvOcEKckeuHDhQrPZ7Pujdrvdbrfj/5ZKpUKhMD8/f+jQobv4gldXV//8z/88+cKy2eyIv7u2tlYqlTqdTvyXBx98cNAuhHq9/vDDD9tAj2diYiL5v6VSacRfPHHiRLPZnJycPHLkSPzHTqfz05/+dHNzM/nIycnJT33qU5VK5fjx4/fa29/Y2CiVSqnV516eX9euXSuXy+PNsitXrlQqleS//PSnP+1bVAsLC51Op1qt7t+//z2yImxtbZVKpVarlZwOO1 2W6 vV6rVZLbrj6KpVK5XL5zJkztj97vnbUarX5+fmTJ0+aGu9ut7kzGo1GtVotFAq907xQKPT+ey6Xu3r16l18wZubm9VqtVqt5vP58JKKxeLov95sNhuNRvzULJVKfR+Ty+VCpHY6HQvJGJrNZrPZjIXRdzoPWiDr9frs7Gzvx2SlUqlWq5VKJbVYho/qe3AKJNes0afAXdHpdJrNZq1Wi1/MqtXqTn83rDWDfvfcuXPvikmxt0qlUj6fv3r1arPZrNfruVxu9GW12+1Wq9Xkcr6wsNBut5OrWHJL6LPyTqjX68ndKybIu5rV445L7pNI/ajVas3Pzyf3At4Ln9xxI7ujlIxb4SGfasnNd7PZtGzsJlDGrodkL/YGfbvdTu4wLhQKd30r3+12hyxL75Z+ige1R0/JZDYN+d3k/HqPLP 9h7 tfr9fHWnTg9C4XC8A1Ro9EI60uhULDZuUMfNMM/Djqdzubmpsl 1j3 PZzR3Xd8dkMD09ffHixViT 3W6 3Vqvdx5MifsvPZrNxRwtj2M1xzOSU732eQ4cONZvNuNC2Wq3kFv8dduXKlcOHD1+9etUcHyKmZGov2v1qbW0tLJOpMwdGPywevvGWy+VXXnll+FkcJ0+eDMdSbK/2XAz6fD7fd9Hd2tq6cOFCPp+ /i5 sgRuRcybvv4sWLsSCTJ4Hdf5588sl2ux2uPJienjbrx7ab6 1W3 DY59+/ZVq9X4OV2v15977rl3 /j0 ePXo0eSbcINue6HbfW1hYePvttzOZzP39RTSKb3OnX 6i2 trbCXvbQkS+99NKIX9uG7A5gbMePH4+n6/S9TqBcLofon5qaMrmkJJlMJjMxMXH79u 0h+ xVWV1cnJiYGXanzTjp48GB8zXv+Ts+fP3/+/HnLwy796Ec/Gj6dd5OSmUzm5MmTU1NT6+vrd/E9xo4cvhz++Mc/frdsAe7QM+/bt++utP7dkjzHbnS3bt164oknQkceO3ZsxI5MbqJtdu5ETY5ybd/oF4BytzjA/Q4Z/qn/0EMPhcfcC5ej3rx5c5TXPN47ZU989KMfHXs 6j7 gbL36juFti 8g5 /p+9///vvgy0AI9rY2BjvF7/+9a8vLS2F//7CF76wo9+tVCp/9Vd/ZeJbd5CS97Tk1SqmBtvaq3Ml72Ujnvn3HjlBkGDsU4DiKem5XG5mZmZHv/vkk0/e3ZHa3pucn/ou4gD3PfE9O2wfJycnkxd0p6ytrQ0/v3BjY6PT6Wx7DmIY6zhcWpHP5yuVyhinHMWDj8Vicd++fTt9yzdu3EiObph68jCoUHhVYey38GpzuVy5XB7xJMuNjY1msxkmbKFQKJVKuxxy79atW9/61rfCGw+vZNtPlytXrvzu7/5uODS2tbVVq9WazWY2my0Wi4VCYfSh1MJEiOd4Jd/LnTtTMHmR+JA51Wg0whTOZrOPPvrottMkzJdGo9HpdPL5/EMPPTTKb43YFuEltdvtVqtVKBS2XVpeeOGFt99++8knnxzymMuXL3/mM58ZvvDcvHnza1/7WqvVarfb+Xy+UCg89thjO92tG7cDmUxmjBE919bWWq3WoPfy8ssvf+hDHwpTY2trq16vf+9739vc3NzRRmBra+s73/nO6upq+N89Wa2Wl5c7nU7cnuTz+VKpNGR5GC8v1tbW4vJcKBTG2GQNnyzNZjPM/bfffvvIkSOjbKauXbvW6XTC/Lp58+YXv/jFOPfL5fLnPve55Ivc2tr6yle+8p3vfCeXy4UFe/gqs7a2Frai4WVsbGzUarU4kcvl8iibrzHmTlwHw7a32+1+6EMfmp+fz+fzg34rrDt9x+zc0bwOzxOukcrn86N/UrA3XMT+Tg55MHykj8XFxdSPNjc3a7VauVwOK1XfsRjX19drtVp4kiHjjIQRjPuunPPz86MPBhQKIP5u6jUPHwwoOSJg74AvjUajUqmEVxiG+eh7UlS5XB4+JmW9Xu9bP/Pz8+MNZtlsNufn53vP15mbmxs0gEh 8I2 H6 xAE1k0YZZ6fT6aQGqQ5b2OR1AHu+QIZhquJj+o7TsbCwEN9F8sUMGYqy0+nEvUGhYJLvaMhitrCwkHxhg95F38U7tWyHZ240GuHjbdBECAM6xscMH6mk79e/bDbbaDRGHwwotYSMOBhQu91uNBrnzp0Lv9u70iXfRblcTg2Fk9yzm3q1vctDuAxramoq+TpzudzS0lJo9/AFdfThzJrNZpwFuVxucnIyuY4PWjWS24T5+fnq/xr+d5PzaIzBmAZZWVnJ5/NhgoSvEMm1u/clhfk1OzubnF/tdrv3spLktrfVavXueu99F51OZ2lpqVKpxAfHrWjvepHL5YZvD8ebO2EdzOVypVKpWq3Gd5rJZCqVSmr9qlarcVHsfap2ux2n59zcXBinOeh9ZNxIJidUuGuGAjGu5P2fknHUlVwu17sp7x3qIvWR1ruJGbSVXF9fD48MAytUq9XU2IF9X3A2m+0NvuTQ0L2veVBK9vbQoA19fCPxxKZeya1SSoiVuLHrdDpxAOde245LlwyFYrFYKpVSG+XUBI+BlUztuCnvHVKkUCgM2djF7XIYQjx5VfVuvg2OkpLxD4X+6DssX6VSiZ8o7XY7plIul+s7YcOSU6 1W4 1vudDrxt5LL2PCxP/q +i9 6h1 5OfKP9nk7fdBOy9DnrQctJoNMIMnZmZ6Z1BqWVjSErGcJ+amqrX672LxKCUHPJOey9+D4PghLmQz+d7ryNZX1/vuwqECZLP5+P2JzlcVO8XpFEWwnBX1dR2L/m0uVxuZWVl0FeRXrVabZSBOTN7N6JtOMKQWhE2NzeTy0BqC9n7shuNRtgyh128ye1D2MrFLefU1FRqa7+0tDRovY5LSxxIq/f 5h2 x/xpg78QWknrPdbvf2Yu+XmdSnzJCjc6kHx+mT3KkRV+F8Pq8mpeR9lZLh+s3Z2dm5ubm5ubnZ2dm 4w3 9ycrJ3tQz99+KLLyY /I1 MP29zcXFxcvHjx4vAbaSwtLR04cGBycjJ1N53Nzc 3w8 Taohx588MHUGv6nf/qn4QUP2hw3m83wTlOf381mc3FxMX6aTkxMJEedbTably9fTr7TYrF44MCBarUaPt663e7S0tKxY8eGfx7Mzs5OTEzMzs6m /j1 Vk+EVhiuUt/20CO8l+WpXVlbCpnBiYiKbzSaf 5I0 33lhaWlpYWIhz5MEHH8xms+fOnYvP8M1vfjO5E6LvLPvhD38YHtO743NzczO8nfAuJicn9zwln3766RgfqeHBu91ueGGf/vSnhz/zuXPnekPq7Nmzvb8VfhT/98UXXywWi8nQeeCBB4r/K87c1N1KDh06tLCwEObF+vr64uJi8oBacjKurKysrKyEhS1Mw971bnFxMa4FExMTvYcL4peWUqmUWiu73e65c+cmJiZSq9vp06f7zvGlpaWwtMzNzW1sbAwvodTvrq+vr6ysfPrTn461kXwZKysrS0tLYUqGZTWbzc7MzMQXHJel4PHHH+/90/EBvW8zLAlhGsYZlOqbvpaWlsJv9a7F 3W4 39uKBAweSK1ez2Xz88ceTC8bs7Ozp06cXFhYWFxeHj2KdbJdt1/oR90dms9neudy7wXnxxReTK+/Kysrjjz+eSvwf/vCHqbcf1+5sNjs7O5uM+Lht+cQnPtG73QgVGJeHAwcOLC4uJtfib37zm8lp2Lsne7y50+12Dxw4MOi3SqVScuEM0yG81PC3krMvbAFmZmaS73TufyU3LPEjo3cuLCwsxE+ivvc4QEq +i/ dKhq+GQfKQQfj+1HerlDwZblDAxe9wvfuQ4s6JQV/Oej+f4le65EGWTqcTvpJWKpXhh0WGHOC+fft2/Frce4gkddpf75tdX1+Pv977TsNJe5lMpu+hriGbzm1Tsu9kjx9OfXdZxZ9ms9neX08eve17bDd8SA/Z+RoP8/X++raSe4jjItpoNGq1WrxZXC6X67ubJ/7uoGJIfmYn4yM8bd8mC6eIDZllfX8reaAzl8v1lkRyJKNcLpdaaJOjbg2aUHEe9eZ+WONyudygI329873vXsm4ro24U23Qd 8W4 Den9aXIna9+/Evei9X4tiTdn3/bmVTtaAsNa3LsK924leh8zyowbsizt1TldYWOYzKMhW4Ahb6HvCRip3ZZDlvy+m6bkr/fdSXH7/97yKvUk482d+Kr6rhHhWPaQVazvbw059Su5+PVOwzAZY4m6s5qUvN9Ssndxr9frycMWfT8qtk 3J+ Cd61/+wyRjST4VCYduUjB3Zu8NvpykZtw59e3TIFra3VAb9aHht7ygl2+32oM/4OM37zrL4YlI750ZZKsL0762fvtOqbz3sdIFMLoH5fP7cuXN9/3TyApchUyy50yj1agedgDF8se/7QZIspEEHoJOPSf 2J5 PHfnQZcjNRBS+nt27enpqZS07A3JUMCDjofYPSUXFlZGXJwOX7FGnToOTkpUp/ocRdX37+bjJ7RF784U4acnTmklu6FlIyTdMj2MD6md/mM82vQZjBurAbNsrjCDk/JIctncqb3PTS807kTtyp9f7HVavX99+EfB0NSstvtxqIdtImOO1CHfCdnrxgM 6G7 av3//k08+Ga42jZvsK1eu7P6q23iRYNhkDDnHqF6vp05kTJ1Ps7GxEa6lmJ+ff/7559+ZKTPo2r3ecy6TG7UhTzjekDGHDh3qe2lh8rrm4XdkGXSh+qB7vm1tbYUPkkKhsMtrY0f3+uuvxy3C66+//swzz/T906MMWXXo0KH403ipbxwLcGFhoe+4gH1HrR8+y5K7VQZNzCE31tvR1Z2pV/LCCy9sOx2+8Y1vDJ99165dCxclNJvN4ZeQ71KM+0Hr1PT0dPJYQfJHcQ4O2nyNsVold6iPMnNTL2m 8G8 8k/9by8vIuJ2l8C0MutD958mScOMmsTC1XfReS5CmJu9maDZnC09PTce14+eWX92ruhE107xSenp4efcCKUayvr8cPu0EfCnEIhfv7HnL3CCl5TwRl8nvebu43mvpsi5uwIYNfTE9Pp4ZpiBuR1dXVS5cuhUsRa7XaxYsX9/CDbbyN4NiDCMbtzu7HKtva2lpeXo5f30e5ud/ob2S8Zxvb2traGJ+gw8WPqPX19fD8hw4dCpO92+3m8/mnnnrqypUr2/7p4YtK8lvToGhLdu1uRk1K /W7 ygPLoXyHiCbLtdvvSpUvlcrnb7bbb7d0PWRLvKdD3PY6yymzbZ4Om3k6n6sbGRlzCh4dOckfs7leQ5Bvc/SoWn 2H4 XVjiHx30LXfsrdzw4Yfj 0w7 f1sWXF0 9j2 M3ciWt9uCzv6NGjFy5cuHz58vBbvMZ1fKcL0o0bN8ZeCJGS963kytlut8e +w3 JqpRrv21jyScKAEZnt9vmNkYyjh8JO9d2tG//c8GsDh+Tj5cuXT 5w4 8YEPfCAMdREzfbyJPKh+djpY/S43ozv69RGXgeTHdnz+ZBCEHeGFQmFiYuLP/uzPrly50neBH94 3I3 4liJ/KqYDY0SqWmkpxX92OKjAeFq/X63Eh3GnWvMP7V2Iq9f0WsbW1FabM6N9+R3/9ce7v+Vve/c1p40vqdrujvIV3uHXinxvx7966dWv3c2d6ejp53WSr1apWq6dPn87n82fPnh37HkWDJKd8qVQ60c/ly5elhZR8z0mmw17tmhrvefp+SDcajaeeemr3jZK83GT3odB3AvY9nBRH0t7p4M/Xrl07ceJELpc7ffp0GF0vDPZ7hz4edjrLdvkyxhgKezxnzpzpHWQnk8nEkfB6D4oNf2sjfuzF5S21p2eU6bbtzqGxv/JF5XL52rVru5zd8UBe35/uZjf8qVOn4jP3vs4wQ7PZ7JDTTsZedAe97PHeTvIV7nLrmqyi1KWTQ5afvi019r7e4Q8Y8RyA+PL6noQzxtxZXFzs/QIcBpPK5/OPPPJI7/oSX8NOt2Mxf4d8HFSr1XBXiEEnGCAl333CwAS7f8xwP/7xj5P/+z//8z9jPHN8kgceeCCOVBL2THz5y18e8V0M3zRMTEz85m/+5t 4W0 jPPPBOG5 2g0 Gp/97GfjUb/XXnvtxIkTnU5ndnb 2H/ /xH3f0nM8++2y5XA4DcFy+fPnNN9987rnnzpw5Mz09vX///jsxT8Msm5iYSB7BuUNLSyZxbHQPxU+m1Cs8c+bMD3/ 4w+ S4xMmlZWZmJvVifv7znw95p/GnI+69SHVhOKlj+DR8++23+z4m/suOoiQMlZLJZObm5q5evRqW1U6n88QTT4x+9l7f9SK+no985CODpsB4y2qxWIzj2jzxxBOXL19+6623wgf5hQsXFhYWJicn//7v/36MmxWNve6Mdz7Ao48+mvwS8k//9E9jL96//OUv43//6Ec/2rbVwjBMyUkU31dYwPqG2vDpE+47P+gxIy 6W8 cvYxz/+8T2ZO/v27bt+/frm5ubCwsLs7Ozk5GTyMeHuO4Oep++iO+RvJU8tePXVV6/3OH/+/Pnz58+cOXP8+PF37KRzKckdd3uEG9LHx4y9ryh1wCWOH5YcGGVbMfLe9773Pfzww6+++mr8GH766acvXLgwyrsYvvPg9u3bMXP3SrFYfPXVV0PHXL16dXJy8ujRo4cPH37wwQfDDU6ef/75Hd3Lbm1tLX6OLi0tff7zn+/7TofvAxhlvie/YYdZdvv27R/84Ae7X6K2tW 2w9 t2FMPyz6qc//Wl8hamJ89u//dvnz5+/fv16uBS3VqvF7ux2u6kDUnFh7vtOh38VieLB6L57zoZPw/Daeh8T/2VHh0rfeOONuCvr1KlTS0tL4QzmMOreiBfb9V2t4uvpe+peaO4dbX9S39DC4fhut3v69OkHHnjg8OHD2Wy2Vqs9+uijP/jBD/7kT/7kjm4PUzu6xrtoZt++fcmj 8H/ 913+9+29KmUzmX/7lX0Z5F6nR4ON7jycpDnrvg/aLhxm9yy1A/FrSOwfHnjuZTObgwYNf+MIXnn/++f/6r/967bXXarVaXGibzWbvhVzheYbfynLIOpjZ7uIwpOR7S/xYGuPKkkHXlMT/TV6jN/rHVTh8c+jQoXhLhszI15hve5Cl7zfFXV4Tc+jQoZWVlfDdN96ze3Fx8ZVXXhnj+sF4QHb4YfG9vVAmeWH4kBOMdn9odQzJM+uHNGjy5t1xLvdeZHP8+PEzZ87E+bXTRWiU1STeLH7bGwf3Nei4WPICmh191Um9/XgnkkwmMz8/P8qR7uHTZOzLboa7ePFivPX8zMxMpVKp1Wrtdvu5557b6f6e48ePx3V8xMOOqe8AY7+d5GLWbDZ3M1BG7wUrwzfpY2/Wtl3A+s7xEU+zjuf8xCVzN3Nna2ur91PmyJEjZ86cSd4UdFD27XSDllybdn/yK1LyPrG2thbXh76nlA3Zsty6dSueFJ/assRN3vr6+ugnPsfVPn5TnJ6eTt41q1Kp7GZDPKgtMntxfnq4EXClUnnllVeuX79+8eLFOJ7f2Nvxvp8EexhzyW/kyU/KIUvCbi7z31HxD3rwkM13nImpm3P2neP79u0b9Mk3/AN4lEWl2Wzu9LqQUb4kxPdVr9dHX616z+56+OGHk2tuuVze5f6VO3T+bhigKoxb 9I1 vfCMcNxz7oGFMuuEDAsS1b7zRf3pNT08nF4P5+fmxRwWKb2F1dXXIQATxLQxZkXdp7Ei9cuVKeHmpuTD23Ak3OBg05WNxDjq7dKffgpLP41RIKUk6GsLtcLb9mpu0tLQ06CMk+YV+jFPjk+euhX2T8QhapVIZvhNl22+Kfc952uXHxtra2uzsbLxr8F7pLfitra3xLjUYZTont859P+ 3W1 tZGHJdnb+OjXC7Hj65nn31221mful/ltldi7ejKmORPB2V9mEeVSmX4GSN 9J/ KQi8zixSg7itS +h/ CefPLJ5Kz87Gc/O/wryhiDp+6yLzc2NgqFQvh6tvtxizL/d9/2pUuXBsVr6IP5+fnUHx 1j7 3J0 /vz51Jg1o38lTs6X5CgQQ9bE3ewR381qu+0IO3Hw2t55usu5Mzx 5w9 gXfR8wfBL1fg07ePBg3AK3Wq1BLxUp+V6xtbX11FNPhe3R5ORkvV7v/bof26LRaKQOLK6trZ0+fXrQd9NDhw7FrV6z2Xzqqad2tC8tdebloUOH4oh6YTO0mxV4R5c0jv4pFV7znhx0Tt7UK/lqQ0feua/CyTopl8upCbW2tpZMul1+Du3oEO3+/fvj4rS+vt63wLa2tkLHVyqV1JmpgzIo/Hs+n0+N1B3fY9+D6clX3vebw4ULFzqdzvz8/KDvFYNGLgyrZKPRGDSRH3744bhs1Ov1Rx55ZDezO1mT6+vrpVJp7JFT +i7 2uzxpZH5+PkzqZrO 5J0 O6nDx5Mk75Wq 3W9 znr9Xqn05mcnNyrve/RSy+9lPqC/cgjj2z7vq5cuVIoFOJyuH///vgkg95CvD3Enr+F5DwdvsGs1WpxOP1klpVKpUGrxm7mzo0bNwZ9voR1vFQqDTonsu/O3biWxbOot7a24iPDnvL433336Id1eUej5zImN/y508IB1nANWrVabTabKysrzWbz4sWLs7OzcT/f1NTU6upq32dInlN14MCBubm5xcXFc+fOhRvef/WrX42r9OTkZO/NiGdnZ+MVcGH9X1pa2tjYWFlZWVpampubS93+Kz7bxMREt9vtvTVi8uDC448/nrx518LCQvxbvbdp3tzcDL87MTHR+9Pk/cRmZ2d/8YtfDLkxYyaTWVxcfOONN1L3C45/fWpqqlgsFovFY8eOFRNmZmYuX748yoxLvp5sNvulL31pcXFxbm5ucnJyYWFhaWkp/q3UVIpvM0yfbW/mdvHixdSPTp8+nfzTMzMzX/rSl6rVapjj586d63a78a/3vXX7IL/4xS+Sx53n5uZ2ujyHfY3hutTUn97c3Az3VZqZmUlOkzAlJycnX3zxxdSzvfjii+E99t4sOO7UnJiYmJubm5ubm5qampmZ6b39YyaT+cQnPrG4uLiysrKysnL16tWZmZkDBw4MnzLVajW5Xpw7d25xcfHpp58uFotTU1MrKyvhM3ViYqL3/njJWZzJZI4dO3b16tX19fVwS7elpaXHH388dbe3xx9/PC6ZvatVGCohvJ5sNjs3NxdX5M3NzXh25uTk5MbGRuoOcmfPno2vZNBknJiY6Pt3k3eoC9M59ZjkYIHhMamTPsO/zM3Nhbc/im63e+zYsTg1Ur8Y1vFsNvvtb3+7d+mN93LMDL4P57YuXryYukTp2LFjYQFYWloKS9Hly5fDNjZukVJvIW5Xw9LSOzd7V5Dwi08//XT8uwsLC6nfXV9fn5mZCc88OTnZ99aIYeGfmJiYmZnpneypERLCZfiLi4vhUyOM2z/o3txjz52wNhWLxaWlpeQitL6+Hj4Bi8ViatFKLvMLCwu9ryTO64mJicnJyWKxGFaN1DOExzzwwAOzs7NXr14Ns6/ZbJ49e3ZycnLIYo97cL9rDLl 1W3 Kn46C7iPbdOiS/m4YNTepjNdzncNBtl3uFu6OGPSKpQ8zhkETv/YuTh9Lm5+dbrdaQceDCXWV730KpVIrfjwfdNyL1Rnr3bCXvMzv68OO9Nyvf9ka68TWH+xSn9gfk8/kwKu+QQ5ND7gtcKBRSN8wd9FTxefpO5yHCLBg0nbddAlO3UY7Pk8/nK5VKs9msVqu5XC6fz/feUTq58yOXy1UqlTAkUFiKKpVK6tbPqTu/JydyvFdvmD6FQo8rwegAAB/ZSURBVKHvUd1CoTBK2aQ6Kc 7i8 FeSS 2w+ n0/dvT2c3Thodmez2fCmwsrS+yJLpVLq21QYcypOpXq9PuTgaZhfg346MzPTarXiFO49 7j9 885LL5eJ61263R9yvmfytbW1ubib/6Pz8/NLSUryJa1zLRtmWDrpR9XCdTqdSqYzy1vou0qlvO2Gq1uv1q1evxsv+et/CoD8R8mjI2QupWda7cUiuv8Mvu+l7R/vdz53USwpnasWvW9VqNXmX7SGvMPXMqZneu +i2 2+0hp1RWKpW+d/dmz03syZAiDJIaOieXy8UEOXLkyOTk5Ojj/ly6dKnRaHS73R//+MeFQqFcLlcqlXA0fHl5OVwlFz56m83m/Px86kD5xsZGvV5vNpvtdrvdbodveIVCIZ4uc+PGjd6jIXG7kLoCemtrK6TDqVOnjhw5Ei6V7XQ6vZvmXC43PT0dz/Luu7a3Wq0Qo/l8PjlyRNiKpd7ItWvX4mO6 3W4 2m01Ow9OnT8ejIeEjfHV1te9NKZrN5igTP0y3arWazWY/97nPVavV+HpSMzckUbPZDJvaeHpQmDKVSiV1PlA8QNztdldXV3uP8CZn2c9//vNPfvKT1Wo1npx0+fLluLOq0+m02+1BtwuPB+mSsyBMnE6n89Zbb924caNcLu/oTLjV1dWvfvWrrVYrfv5NTk5++ctfHnQ76bD0Jj8s8/l8COjhc+HSpUt/+7d/+5Of/KRcLler1TgNl5eXW63WmTNntra26vX6t771rTCXQ/ONflfr5eXler0e5lGhUHjsscfiqZDXrl3rdDrJD6rel7qxsVGr1b7zne+srq7GFbBcLn/uc58Lx/LiiWW//OUvP/jBD8ZFt9VqPfbYY6lzAMJULZVKYXXb2Nh49dVX+9Z/uEX7oAtH9u3b99GPfrRWq4VxDFKnN+Tz+dS83tjYSC4bYZ1NHnwMeR32LcXX0+l0UofUC4XCK6+8MvpSdO3atUaj0Wg0wpOHIRfK5XLf8RYGvdnUq93p+UXhQr2wCYob50Kh8Du/8ztHjhzZdr3Y2NiYn5+P3zmLxeJDDz006C2EUzN70+fgwYNxK5r6sMjlco1GI7UFDpdpJm85kzwj88SJE3Hj+Qd/8Af//M//HDZHIe 9G/ 8TZ0dzJZDIvvPDC1772tU6nE09Zeeihhz75yU+Wy+XUpm9tbW3QofmwYKcm2te//vX3v//9pVIpfuT13UrEMe/CO/3Lv/zLvqOv4wA3DNvNEPZuDvom2m63U5dwmmh7NeX77lbk3a7b7caTAgftmbt69WqyVk20uy55EvB7cFtkAbgrfkVMcx/Y2toKR5RmZmaee+65vo85dOjQ+fPn44nwezse5HvZ/v373U/ivnT69OlwovaQXfinTp2anJyM+bK2trYnF3rDeNsiE+GucAU394N4nem2o0jGz7y9Gq8O7ktra2uhI7cdTSn5Ux0JUhLelV599dXwH7/3e7+37YPDNYO7HCQF7m+dTiesKQ899JCpAUhJ7nPxUoB4p+MhH5C3b9/O5XKjX+4N703hosy+V60lxdEE93Dcfsa2o8FiQUrCjoUTJQddCQgEhUIhfEPbNk3COpXL5e7EcNzs1O7vug5SkvduIGaG3tAvk8lcunSp1WoVi8WLFy+aaDDE/v37wwDd9Xp9yP1CVldX6/V6GLNmz+8QCEhJeIccP348HFy7evVq3/vqbm1tnT17NtxrK3n3IGCQ8+fPx2Hk+9bk8vLyiRMnwl3vRx+wkDtql7efhTEYopz7RBg1PdxYpVQqhdF0M5lMu90OA+2GgXwbjYZD2zD6ahXunhVGqH7ooYeKxWK4zUG9Xg/rVK1Wc +H2 XRfGmW80GvHmUuFOVGG8bhs9pCSM6rXXXvu7v/u71dXVzc3NGzduTE5OZrPZI0eOFIvFU6dOpW4uAmzr1q1bzWZzdXW12WzeunUrfGRks9lw41M 7I+ 8RL7zwwrPPPvuxj33s/3zAT0yEGzy67wtSEgCAe5FzJQEAkJIAAEhJAACkJAAAUhIAAKQkAABSEgCAu+xXTIJ73PLycqvV6nQ6rVbrpZdeMkEAACl5/7t06VKj0cjn8+EmtimhDsN/53K5QqFQLpdTNx975JFHvvWtb 3W7 XRMTALg3udvNnU3JsDcx9aNcLpfP5//7v/97fX09+e+lUqlerx86dCg+Q6fTaTQa8RnMLABASr63XLhwoVqthnuhLiwszM3N7du3L/50eXn58uXLV69ezWQyExMTBw8evH79evJ+qcvLy6VSSUoCAPcgl93cceVyOVZgsVhMdmQmkzl+/Pjzzz9frVbDYzY3Nz/zmc+8A6/q1q1bly5dOnz48KVLl8wjAGA8zpW841JnQPZ1/vz5eCC71WptbGzEw9x3yNTU1ObmprkDAOyGvZL3irDzMqjX63f6z8WOLBQKJj4AICXfBZrN5qAfxRMi3 2G5 XM58AQCk5LvAiN32DmTl1NRU +I9 Rjr8DAPTlXMl3SLiC+yMf+cigB3S73fCYycnJ48ePj/Enbt68ubS0lMlkHnjggd///d9PXgbe5zvE+/7/t4hbt26lrgTqa3V1dXV19cCBAx/+8IeLxeKQR7711lv/9m//tr6+Hp45m83+0R/90Yc//GHLAABIScYUruD++c9/PugBX/nKV8JjHnvssZ0++bVr1+bn59vtdvIfC4VCvV4ftNPxP//zP2MjZjKZQfG6sbFRrVbDAJnxH3O5XK1We/LJJ3sff/bs2a985SthWPV8Ph9eUjabffTRR2u12v79+y0JAHA/cYD7HZWqvWhtba3RaIT8CgMDjWhra+vEiRPlcjmXy5VKpeSR8VarVSqVtra2Uo+/cuXKBz7wgXgTnfBbExMTExMTJ06cSD74hRdeCD0aOvX27dsrKyuFQqHT6VQqlUceeST1Yh555JFarXbq1Knw4Ndff73T6dRqtW6 3W6 /XkzEKANwnbnPnxaldrVZ7f9pqtcI5lNlsttVqpX6avFKn0+mkfhrasdFoJP9xYWEh/kq5XE7+aH5+vncZiGdwlkql+MhGo5HNZjOZTLPZTD5Dp9OJj5+fn4//XqvVQgp3u93Ui1xcXAwZbUkAgPuMvZJ3wdra2vLy8urq6vLy8tmzZ0ulUuizpaWl4RfB9D1AXCwWT548mfyXL3zhC3HXZmo/6MWLF1N12 2w2 33zzzRCp169fj6+wUql0u91qtZo69r1///5QjZlMpl6v37x5M/x3+MdSqdR75uXMzEwmk7nTI2UCAO88KXkXNJvNUql07NixUqlUq9XCQe12u73t1Tapo9VhL+Ds7GzvI+Mola1Wq/e3to3U+fn5TqeTzWb77sWMQ1F2Op1woU9m8LH7TCZz8OBBMx0A7ksuu3mHhKuzw3+fOXPmj// 4j+ P12qOX1k9+8pNU8z333HN9Hzk9PV0sFsMlNa1WqzdS4+vp/es3b94MR9Wnpqb67gednp6emppaX1/PZDI/+9nPkj+q1+t/+Id/+PnPfz71K+4eDgD3JXsl3yGplioWix/72MeKxeKO9tjFo8lDLC8vP/vss4888kjoyJCSQ17PBz/4wdSP/uZv/ib8R 7w0 p1d82RsbG+E/8vl8 +I+ 5ubnDhw+fPXv20qVLa2trZj0A3MfslbwfbG1t1Wq1VqvVbDZ7L5Tue+l0NpsNpdi7zzKm5/r6+uHDh3O5XGpk9Xa7HQ9nx6HO6/V6vH68 3W7 H8 ylDXIYrbwAAKcm95cKFC/Eim3K5XC6XP/WpTx08ePDo0aN990cGk5OT4Qj1cL0dmc/nQzIWCoVcLhcz9Pjx481ms1wu95br5cuXv/e9 7w0 Z5BIAkJLcBU899VS9Xs9kMqVSqV6vj36V9Obm5raPKRaLKysro7+Y48ePh/2RtVotFZStVqtcLrdaLaOUA8D9xLmS72KXLl0KHVkoFK5fv57qyLg3MZ7FuFO3bt3a6a/s37///Pnzb775ZqvVqlarpVIpvozUUW8AQEoyqomJiT1/znB9zMTExPBE+7Vf+7Xef/z1X//1QY8Pw0BmMpkbN26McqFP8PLLLyfTc3p6+vz589evX3/zzTdPnz4dn9CSAABSkh3b89FwlpeXw0Hq27dv9471s 7W1 Fa+M6Rtwv/qrvzromR999NH4muPV3Nt64okn4jXjKXFsoN/6rd+yJACAlOTekhpz59atW+VyeciY4ZnEaD69l+YcOnQoDkJer9eXl5dHeQ25XG74X8zs4lA7ACAlGUfyAurktSzhAurw35VKJd7SZnl5+dixY7lcbni3TU5Oxli8du1aJpNZXV2NSVqr1cKTdzqdcrkcHpBy5cqVo0ePxiPg7XY7nLjZ64UXXggdWalUzFAAkJKMamtr6+zZs/F/Q7fFYb 2H2 9jYWF5ejgP9ZDKZRqMRz0fcv39/vKthq9XK5XInTpw4evRoqVSam5t76aWX4m+1Wq3eQ8/FYjH+tFwuT0xMHDt2LO6hPH78eL1ez2azsSYPHz781FNPXbhw4cKFC2fPnj18+HClUikUCmHvZmjQZrN59OjR5F7M8PYXFhZyuVyj0XD5NgDcb25zZ8S7YA+ysrIy/BlSAzomtdvt8JjUPbLz+Xyz2Qw/igepg2q1mnzyzc3NOKJ4MDc3l3oBV69eHbRrM5/P12q1+Mjeo+SlUim+gLm5ufiCAYD7yYSbI98hN2/e3NzcDLfYvnnz5sGDB2/cuHHkyJFMJrO6uprNZsN/jyjuVgz3zo77FDOZzGuvvfbtb387k8lMTk6WSqV9+/bFFxBPiHzrrbd+4zd+Y9DThutyTp482fcxy8vLzWYzXOIzMTFx5MiRhx9+uPfF37x5c3V1dXNz8z/+4z/eeOONsOMz9ZIAgPuMlAQAYEzOlQQAQEoCACAlAQCQkgAASEkAAJCSAABISQAApCQAAFISAAApCQAAUhIAACkJAICUBABASgIAICUBAEBKAgAgJQEAkJIAAEhJAACQkgAASEkAAKQkAABSEgAAKQkAAFISAAApCQCAlAQAQEoCACAlAQBASgIAICUBAJCSAABISQAAkJIAAEhJAACkJAAAUhIAACkJAABSEgAAKQkAgJQEAEBKAgAgJQEAQEoCACAlAQCQkgAASEkAAJCSAABISQAApCQAAFISAAApCQAAUhIAACkJAICUBABASgIAICUBAEBKAgAgJQEAkJIAAEhJAACQkgAASEkAAKQkAABSEgAAKQkAAFISAAApCQCAlAQAQEoCACAlAQBAS. src=" 2H4 cV27jbFYWGV4xQetZVp8y 1h2 cuWNso1aptDtQW5Wmi3F14QolJ7Zg+Fz/ax5YPlByxi5WH40zlAiQ+Owbk3kXhjdoLOuZVC6O6JbaJszLdGN7UybluiQm9HA8O/B57cP333153S6c +w4 r9ejxKfTSd9/euv75/OduH37dgYAAHbufSYBAABSEgAAKQkAgJQEAEBKAgCAlAQAQEoCACAlAQCQkgAASEkAAJCSAABISQAApCQAAFISAAApCQAAUhIAACkJAICUBABASgIAgJQEAEBKAgAgJQEAkJIAAEhJAACQkgAASEkAAKQkAABSEgAAKQkAAFISAAApCQCAlAQAQEoCAICUBABASgIAICUBAJCSAABISQAAkJIAAEhJAACkJAAAUhIAACkJAABSEgAAKQkAgJQEAEBKAgCAlAQAQEoCACAlAQCQkgAASEkAAJCSAABISQAApCQAAFISAAApCQAAUhIAACkJAICUBABASgIAgJQEAEBKAgAgJQEAkJIAAEhJAACQkgAASEkAAKQkAABSEgAAKQkAAFISAAApCQCAlAQAQEoCACAlAQBASgIAICUBAJCSAABISQAAkJIAAEhJAACkJAAAUhIAACkJAABSEgAAKQkAgJQEAEBKAgAgJQEAQEoCACAlAQCQkgAASEkAAJCSAABISQAApCQAAFISAAApCQAAUhKA+8/Gxsby8vLW1pZJAXfLr5gEJN26dWt9fX11dfXll1/++Mc//sUvfnH0311dXb1x48b3v//9f/iHfzh+/Pji4qLpeSfcuHHjxo0b3/3ud//1X/81k8lcv379vTYFfvazn333u99dXV1dXV09cuTIM888c4+vU5ubm9///vf//d//vdlsnjp1am5ubvR3+v3vf399fX15ebnZbD7zzDOnTp2yCsQJ+xd/8Rff/OY 3w/ +urKwUi8XxVqjXX399Y2Pjxo0b 3W4 3k8lMTU1ls9kjR47s27dvvOcEKckeuHDhQrPZ7Pujdrvdbrfj/5ZKpUKhMD8/f+jQobv4gldXV//8z/88+cKy2eyIv7u2tlYqlTqdTvyXBx98cNAuhHq9/vDDD9tAj2diYiL5v6VSacRfPHHiRLPZnJycPHLkSPzHTqfz05/+dHNzM/nIycnJT33qU5VK5fjx4/fa29/Y2CiVSqnV516eX9euXSuXy+PNsitXrlQqleS//PSnP+1bVAsLC51Op1qt7t+//z2yImxtbZVKpVarlZwOO1 2W6 vV6rVZLbrj6KpVK5XL5zJkztj97vnbUarX5+fmTJ0+aGu9ut7kzGo1GtVotFAq907xQKPT+ey6Xu3r16l18wZubm9VqtVqt5vP58JKKxeLov95sNhuNRvzULJVKfR+Ty+VCpHY6HQvJGJrNZrPZjIXRdzoPWiDr9frs7Gzvx2SlUqlWq5VKJbVYho/qe3AKJNes0afAXdHpdJrNZq1Wi1/MqtXqTn83rDWDfvfcuXPvikmxt0qlUj6fv3r1arPZrNfruVxu9GW12+1Wq9Xkcr6wsNBut5OrWHJL6LPyTqjX68ndKybIu5rV445L7pNI/ajVas3Pzyf3At4Ln9xxI7ujlIxb4SGfasnNd7PZtGzsJlDGrodkL/YGfbvdTu4wLhQKd30r3+12hyxL75Z+ige1R0/JZDYN+d3k/HqPLP 9h7 tfr9fHWnTg9C4XC8A1Ro9EI60uhULDZuUMfNMM/Djqdzubmpsl 1j3 PZzR3Xd8dkMD09ffHixViT 3W6 3Vqvdx5MifsvPZrNxRwtj2M1xzOSU732eQ4cONZvNuNC2Wq3kFv8dduXKlcOHD1+9etUcHyKmZGov2v1qbW0tLJOpMwdGPywevvGWy+VXXnll+FkcJ0+eDMdSbK/2XAz6fD7fd9Hd2tq6cOFCPp+ /i5 sgRuRcybvv4sWLsSCTJ4Hdf5588sl2ux2uPJienjbrx7ab6 1W3 DY59+/ZVq9X4OV2v15977rl3 /j0 ePXo0eSbcINue6HbfW1hYePvttzOZzP39RTSKb3OnX 6i2 trbCXvbQkS+99NKIX9uG7A5gbMePH4+n6/S9TqBcLofon5qaMrmkJJlMJjMxMXH79u 0h+ xVWV1cnJiYGXanzTjp48GB8zXv+Ts+fP3/+/HnLwy796Ec/Gj6dd5OSmUzm5MmTU1NT6+vrd/E9xo4cvhz++Mc/frdsAe7QM+/bt++utP7dkjzHbnS3bt164oknQkceO3ZsxI5MbqJtdu5ETY5ybd/oF4BytzjA/Q4Z/qn/0EMPhcfcC5ej3rx5c5TXPN47ZU989KMfHXs 6j7 gbL36juFti 8g5 /p+9///vvgy0AI9rY2BjvF7/+9a8vLS2F//7CF76wo9+tVCp/9Vd/ZeJbd5CS97Tk1SqmBtvaq3Ml72Ujnvn3HjlBkGDsU4DiKem5XG5mZmZHv/vkk0/e3ZHa3pucn/ou4gD3PfE9O2wfJycnkxd0p6ytrQ0/v3BjY6PT6Wx7DmIY6zhcWpHP5yuVyhinHMWDj8Vicd++fTt9yzdu3EiObph68jCoUHhVYey38GpzuVy5XB7xJMuNjY1msxkmbKFQKJVKuxxy79atW9/61rfCGw+vZNtPlytXrvzu7/5uODS2tbVVq9WazWY2my0Wi4VCYfSh1MJEiOd4Jd/LnTtTMHmR+JA51Wg0whTOZrOPPvrottMkzJdGo9HpdPL5/EMPPTTKb43YFuEltdvtVqtVKBS2XVpeeOGFt99++8knnxzymMuXL3/mM58ZvvDcvHnza1/7WqvVarfb+Xy+UCg89thjO92tG7cDmUxmjBE919bWWq3WoPfy8ssvf+hDHwpTY2trq16vf+9739vc3NzRRmBra+s73/nO6upq+N89Wa2Wl5c7nU7cnuTz+VKpNGR5GC8v1tbW4vJcKBTG2GQNnyzNZjPM/bfffvvIkSOjbKauXbvW6XTC/Lp58+YXv/jFOPfL5fLnPve55Ivc2tr6yle+8p3vfCeXy4UFe/gqs7a2Frai4WVsbGzUarU4kcvl8iibrzHmTlwHw7a32+1+6EMfmp+fz+fzg34rrDt9x+zc0bwOzxOukcrn86N/UrA3XMT+Tg55MHykj8XFxdSPNjc3a7VauVwOK1XfsRjX19drtVp4kiHjjIQRjPuunPPz86MPBhQKIP5u6jUPHwwoOSJg74AvjUajUqmEVxiG+eh7UlS5XB4+JmW9Xu9bP/Pz8+MNZtlsNufn53vP15mbmxs0gEh 8I2 H6 xAE1k0YZZ6fT6aQGqQ5b2OR1AHu+QIZhquJj+o7TsbCwEN9F8sUMGYqy0+nEvUGhYJLvaMhitrCwkHxhg95F38U7tWyHZ240GuHjbdBECAM6xscMH6mk79e/bDbbaDRGHwwotYSMOBhQu91uNBrnzp0Lv9u70iXfRblcTg2Fk9yzm3q1vctDuAxramoq+TpzudzS0lJo9/AFdfThzJrNZpwFuVxucnIyuY4PWjWS24T5+fnq/xr+d5PzaIzBmAZZWVnJ5/NhgoSvEMm1u/clhfk1OzubnF/tdrv3spLktrfVavXueu99F51OZ2lpqVKpxAfHrWjvepHL5YZvD8ebO2EdzOVypVKpWq3Gd5rJZCqVSmr9qlarcVHsfap2ux2n59zcXBinOeh9ZNxIJidUuGuGAjGu5P2fknHUlVwu17sp7x3qIvWR1ruJGbSVXF9fD48MAytUq9XU2IF9X3A2m+0NvuTQ0L2veVBK9vbQoA19fCPxxKZeya1SSoiVuLHrdDpxAOde245LlwyFYrFYKpVSG+XUBI+BlUztuCnvHVKkUCgM2djF7XIYQjx5VfVuvg2OkpLxD4X+6DssX6VSiZ8o7XY7plIul+s7YcOSU6 1W4 1vudDrxt5LL2PCxP/q +i9 6h1 5OfKP9nk7fdBOy9DnrQctJoNMIMnZmZ6Z1BqWVjSErGcJ+amqrX672LxKCUHPJOey9+D4PghLmQz+d7ryNZX1/vuwqECZLP5+P2JzlcVO8XpFEWwnBX1dR2L/m0uVxuZWVl0FeRXrVabZSBOTN7N6JtOMKQWhE2NzeTy0BqC9n7shuNRtgyh128ye1D2MrFLefU1FRqa7+0tDRovY5LSxxIq/f 5h2 x/xpg78QWknrPdbvf2Yu+XmdSnzJCjc6kHx+mT3KkRV+F8Pq8mpeR9lZLh+s3Z2dm5ubm5ubnZ2dm 4w3 9ycrJ3tQz99+KLLyY /I1 MP29zcXFxcvHjx4vAbaSwtLR04cGBycjJ1N53Nzc 3w8 Taohx588MHUGv6nf/qn4QUP2hw3m83wTlOf381mc3FxMX6aTkxMJEedbTably9fTr7TYrF44MCBarUaPt663e7S0tKxY8eGfx7Mzs5OTEzMzs6m /j1 Vk+EVhiuUt/20CO8l+WpXVlbCpnBiYiKbzSaf 5I0 33lhaWlpYWIhz5MEHH8xms+fOnYvP8M1vfjO5E6LvLPvhD38YHtO743NzczO8nfAuJicn9zwln3766RgfqeHBu91ueGGf/vSnhz/zuXPnekPq7Nmzvb8VfhT/98UXXywWi8nQeeCBB4r/K87c1N1KDh06tLCwEObF+vr64uJi8oBacjKurKysrKyEhS1Mw971bnFxMa4FExMTvYcL4peWUqmUWiu73e65c+cmJiZSq9vp06f7zvGlpaWwtMzNzW1sbAwvodTvrq+vr6ysfPrTn461kXwZKysrS0tLYUqGZTWbzc7MzMQXHJel4PHHH+/90/EBvW8zLAlhGsYZlOqbvpaWlsJv9a7F 3W4 39uKBAweSK1ez2Xz88ceTC8bs7Ozp06cXFhYWFxeHj2KdbJdt1/oR90dms9neudy7wXnxxReTK+/Kysrjjz+eSvwf/vCHqbcf1+5sNjs7O5uM+Lht+cQnPtG73QgVGJeHAwcOLC4uJtfib37zm8lp2Lsne7y50+12Dxw4MOi3SqVScuEM0yG81PC3krMvbAFmZmaS73TufyU3LPEjo3cuLCwsxE+ivvc4QEq +i/ dKhq+GQfKQQfj+1HerlDwZblDAxe9wvfuQ4s6JQV/Oej+f4le65EGWTqcTvpJWKpXhh0WGHOC+fft2/Frce4gkddpf75tdX1+Pv977TsNJe5lMpu+hriGbzm1Tsu9kjx9OfXdZxZ9ms9neX08eve17bDd8SA/Z+RoP8/X++raSe4jjItpoNGq1WrxZXC6X67ubJ/7uoGJIfmYn4yM8bd8mC6eIDZllfX8reaAzl8v1lkRyJKNcLpdaaJOjbg2aUHEe9eZ+WONyudygI329873vXsm4ro24U23Qd 8W4 Den9aXIna9+/Evei9X4tiTdn3/bmVTtaAsNa3LsK924leh8zyowbsizt1TldYWOYzKMhW4Ahb6HvCRip3ZZDlvy+m6bkr/fdSXH7/97yKvUk482d+Kr6rhHhWPaQVazvbw059Su5+PVOwzAZY4m6s5qUvN9Ssndxr9frycMWfT8qtk 3J+ Cd61/+wyRjST4VCYduUjB3Zu8NvpykZtw59e3TIFra3VAb9aHht7ygl2+32oM/4OM37zrL4YlI750ZZKsL0762fvtOqbz3sdIFMLoH5fP7cuXN9/3TyApchUyy50yj1agedgDF8se/7QZIspEEHoJOPSf 2J5 PHfnQZcjNRBS+nt27enpqZS07A3JUMCDjofYPSUXFlZGXJwOX7FGnToOTkpUp/ocRdX37+bjJ7RF784U4acnTmklu6FlIyTdMj2MD6md/mM82vQZjBurAbNsrjCDk/JIctncqb3PTS807kTtyp9f7HVavX99+EfB0NSstvtxqIdtImOO1CHfCdnrxgM 6G7 av3//k08+Ga42jZvsK1eu7P6q23iRYNhkDDnHqF6vp05kTJ1Ps7GxEa6lmJ+ff/7559+ZKTPo2r3ecy6TG7UhTzjekDGHDh3qe2lh8rrm4XdkGXSh+qB7vm1tbYUPkkKhsMtrY0f3+uuvxy3C66+//swzz/T906MMWXXo0KH403ipbxwLcGFhoe+4gH1HrR8+y5K7VQZNzCE31tvR1Z2pV/LCCy9sOx2+8Y1vDJ99165dCxclNJvN4ZeQ71KM+0Hr1PT0dPJYQfJHcQ4O2nyNsVold6iPMnNTL2m 8G8 8k/9by8vIuJ2l8C0MutD958mScOMmsTC1XfReS5CmJu9maDZnC09PTce14+eWX92ruhE107xSenp4efcCKUayvr8cPu0EfCnEIhfv7HnL3CCl5TwRl8nvebu43mvpsi5uwIYNfTE9Pp4ZpiBuR1dXVS5cuhUsRa7XaxYsX9/CDbbyN4NiDCMbtzu7HKtva2lpeXo5f30e5ud/ob2S8Zxvb2traGJ+gw8WPqPX19fD8hw4dCpO92+3m8/mnnnrqypUr2/7p4YtK8lvToGhLdu1uRk1K /W7 ygPLoXyHiCbLtdvvSpUvlcrnb7bbb7d0PWRLvKdD3PY6yymzbZ4Om3k6n6sbGRlzCh4dOckfs7leQ5Bvc/SoWn 2H4 XVjiHx30LXfsrdzw4Yfj 0w7 f1sWXF0 9j2 M3ciWt9uCzv6NGjFy5cuHz58vBbvMZ1fKcL0o0bN8ZeCJGS963kytlut8e +w3 JqpRrv21jyScKAEZnt9vmNkYyjh8JO9d2tG//c8GsDh+Tj5cuXT 5w4 8YEPfCAMdREzfbyJPKh+djpY/S43ozv69RGXgeTHdnz+ZBCEHeGFQmFiYuLP/uzPrly50neBH94 3I3 4liJ/KqYDY0SqWmkpxX92OKjAeFq/X63Eh3GnWvMP7V2Iq9f0WsbW1FabM6N9+R3/9ce7v+Vve/c1p40vqdrujvIV3uHXinxvx7966dWv3c2d6ejp53WSr1apWq6dPn87n82fPnh37HkWDJKd8qVQ60c/ly5elhZR8z0mmw17tmhrvefp+SDcajaeeemr3jZK83GT3odB3AvY9nBRH0t7p4M/Xrl07ceJELpc7ffp0GF0vDPZ7hz4edjrLdvkyxhgKezxnzpzpHWQnk8nEkfB6D4oNf2sjfuzF5S21p2eU6bbtzqGxv/JF5XL52rVru5zd8UBe35/uZjf8qVOn4jP3vs4wQ7PZ7JDTTsZedAe97PHeTvIV7nLrmqyi1KWTQ5afvi019r7e4Q8Y8RyA+PL6noQzxtxZXFzs/QIcBpPK5/OPPPJI7/oSX8NOt2Mxf4d8HFSr1XBXiEEnGCAl333CwAS7f8xwP/7xj5P/+z//8z9jPHN8kgceeCCOVBL2THz5y18e8V0M3zRMTEz85m/+5t 4W0 jPPPBOG5 2g0 Gp/97GfjUb/XXnvtxIkTnU5ndnb 2H/ /xH3f0nM8++2y5XA4DcFy+fPnNN9987rnnzpw5Mz09vX///jsxT8Msm5iYSB7BuUNLSyZxbHQPxU+m1Cs8c+bMD3/ 4w+ S4xMmlZWZmJvVifv7znw95p/GnI+69SHVhOKlj+DR8++23+z4m/suOoiQMlZLJZObm5q5evRqW1U6n88QTT4x+9l7f9SK+no985CODpsB4y2qxWIzj2jzxxBOXL19+6623wgf5hQsXFhYWJicn//7v/36MmxWNve6Mdz7Ao48+mvwS8k//9E9jL96//OUv43//6Ec/2rbVwjBMyUkU31dYwPqG2vDpE+47P+gxIy 6W8 cvYxz/+8T2ZO/v27bt+/frm5ubCwsLs7Ozk5GTyMeHuO4Oep++iO+RvJU8tePXVV6/3OH/+/Pnz58+cOXP8+PF37KRzKckdd3uEG9LHx4y9ryh1wCWOH5YcGGVbMfLe9773Pfzww6+++mr8GH766acvXLgwyrsYvvPg9u3bMXP3SrFYfPXVV0PHXL16dXJy8ujRo4cPH37wwQfDDU6ef/75Hd3Lbm1tLX6OLi0tff7zn+/7TofvAxhlvie/YYdZdvv27R/84Ae7X6K2tW 2w9 t2FMPyz6qc//Wl8hamJ89u//dvnz5+/fv16uBS3VqvF7ux2u6kDUnFh7vtOh38VieLB6L57zoZPw/Daeh8T/2VHh0rfeOONuCvr1KlTS0tL4QzmMOreiBfb9V2t4uvpe+peaO4dbX9S39DC4fhut3v69OkHHnjg8OHD2Wy2Vqs9+uijP/jBD/7kT/7kjm4PUzu6xrtoZt++fcmj 8H/ 913+9+29KmUzmX/7lX0Z5F6nR4ON7jycpDnrvg/aLhxm9yy1A/FrSOwfHnjuZTObgwYNf+MIXnn/++f/6r/967bXXarVaXGibzWbvhVzheYbfynLIOpjZ7uIwpOR7S/xYGuPKkkHXlMT/TV6jN/rHVTh8c+jQoXhLhszI15hve5Cl7zfFXV4Tc+jQoZWVlfDdN96ze3Fx8ZVXXhnj+sF4QHb4YfG9vVAmeWH4kBOMdn9odQzJM+uHNGjy5t1xLvdeZHP8+PEzZ87E+bXTRWiU1STeLH7bGwf3Nei4WPICmh191Um9/XgnkkwmMz8/P8qR7uHTZOzLboa7ePFivPX8zMxMpVKp1Wrtdvu5557b6f6e48ePx3V8xMOOqe8AY7+d5GLWbDZ3M1BG7wUrwzfpY2/Wtl3A+s7xEU+zjuf8xCVzN3Nna2ur91PmyJEjZ86cSd4UdFD27XSDllybdn/yK1LyPrG2thbXh76nlA3Zsty6dSueFJ/assRN3vr6+ugnPsfVPn5TnJ6eTt41q1Kp7GZDPKgtMntxfnq4EXClUnnllVeuX79+8eLFOJ7f2Nvxvp8EexhzyW/kyU/KIUvCbi7z31HxD3rwkM13nImpm3P2neP79u0b9Mk3/AN4lEWl2Wzu9LqQUb4kxPdVr9dHX616z+56+OGHk2tuuVze5f6VO3T+bhigKoxb 9I1 vfCMcNxz7oGFMuuEDAsS1b7zRf3pNT08nF4P5+fmxRwWKb2F1dXXIQATxLQxZkXdp7Ei9cuVKeHmpuTD23Ak3OBg05WNxDjq7dKffgpLP41RIKUk6GsLtcLb9mpu0tLQ06CMk+YV+jFPjk+euhX2T8QhapVIZvhNl22+Kfc952uXHxtra2uzsbLxr8F7pLfitra3xLjUYZTont859P+ 3W1 tZGHJdnb+OjXC7Hj65nn31221mful/ltldi7ejKmORPB2V9mEeVSmX4GSN 9J/ KQi8zixSg7itS +h/ CefPLJ5Kz87Gc/O/wryhiDp+6yLzc2NgqFQvh6tvtxizL/d9/2pUuXBsVr6IP5+fnUHx 1j7 3J0 /vz51Jg1o38lTs6X5CgQQ9bE3ewR381qu+0IO3Hw2t55usu5Mzx 5w9 gXfR8wfBL1fg07ePBg3AK3Wq1BLxUp+V6xtbX11FNPhe3R5ORkvV7v/bof26LRaKQOLK6trZ0+fXrQd9NDhw7FrV6z2Xzqqad2tC8tdebloUOH4oh6YTO0mxV4R5c0jv4pFV7znhx0Tt7UK/lqQ0feua/CyTopl8upCbW2tpZMul1+Du3oEO3+/fvj4rS+vt63wLa2tkLHVyqV1JmpgzIo/Hs+n0+N1B3fY9+D6clX3vebw4ULFzqdzvz8/KDvFYNGLgyrZKPRGDSRH3744bhs1Ov1Rx55ZDezO1mT6+vrpVJp7JFT +i7 2uzxpZH5+PkzqZrO 5J0 O6nDx5Mk75Wq 3W9 znr9Xqn05mcnNyrve/RSy+9lPqC/cgjj2z7vq5cuVIoFOJyuH///vgkg95CvD3Enr+F5DwdvsGs1WpxOP1klpVKpUGrxm7mzo0bNwZ9voR1vFQqDTonsu/O3biWxbOot7a24iPDnvL433336Id1eUej5zImN/y508IB1nANWrVabTabKysrzWbz4sWLs7OzcT/f1NTU6upq32dInlN14MCBubm5xcXFc+fOhRvef/WrX42r9OTkZO/NiGdnZ+MVcGH9X1pa2tjYWFlZWVpampubS93+Kz7bxMREt9vtvTVi8uDC448/nrx518LCQvxbvbdp3tzcDL87MTHR+9Pk/cRmZ2d/8YtfDLkxYyaTWVxcfOONN1L3C45/fWpqqlgsFovFY8eOFRNmZmYuX748yoxLvp5sNvulL31pcXFxbm5ucnJyYWFhaWkp/q3UVIpvM0yfbW/mdvHixdSPTp8+nfzTMzMzX/rSl6rVapjj586d63a78a/3vXX7IL/4xS+Sx53n5uZ2ujyHfY3hutTUn97c3Az3VZqZmUlOkzAlJycnX3zxxdSzvfjii+E99t4sOO7UnJiYmJubm5ubm5qampmZ6b39YyaT+cQnPrG4uLiysrKysnL16tWZmZkDBw4MnzLVajW5Xpw7d25xcfHpp58uFotTU1MrKyvhM3ViYqL3/njJWZzJZI4dO3b16tX19fVwS7elpaXHH388dbe3xx9/PC6ZvatVGCohvJ5sNjs3NxdX5M3NzXh25uTk5MbGRuoOcmfPno2vZNBknJiY6Pt3k3eoC9M59ZjkYIHhMamTPsO/zM3Nhbc/im63e+zYsTg1Ur8Y1vFsNvvtb3+7d+mN93LMDL4P57YuXryYukTp2LFjYQFYWloKS9Hly5fDNjZukVJvIW5Xw9LSOzd7V5Dwi08//XT8uwsLC6nfXV9fn5mZCc88OTnZ99aIYeGfmJiYmZnpneypERLCZfiLi4vhUyOM2z/o3txjz52wNhWLxaWlpeQitL6+Hj4Bi8ViatFKLvMLCwu9ryTO64mJicnJyWKxGFaN1DOExzzwwAOzs7NXr14Ns6/ZbJ49e3ZycnLIYo97cL9rDLl 1W3 Kn46C7iPbdOiS/m4YNTepjNdzncNBtl3uFu6OGPSKpQ8zhkETv/YuTh9Lm5+dbrdaQceDCXWV730KpVIrfjwfdNyL1Rnr3bCXvMzv68OO9Nyvf9ka68TWH+xSn9gfk8/kwKu+QQ5ND7gtcKBRSN8wd9FTxefpO5yHCLBg0nbddAlO3UY7Pk8/nK5VKs9msVqu5XC6fz/feUTq58yOXy1UqlTAkUFiKKpVK6tbPqTu/JydyvFdvmD6FQo8rwegAAB/ZSURBVKHvUd1CoTBK2aQ6Kc 7i8 FeSS 2w+ n0/dvT2c3Thodmez2fCmwsrS+yJLpVLq21QYcypOpXq9PuTgaZhfg346MzPTarXiFO49 7j9 885LL5eJ61263R9yvmfytbW1ubib/6Pz8/NLSUryJa1zLRtmWDrpR9XCdTqdSqYzy1vou0qlvO2Gq1uv1q1evxsv+et/CoD8R8mjI2QupWda7cUiuv8Mvu+l7R/vdz53USwpnasWvW9VqNXmX7SGvMPXMqZneu +i2 2+0hp1RWKpW+d/dmz03syZAiDJIaOieXy8UEOXLkyOTk5Ojj/ly6dKnRaHS73R//+MeFQqFcLlcqlXA0fHl5OVwlFz56m83m/Px86kD5xsZGvV5vNpvtdrvdbodveIVCIZ4uc+PGjd6jIXG7kLoCemtrK6TDqVOnjhw5Ei6V7XQ6vZvmXC43PT0dz/Luu7a3Wq0Qo/l8PjlyRNiKpd7ItWvX4mO6 3W4 2m01Ow9OnT8ejIeEjfHV1te9NKZrN5igTP0y3arWazWY/97nPVavV+HpSMzckUbPZDJvaeHpQmDKVSiV1PlA8QNztdldXV3uP8CZn2c9//vNPfvKT1Wo1npx0+fLluLOq0+m02+1BtwuPB+mSsyBMnE6n89Zbb924caNcLu/oTLjV1dWvfvWrrVYrfv5NTk5++ctfHnQ76bD0Jj8s8/l8COjhc+HSpUt/+7d/+5Of/KRcLler1TgNl5eXW63WmTNntra26vX6t771rTCXQ/ONflfr5eXler0e5lGhUHjsscfiqZDXrl3rdDrJD6rel7qxsVGr1b7zne+srq7GFbBcLn/uc58Lx/LiiWW//OUvP/jBD8ZFt9VqPfbYY6lzAMJULZVKYXXb2Nh49dVX+9Z/uEX7oAtH9u3b99GPfrRWq4VxDFKnN+Tz+dS83tjYSC4bYZ1NHnwMeR32LcXX0+l0UofUC4XCK6+8MvpSdO3atUaj0Wg0wpOHIRfK5XLf8RYGvdnUq93p+UXhQr2wCYob50Kh8Du/8ztHjhzZdr3Y2NiYn5+P3zmLxeJDDz006C2EUzN70+fgwYNxK5r6sMjlco1GI7UFDpdpJm85kzwj88SJE3Hj+Qd/8Af//M//HDZHIe 9G/ 8TZ0dzJZDIvvPDC1772tU6nE09Zeeihhz75yU+Wy+XUpm9tbW3QofmwYKcm2te//vX3v//9pVIpfuT13UrEMe/CO/3Lv/zLvqOv4wA3DNvNEPZuDvom2m63U5dwmmh7NeX77lbk3a7b7caTAgftmbt69WqyVk20uy55EvB7cFtkAbgrfkVMcx/Y2toKR5RmZmaee+65vo85dOjQ+fPn44nwezse5HvZ/v373U/ivnT69OlwovaQXfinTp2anJyM+bK2trYnF3rDeNsiE+GucAU394N4nem2o0jGz7y9Gq8O7ktra2uhI7cdTSn5Ux0JUhLelV599dXwH7/3e7+37YPDNYO7HCQF7m+dTiesKQ899JCpAUhJ7nPxUoB4p+MhH5C3b9/O5XKjX+4N703hosy+V60lxdEE93Dcfsa2o8FiQUrCjoUTJQddCQgEhUIhfEPbNk3COpXL5e7EcNzs1O7vug5SkvduIGaG3tAvk8lcunSp1WoVi8WLFy+aaDDE/v37wwDd9Xp9yP1CVldX6/V6GLNmz+8QCEhJeIccP348HFy7evVq3/vqbm1tnT17NtxrK3n3IGCQ8+fPx2Hk+9bk8vLyiRMnwl3vRx+wkDtql7efhTEYopz7RBg1PdxYpVQqhdF0M5lMu90OA+2GgXwbjYZD2zD6ahXunhVGqH7ooYeKxWK4zUG9Xg/rVK1Wc +H2 XRfGmW80GvHmUuFOVGG8bhs9pCSM6rXXXvu7v/u71dXVzc3NGzduTE5OZrPZI0eOFIvFU6dOpW4uAmzr1q1bzWZzdXW12WzeunUrfGRks9lw41M 7I+ 8RL7zwwrPPPvuxj33s/3zAT0yEGzy67wtSEgCAe5FzJQEAkJIAAEhJAACkJAAAUhIAAKQkAABSEgCAu+xXTIJ73PLycqvV6nQ6rVbrpZdeMkEAACl5/7t06VKj0cjn8+EmtimhDsN/53K5QqFQLpdTNx975JFHvvWtb 3W7 XRMTALg3udvNnU3JsDcx9aNcLpfP5//7v/97fX09+e+lUqlerx86dCg+Q6fTaTQa8RnMLABASr63XLhwoVqthnuhLiwszM3N7du3L/50eXn58uXLV69ezWQyExMTBw8evH79evJ+qcvLy6VSSUoCAPcgl93cceVyOVZgsVhMdmQmkzl+/Pjzzz9frVbDYzY3Nz/zmc+8A6/q1q1bly5dOnz48KVLl8wjAGA8zpW841JnQPZ1/vz5eCC71WptbGzEw9x3yNTU1ObmprkDAOyGvZL3irDzMqjX63f6z8WOLBQKJj4AICXfBZrN5qAfxRMi3 2G5 XM58AQCk5LvAiN32DmTl1NRU +I9 Rjr8DAPTlXMl3SLiC+yMf+cigB3S73fCYycnJ48ePj/Enbt68ubS0lMlkHnjggd///d9PXgbe5zvE+/7/t4hbt26lrgTqa3V1dXV19cCBAx/+8IeLxeKQR7711lv/9m//tr6+Hp45m83+0R/90Yc//GHLAABIScYUruD++c9/PugBX/nKV8JjHnvssZ0++bVr1+bn59vtdvIfC4VCvV4ftNPxP//zP2MjZjKZQfG6sbFRrVbDAJnxH3O5XK1We/LJJ3sff/bs2a985SthWPV8Ph9eUjabffTRR2u12v79+y0JAHA/cYD7HZWqvWhtba3RaIT8CgMDjWhra+vEiRPlcjmXy5VKpeSR8VarVSqVtra2Uo+/cuXKBz7wgXgTnfBbExMTExMTJ06cSD74hRdeCD0aOvX27dsrKyuFQqHT6VQqlUceeST1Yh555JFarXbq1Knw4Ndff73T6dRqtW6 3W6 /XkzEKANwnbnPnxaldrVZ7f9pqtcI5lNlsttVqpX6avFKn0+mkfhrasdFoJP9xYWEh/kq5XE7+aH5+vncZiGdwlkql+MhGo5HNZjOZTLPZTD5Dp9OJj5+fn4//XqvVQgp3u93Ui1xcXAwZbUkAgPuMvZJ3wdra2vLy8urq6vLy8tmzZ0ulUuizpaWl4RfB9D1AXCwWT548mfyXL3zhC3HXZmo/6MWLF1N12 2w2 33zzzRCp169fj6+wUql0u91qtZo69r1///5QjZlMpl6v37x5M/x3+MdSqdR75uXMzEwmk7nTI2UCAO88KXkXNJvNUql07NixUqlUq9XCQe12u73t1Tapo9VhL+Ds7GzvI+Mola1Wq/e3to3U+fn5TqeTzWb77sWMQ1F2Op1woU9m8LH7TCZz8OBBMx0A7ksuu3mHhKuzw3+fOXPmj// 4j+ P12qOX1k9+8pNU8z333HN9Hzk9PV0sFsMlNa1WqzdS4+vp/es3b94MR9Wnpqb67gednp6emppaX1/PZDI/+9nPkj+q1+t/+Id/+PnPfz71K+4eDgD3JXsl3yGplioWix/72MeKxeKO9tjFo8lDLC8vP/vss4888kjoyJCSQ17PBz/4wdSP/uZv/ib8R 7w0 p1d82RsbG+E/8vl8 +I+ 5ubnDhw+fPXv20qVLa2trZj0A3MfslbwfbG1t1Wq1VqvVbDZ7L5Tue+l0NpsNpdi7zzKm5/r6+uHDh3O5XGpk9Xa7HQ9nx6HO6/V6vH68 3W7 H8 ylDXIYrbwAAKcm95cKFC/Eim3K5XC6XP/WpTx08ePDo0aN990cGk5OT4Qj1cL0dmc/nQzIWCoVcLhcz9Pjx481ms1wu95br5cuXv/e9 7w0 Z5BIAkJLcBU899VS9Xs9kMqVSqV6vj36V9Obm5raPKRaLKysro7+Y48ePh/2RtVotFZStVqtcLrdaLaOUA8D9xLmS72KXLl0KHVkoFK5fv57qyLg3MZ7FuFO3bt3a6a/s37///Pnzb775ZqvVqlarpVIpvozUUW8AQEoyqomJiT1/znB9zMTExPBE+7Vf+7Xef/z1X//1QY8Pw0BmMpkbN26McqFP8PLLLyfTc3p6+vz589evX3/zzTdPnz4dn9CSAABSkh3b89FwlpeXw0Hq27dv9471s 7W1 Fa+M6Rtwv/qrvzromR999NH4muPV3Nt64okn4jXjKXFsoN/6rd+yJACAlOTekhpz59atW+VyeciY4ZnEaD69l+YcOnQoDkJer9eXl5dHeQ25XG74X8zs4lA7ACAlGUfyAurktSzhAurw35VKJd7SZnl5+dixY7lcbni3TU5Oxli8du1aJpNZXV2NSVqr1cKTdzqdcrkcHpBy5cqVo0ePxiPg7XY7nLjZ64UXXggdWalUzFAAkJKMamtr6+zZs/F/Q7fFYb 2H2 9jYWF5ejgP9ZDKZRqMRz0fcv39/vKthq9XK5XInTpw4evRoqVSam5t76aWX4m+1Wq3eQ8/FYjH+tFwuT0xMHDt2LO6hPH78eL1ez2azsSYPHz781FNPXbhw4cKFC2fPnj18+HClUikUCmHvZmjQZrN59OjR5F7M8PYXFhZyuVyj0XD5NgDcb25zZ8S7YA+ysrIy/BlSAzomtdvt8JjUPbLz+Xyz2Qw/igepg2q1mnzyzc3NOKJ4MDc3l3oBV69eHbRrM5/P12q1+Mjeo+SlUim+gLm5ufiCAYD7yYSbI98hN2/e3NzcDLfYvnnz5sGDB2/cuHHkyJFMJrO6uprNZsN/jyjuVgz3zo77FDOZzGuvvfbtb387k8lMTk6WSqV9+/bFFxBPiHzrrbd+4zd+Y9DThutyTp482fcxy8vLzWYzXOIzMTFx5MiRhx9+uPfF37x5c3V1dXNz8z/+4z/eeOONsOMz9ZIAgPuMlAQAYEzOlQQAQEoCACAlAQCQkgAASEkAAJCSAABISQAApCQAAFISAAApCQAAUhIAACkJAICUBABASgIAICUBAEBKAgAgJQEAkJIAAEhJAACQkgAASEkAAKQkAABSEgAAKQkAAFISAAApCQCAlAQAQEoCACAlAQBASgIAICUBAJCSAABISQAAkJIAAEhJAACkJAAAUhIAACkJAABSEgAAKQkAgJQEAEBKAgAgJQEAQEoCACAlAQCQkgAASEkAAJCSAABISQAApCQAAFISAAApCQAAUhIAACkJAICUBABASgIAICUBAEBKAgAgJQEAkJIAAEhJAACQkgAASEkAAKQkAABSEgAAKQkAAFISAAApCQCAlAQAQEoCACAlAQBAS. src=" 2H4 cV27jbFYWGV4xQetZVp8y 1h2 cuWNso1aptDtQW5Wmi3F14QolJ7Zg+Fz/ax5YPlByxi5WH40zlAiQ+Owbk3kXhjdoLOuZVC6O6JbaJszLdGN7UybluiQm9HA8O/B57cP333153S6c +w4 r9ejxKfTSd9/euv75/OduH37dgYAAHbufSYBAABSEgAAKQkAgJQEAEBKAgCAlAQAQEoCACAlAQCQkgAASEkAAJCSAABISQAApCQAAFISAAApCQAAUhIAACkJAICUBABASgIAgJQEAEBKAgAgJQEAkJIAAEhJAACQkgAASEkAAKQkAABSEgAAKQkAAFISAAApCQCAlAQAQEoCAICUBABASgIAICUBAJCSAABISQAAkJIAAEhJAACkJAAAUhIAACkJAABSEgAAKQkAgJQEAEBKAgCAlAQAQEoCACAlAQCQkgAASEkAAJCSAABISQAApCQAAFISAAApCQAAUhIAACkJAICUBABASgIAgJQEAEBKAgAgJQEAkJIAAEhJAACQkgAASEkAAKQkAABSEgAAKQkAAFISAAApCQCAlAQAQEoCACAlAQBASgIAICUBAJCSAABISQAAkJIAAEhJAACkJAAAUhIAACkJAABSEgAAKQkAgJQEAEBKAgAgJQEAQEoCACAlAQCQkgAASEkAAJCSAABISQAApCQAAFISAAApCQAAUhKA+8/Gxsby8vLW1pZJAXfLr5gEJN26dWt9fX11dfXll1/++Mc//sUvfnH0311dXb1x48b3v//9f/iHfzh+/Pji4qLpeSfcuHHjxo0b3/3ud//1X/81k8lcv379vTYFfvazn333u99dXV1dXV09cuTIM888c4+vU5ubm9///vf//d//vdlsnjp1am5ubvR3+v3vf399fX15ebnZbD7zzDOnTp2yCsQJ+xd/8Rff/OY 3w/ +urKwUi8XxVqjXX399Y2Pjxo0b 3W4 3k8lMTU1ls9kjR47s27dvvOcEKckeuHDhQrPZ7Pujdrvdbrfj/5ZKpUKhMD8/f+jQobv4gldXV//8z/88+cKy2eyIv7u2tlYqlTqdTvyXBx98cNAuhHq9/vDDD9tAj2diYiL5v6VSacRfPHHiRLPZnJycPHLkSPzHTqfz05/+dHNzM/nIycnJT33qU5VK5fjx4/fa29/Y2CiVSqnV516eX9euXSuXy+PNsitXrlQqleS//PSnP+1bVAsLC51Op1qt7t+//z2yImxtbZVKpVarlZwOO1 2W6 vV6rVZLbrj6KpVK5XL5zJkztj97vnbUarX5+fmTJ0+aGu9ut7kzGo1GtVotFAq907xQKPT+ey6Xu3r16l18wZubm9VqtVqt5vP58JKKxeLov95sNhuNRvzULJVKfR+Ty+VCpHY6HQvJGJrNZrPZjIXRdzoPWiDr9frs7Gzvx2SlUqlWq5VKJbVYho/qe3AKJNes0afAXdHpdJrNZq1Wi1/MqtXqTn83rDWDfvfcuXPvikmxt0qlUj6fv3r1arPZrNfruVxu9GW12+1Wq9Xkcr6wsNBut5OrWHJL6LPyTqjX68ndKybIu5rV445L7pNI/ajVas3Pzyf3At4Ln9xxI7ujlIxb4SGfasnNd7PZtGzsJlDGrodkL/YGfbvdTu4wLhQKd30r3+12hyxL75Z+ige1R0/JZDYN+d3k/HqPLP 9h7 tfr9fHWnTg9C4XC8A1Ro9EI60uhULDZuUMfNMM/Djqdzubmpsl 1j3 PZzR3Xd8dkMD09ffHixViT 3W6 3Vqvdx5MifsvPZrNxRwtj2M1xzOSU732eQ4cONZvNuNC2Wq3kFv8dduXKlcOHD1+9etUcHyKmZGov2v1qbW0tLJOpMwdGPywevvGWy+VXXnll+FkcJ0+eDMdSbK/2XAz6fD7fd9Hd2tq6cOFCPp+ /i5 sgRuRcybvv4sWLsSCTJ4Hdf5588sl2ux2uPJienjbrx7ab6 1W3 DY59+/ZVq9X4OV2v15977rl3 /j0 ePXo0eSbcINue6HbfW1hYePvttzOZzP39RTSKb3OnX 6i2 trbCXvbQkS+99NKIX9uG7A5gbMePH4+n6/S9TqBcLofon5qaMrmkJJlMJjMxMXH79u 0h+ xVWV1cnJiYGXanzTjp48GB8zXv+Ts+fP3/+/HnLwy796Ec/Gj6dd5OSmUzm5MmTU1NT6+vrd/E9xo4cvhz++Mc/frdsAe7QM+/bt++utP7dkjzHbnS3bt164oknQkceO3ZsxI5MbqJtdu5ETY5ybd/oF4BytzjA/Q4Z/qn/0EMPhcfcC5ej3rx5c5TXPN47ZU989KMfHXs 6j7 gbL36juFti 8g5 /p+9///vvgy0AI9rY2BjvF7/+9a8vLS2F//7CF76wo9+tVCp/9Vd/ZeJbd5CS97Tk1SqmBtvaq3Ml72Ujnvn3HjlBkGDsU4DiKem5XG5mZmZHv/vkk0/e3ZHa3pucn/ou4gD3PfE9O2wfJycnkxd0p6ytrQ0/v3BjY6PT6Wx7DmIY6zhcWpHP5yuVyhinHMWDj8Vicd++fTt9yzdu3EiObph68jCoUHhVYey38GpzuVy5XB7xJMuNjY1msxkmbKFQKJVKuxxy79atW9/61rfCGw+vZNtPlytXrvzu7/5uODS2tbVVq9WazWY2my0Wi4VCYfSh1MJEiOd4Jd/LnTtTMHmR+JA51Wg0whTOZrOPPvrottMkzJdGo9HpdPL5/EMPPTTKb43YFuEltdvtVqtVKBS2XVpeeOGFt99++8knnxzymMuXL3/mM58ZvvDcvHnza1/7WqvVarfb+Xy+UCg89thjO92tG7cDmUxmjBE919bWWq3WoPfy8ssvf+hDHwpTY2trq16vf+9739vc3NzRRmBra+s73/nO6upq+N89Wa2Wl5c7nU7cnuTz+VKpNGR5GC8v1tbW4vJcKBTG2GQNnyzNZjPM/bfffvvIkSOjbKauXbvW6XTC/Lp58+YXv/jFOPfL5fLnPve55Ivc2tr6yle+8p3vfCeXy4UFe/gqs7a2Frai4WVsbGzUarU4kcvl8iibrzHmTlwHw7a32+1+6EMfmp+fz+fzg34rrDt9x+zc0bwOzxOukcrn86N/UrA3XMT+Tg55MHykj8XFxdSPNjc3a7VauVwOK1XfsRjX19drtVp4kiHjjIQRjPuunPPz86MPBhQKIP5u6jUPHwwoOSJg74AvjUajUqmEVxiG+eh7UlS5XB4+JmW9Xu9bP/Pz8+MNZtlsNufn53vP15mbmxs0gEh 8I2 H6 xAE1k0YZZ6fT6aQGqQ5b2OR1AHu+QIZhquJj+o7TsbCwEN9F8sUMGYqy0+nEvUGhYJLvaMhitrCwkHxhg95F38U7tWyHZ240GuHjbdBECAM6xscMH6mk79e/bDbbaDRGHwwotYSMOBhQu91uNBrnzp0Lv9u70iXfRblcTg2Fk9yzm3q1vctDuAxramoq+TpzudzS0lJo9/AFdfThzJrNZpwFuVxucnIyuY4PWjWS24T5+fnq/xr+d5PzaIzBmAZZWVnJ5/NhgoSvEMm1u/clhfk1OzubnF/tdrv3spLktrfVavXueu99F51OZ2lpqVKpxAfHrWjvepHL5YZvD8ebO2EdzOVypVKpWq3Gd5rJZCqVSmr9qlarcVHsfap2ux2n59zcXBinOeh9ZNxIJidUuGuGAjGu5P2fknHUlVwu17sp7x3qIvWR1ruJGbSVXF9fD48MAytUq9XU2IF9X3A2m+0NvuTQ0L2veVBK9vbQoA19fCPxxKZeya1SSoiVuLHrdDpxAOde245LlwyFYrFYKpVSG+XUBI+BlUztuCnvHVKkUCgM2djF7XIYQjx5VfVuvg2OkpLxD4X+6DssX6VSiZ8o7XY7plIul+s7YcOSU6 1W4 1vudDrxt5LL2PCxP/q +i9 6h1 5OfKP9nk7fdBOy9DnrQctJoNMIMnZmZ6Z1BqWVjSErGcJ+amqrX672LxKCUHPJOey9+D4PghLmQz+d7ryNZX1/vuwqECZLP5+P2JzlcVO8XpFEWwnBX1dR2L/m0uVxuZWVl0FeRXrVabZSBOTN7N6JtOMKQWhE2NzeTy0BqC9n7shuNRtgyh128ye1D2MrFLefU1FRqa7+0tDRovY5LSxxIq/f 5h2 x/xpg78QWknrPdbvf2Yu+XmdSnzJCjc6kHx+mT3KkRV+F8Pq8mpeR9lZLh+s3Z2dm5ubm5ubnZ2dm 4w3 9ycrJ3tQz99+KLLyY /I1 MP29zcXFxcvHjx4vAbaSwtLR04cGBycjJ1N53Nzc 3w8 Taohx588MHUGv6nf/qn4QUP2hw3m83wTlOf381mc3FxMX6aTkxMJEedbTably9fTr7TYrF44MCBarUaPt663e7S0tKxY8eGfx7Mzs5OTEzMzs6m /j1 Vk+EVhiuUt/20CO8l+WpXVlbCpnBiYiKbzSaf 5I0 33lhaWlpYWIhz5MEHH8xms+fOnYvP8M1vfjO5E6LvLPvhD38YHtO743NzczO8nfAuJicn9zwln3766RgfqeHBu91ueGGf/vSnhz/zuXPnekPq7Nmzvb8VfhT/98UXXywWi8nQeeCBB4r/K87c1N1KDh06tLCwEObF+vr64uJi8oBacjKurKysrKyEhS1Mw971bnFxMa4FExMTvYcL4peWUqmUWiu73e65c+cmJiZSq9vp06f7zvGlpaWwtMzNzW1sbAwvodTvrq+vr6ysfPrTn461kXwZKysrS0tLYUqGZTWbzc7MzMQXHJel4PHHH+/90/EBvW8zLAlhGsYZlOqbvpaWlsJv9a7F 3W4 39uKBAweSK1ez2Xz88ceTC8bs7Ozp06cXFhYWFxeHj2KdbJdt1/oR90dms9neudy7wXnxxReTK+/Kysrjjz+eSvwf/vCHqbcf1+5sNjs7O5uM+Lht+cQnPtG73QgVGJeHAwcOLC4uJtfib37zm8lp2Lsne7y50+12Dxw4MOi3SqVScuEM0yG81PC3krMvbAFmZmaS73TufyU3LPEjo3cuLCwsxE+ivvc4QEq +i/ dKhq+GQfKQQfj+1HerlDwZblDAxe9wvfuQ4s6JQV/Oej+f4le65EGWTqcTvpJWKpXhh0WGHOC+fft2/Frce4gkddpf75tdX1+Pv977TsNJe5lMpu+hriGbzm1Tsu9kjx9OfXdZxZ9ms9neX08eve17bDd8SA/Z+RoP8/X++raSe4jjItpoNGq1WrxZXC6X67ubJ/7uoGJIfmYn4yM8bd8mC6eIDZllfX8reaAzl8v1lkRyJKNcLpdaaJOjbg2aUHEe9eZ+WONyudygI329873vXsm4ro24U23Qd 8W4 Den9aXIna9+/Evei9X4tiTdn3/bmVTtaAsNa3LsK924leh8zyowbsizt1TldYWOYzKMhW4Ahb6HvCRip3ZZDlvy+m6bkr/fdSXH7/97yKvUk482d+Kr6rhHhWPaQVazvbw059Su5+PVOwzAZY4m6s5qUvN9Ssndxr9frycMWfT8qtk 3J+ Cd61/+wyRjST4VCYduUjB3Zu8NvpykZtw59e3TIFra3VAb9aHht7ygl2+32oM/4OM37zrL4YlI750ZZKsL0762fvtOqbz3sdIFMLoH5fP7cuXN9/3TyApchUyy50yj1agedgDF8se/7QZIspEEHoJOPSf 2J5 PHfnQZcjNRBS+nt27enpqZS07A3JUMCDjofYPSUXFlZGXJwOX7FGnToOTkpUp/ocRdX37+bjJ7RF784U4acnTmklu6FlIyTdMj2MD6md/mM82vQZjBurAbNsrjCDk/JIctncqb3PTS807kTtyp9f7HVavX99+EfB0NSstvtxqIdtImOO1CHfCdnrxgM 6G7 av3//k08+Ga42jZvsK1eu7P6q23iRYNhkDDnHqF6vp05kTJ1Ps7GxEa6lmJ+ff/7559+ZKTPo2r3ecy6TG7UhTzjekDGHDh3qe2lh8rrm4XdkGXSh+qB7vm1tbYUPkkKhsMtrY0f3+uuvxy3C66+//swzz/T906MMWXXo0KH403ipbxwLcGFhoe+4gH1HrR8+y5K7VQZNzCE31tvR1Z2pV/LCCy9sOx2+8Y1vDJ99165dCxclNJvN4ZeQ71KM+0Hr1PT0dPJYQfJHcQ4O2nyNsVold6iPMnNTL2m 8G8 8k/9by8vIuJ2l8C0MutD958mScOMmsTC1XfReS5CmJu9maDZnC09PTce14+eWX92ruhE107xSenp4efcCKUayvr8cPu0EfCnEIhfv7HnL3CCl5TwRl8nvebu43mvpsi5uwIYNfTE9Pp4ZpiBuR1dXVS5cuhUsRa7XaxYsX9/CDbbyN4NiDCMbtzu7HKtva2lpeXo5f30e5ud/ob2S8Zxvb2traGJ+gw8WPqPX19fD8hw4dCpO92+3m8/mnnnrqypUr2/7p4YtK8lvToGhLdu1uRk1K /W7 ygPLoXyHiCbLtdvvSpUvlcrnb7bbb7d0PWRLvKdD3PY6yymzbZ4Om3k6n6sbGRlzCh4dOckfs7leQ5Bvc/SoWn 2H4 XVjiHx30LXfsrdzw4Yfj 0w7 f1sWXF0 9j2 M3ciWt9uCzv6NGjFy5cuHz58vBbvMZ1fKcL0o0bN8ZeCJGS963kytlut8e +w3 JqpRrv21jyScKAEZnt9vmNkYyjh8JO9d2tG//c8GsDh+Tj5cuXT 5w4 8YEPfCAMdREzfbyJPKh+djpY/S43ozv69RGXgeTHdnz+ZBCEHeGFQmFiYuLP/uzPrly50neBH94 3I3 4liJ/KqYDY0SqWmkpxX92OKjAeFq/X63Eh3GnWvMP7V2Iq9f0WsbW1FabM6N9+R3/9ce7v+Vve/c1p40vqdrujvIV3uHXinxvx7966dWv3c2d6ejp53WSr1apWq6dPn87n82fPnh37HkWDJKd8qVQ60c/ly5elhZR8z0mmw17tmhrvefp+SDcajaeeemr3jZK83GT3odB3AvY9nBRH0t7p4M/Xrl07ceJELpc7ffp0GF0vDPZ7hz4edjrLdvkyxhgKezxnzpzpHWQnk8nEkfB6D4oNf2sjfuzF5S21p2eU6bbtzqGxv/JF5XL52rVru5zd8UBe35/uZjf8qVOn4jP3vs4wQ7PZ7JDTTsZedAe97PHeTvIV7nLrmqyi1KWTQ5afvi019r7e4Q8Y8RyA+PL6noQzxtxZXFzs/QIcBpPK5/OPPPJI7/oSX8NOt2Mxf4d8HFSr1XBXiEEnGCAl333CwAS7f8xwP/7xj5P/+z//8z9jPHN8kgceeCCOVBL2THz5y18e8V0M3zRMTEz85m/+5t 4W0 jPPPBOG5 2g0 Gp/97GfjUb/XXnvtxIkTnU5ndnb 2H/ /xH3f0nM8++2y5XA4DcFy+fPnNN9987rnnzpw5Mz09vX///jsxT8Msm5iYSB7BuUNLSyZxbHQPxU+m1Cs8c+bMD3/ 4w+ S4xMmlZWZmJvVifv7znw95p/GnI+69SHVhOKlj+DR8++23+z4m/suOoiQMlZLJZObm5q5evRqW1U6n88QTT4x+9l7f9SK+no985CODpsB4y2qxWIzj2jzxxBOXL19+6623wgf5hQsXFhYWJicn//7v/36MmxWNve6Mdz7Ao48+mvwS8k//9E9jL96//OUv43//6Ec/2rbVwjBMyUkU31dYwPqG2vDpE+47P+gxIy 6W8 cvYxz/+8T2ZO/v27bt+/frm5ubCwsLs7Ozk5GTyMeHuO4Oep++iO+RvJU8tePXVV6/3OH/+/Pnz58+cOXP8+PF37KRzKckdd3uEG9LHx4y9ryh1wCWOH5YcGGVbMfLe9773Pfzww6+++mr8GH766acvXLgwyrsYvvPg9u3bMXP3SrFYfPXVV0PHXL16dXJy8ujRo4cPH37wwQfDDU6ef/75Hd3Lbm1tLX6OLi0tff7zn+/7TofvAxhlvie/YYdZdvv27R/84Ae7X6K2tW 2w9 t2FMPyz6qc//Wl8hamJ89u//dvnz5+/fv16uBS3VqvF7ux2u6kDUnFh7vtOh38VieLB6L57zoZPw/Daeh8T/2VHh0rfeOONuCvr1KlTS0tL4QzmMOreiBfb9V2t4uvpe+peaO4dbX9S39DC4fhut3v69OkHHnjg8OHD2Wy2Vqs9+uijP/jBD/7kT/7kjm4PUzu6xrtoZt++fcmj 8H/ 913+9+29KmUzmX/7lX0Z5F6nR4ON7jycpDnrvg/aLhxm9yy1A/FrSOwfHnjuZTObgwYNf+MIXnn/++f/6r/967bXXarVaXGibzWbvhVzheYbfynLIOpjZ7uIwpOR7S/xYGuPKkkHXlMT/TV6jN/rHVTh8c+jQoXhLhszI15hve5Cl7zfFXV4Tc+jQoZWVlfDdN96ze3Fx8ZVXXhnj+sF4QHb4YfG9vVAmeWH4kBOMdn9odQzJM+uHNGjy5t1xLvdeZHP8+PEzZ87E+bXTRWiU1STeLH7bGwf3Nei4WPICmh191Um9/XgnkkwmMz8/P8qR7uHTZOzLboa7ePFivPX8zMxMpVKp1Wrtdvu5557b6f6e48ePx3V8xMOOqe8AY7+d5GLWbDZ3M1BG7wUrwzfpY2/Wtl3A+s7xEU+zjuf8xCVzN3Nna2ur91PmyJEjZ86cSd4UdFD27XSDllybdn/yK1LyPrG2thbXh76nlA3Zsty6dSueFJ/assRN3vr6+ugnPsfVPn5TnJ6eTt41q1Kp7GZDPKgtMntxfnq4EXClUnnllVeuX79+8eLFOJ7f2Nvxvp8EexhzyW/kyU/KIUvCbi7z31HxD3rwkM13nImpm3P2neP79u0b9Mk3/AN4lEWl2Wzu9LqQUb4kxPdVr9dHX616z+56+OGHk2tuuVze5f6VO3T+bhigKoxb 9I1 vfCMcNxz7oGFMuuEDAsS1b7zRf3pNT08nF4P5+fmxRwWKb2F1dXXIQATxLQxZkXdp7Ei9cuVKeHmpuTD23Ak3OBg05WNxDjq7dKffgpLP41RIKUk6GsLtcLb9mpu0tLQ06CMk+YV+jFPjk+euhX2T8QhapVIZvhNl22+Kfc952uXHxtra2uzsbLxr8F7pLfitra3xLjUYZTont859P+ 3W1 tZGHJdnb+OjXC7Hj65nn31221mful/ltldi7ejKmORPB2V9mEeVSmX4GSN 9J/ KQi8zixSg7itS +h/ CefPLJ5Kz87Gc/O/wryhiDp+6yLzc2NgqFQvh6tvtxizL/d9/2pUuXBsVr6IP5+fnUHx 1j7 3J0 /vz51Jg1o38lTs6X5CgQQ9bE3ewR381qu+0IO3Hw2t55usu5Mzx 5w9 gXfR8wfBL1fg07ePBg3AK3Wq1BLxUp+V6xtbX11FNPhe3R5ORkvV7v/bof26LRaKQOLK6trZ0+fXrQd9NDhw7FrV6z2Xzqqad2tC8tdebloUOH4oh6YTO0mxV4R5c0jv4pFV7znhx0Tt7UK/lqQ0feua/CyTopl8upCbW2tpZMul1+Du3oEO3+/fvj4rS+vt63wLa2tkLHVyqV1JmpgzIo/Hs+n0+N1B3fY9+D6clX3vebw4ULFzqdzvz8/KDvFYNGLgyrZKPRGDSRH3744bhs1Ov1Rx55ZDezO1mT6+vrpVJp7JFT +i7 2uzxpZH5+PkzqZrO 5J0 O6nDx5Mk75Wq 3W9 znr9Xqn05mcnNyrve/RSy+9lPqC/cgjj2z7vq5cuVIoFOJyuH///vgkg95CvD3Enr+F5DwdvsGs1WpxOP1klpVKpUGrxm7mzo0bNwZ9voR1vFQqDTonsu/O3biWxbOot7a24iPDnvL433336Id1eUej5zImN/y508IB1nANWrVabTabKysrzWbz4sWLs7OzcT/f1NTU6upq32dInlN14MCBubm5xcXFc+fOhRvef/WrX42r9OTkZO/NiGdnZ+MVcGH9X1pa2tjYWFlZWVpampubS93+Kz7bxMREt9vtvTVi8uDC448/nrx518LCQvxbvbdp3tzcDL87MTHR+9Pk/cRmZ2d/8YtfDLkxYyaTWVxcfOONN1L3C45/fWpqqlgsFovFY8eOFRNmZmYuX748yoxLvp5sNvulL31pcXFxbm5ucnJyYWFhaWkp/q3UVIpvM0yfbW/mdvHixdSPTp8+nfzTMzMzX/rSl6rVapjj586d63a78a/3vXX7IL/4xS+Sx53n5uZ2ujyHfY3hutTUn97c3Az3VZqZmUlOkzAlJycnX3zxxdSzvfjii+E99t4sOO7UnJiYmJubm5ubm5qampmZ6b39YyaT+cQnPrG4uLiysrKysnL16tWZmZkDBw4MnzLVajW5Xpw7d25xcfHpp58uFotTU1MrKyvhM3ViYqL3/njJWZzJZI4dO3b16tX19fVwS7elpaXHH388dbe3xx9/PC6ZvatVGCohvJ5sNjs3NxdX5M3NzXh25uTk5MbGRuoOcmfPno2vZNBknJiY6Pt3k3eoC9M59ZjkYIHhMamTPsO/zM3Nhbc/im63e+zYsTg1Ur8Y1vFsNvvtb3+7d+mN93LMDL4P57YuXryYukTp2LFjYQFYWloKS9Hly5fDNjZukVJvIW5Xw9LSOzd7V5Dwi08//XT8uwsLC6nfXV9fn5mZCc88OTnZ99aIYeGfmJiYmZnpneypERLCZfiLi4vhUyOM2z/o3txjz52wNhWLxaWlpeQitL6+Hj4Bi8ViatFKLvMLCwu9ryTO64mJicnJyWKxGFaN1DOExzzwwAOzs7NXr14Ns6/ZbJ49e3ZycnLIYo97cL9rDLl 1W3 Kn46C7iPbdOiS/m4YNTepjNdzncNBtl3uFu6OGPSKpQ8zhkETv/YuTh9Lm5+dbrdaQceDCXWV730KpVIrfjwfdNyL1Rnr3bCXvMzv68OO9Nyvf9ka68TWH+xSn9gfk8/kwKu+QQ5ND7gtcKBRSN8wd9FTxefpO5yHCLBg0nbddAlO3UY7Pk8/nK5VKs9msVqu5XC6fz/feUTq58yOXy1UqlTAkUFiKKpVK6tbPqTu/JydyvFdvmD6FQo8rwegAAB/ZSURBVKHvUd1CoTBK2aQ6Kc 7i8 FeSS 2w+ n0/dvT2c3Thodmez2fCmwsrS+yJLpVLq21QYcypOpXq9PuTgaZhfg346MzPTarXiFO49 7j9 885LL5eJ61263R9yvmfytbW1ubib/6Pz8/NLSUryJa1zLRtmWDrpR9XCdTqdSqYzy1vou0qlvO2Gq1uv1q1evxsv+et/CoD8R8mjI2QupWda7cUiuv8Mvu+l7R/vdz53USwpnasWvW9VqNXmX7SGvMPXMqZneu +i2 2+0hp1RWKpW+d/dmz03syZAiDJIaOieXy8UEOXLkyOTk5Ojj/ly6dKnRaHS73R//+MeFQqFcLlcqlXA0fHl5OVwlFz56m83m/Px86kD5xsZGvV5vNpvtdrvdbodveIVCIZ4uc+PGjd6jIXG7kLoCemtrK6TDqVOnjhw5Ei6V7XQ6vZvmXC43PT0dz/Luu7a3Wq0Qo/l8PjlyRNiKpd7ItWvX4mO6 3W4 2m01Ow9OnT8ejIeEjfHV1te9NKZrN5igTP0y3arWazWY/97nPVavV+HpSMzckUbPZDJvaeHpQmDKVSiV1PlA8QNztdldXV3uP8CZn2c9//vNPfvKT1Wo1npx0+fLluLOq0+m02+1BtwuPB+mSsyBMnE6n89Zbb924caNcLu/oTLjV1dWvfvWrrVYrfv5NTk5++ctfHnQ76bD0Jj8s8/l8COjhc+HSpUt/+7d/+5Of/KRcLler1TgNl5eXW63WmTNntra26vX6t771rTCXQ/ONflfr5eXler0e5lGhUHjsscfiqZDXrl3rdDrJD6rel7qxsVGr1b7zne+srq7GFbBcLn/uc58Lx/LiiWW//OUvP/jBD8ZFt9VqPfbYY6lzAMJULZVKYXXb2Nh49dVX+9Z/uEX7oAtH9u3b99GPfrRWq4VxDFKnN+Tz+dS83tjYSC4bYZ1NHnwMeR32LcXX0+l0UofUC4XCK6+8MvpSdO3atUaj0Wg0wpOHIRfK5XLf8RYGvdnUq93p+UXhQr2wCYob50Kh8Du/8ztHjhzZdr3Y2NiYn5+P3zmLxeJDDz006C2EUzN70+fgwYNxK5r6sMjlco1GI7UFDpdpJm85kzwj88SJE3Hj+Qd/8Af//M//HDZHIe 9G/ 8TZ0dzJZDIvvPDC1772tU6nE09Zeeihhz75yU+Wy+XUpm9tbW3QofmwYKcm2te//vX3v//9pVIpfuT13UrEMe/CO/3Lv/zLvqOv4wA3DNvNEPZuDvom2m63U5dwmmh7NeX77lbk3a7b7caTAgftmbt69WqyVk20uy55EvB7cFtkAbgrfkVMcx/Y2toKR5RmZmaee+65vo85dOjQ+fPn44nwezse5HvZ/v373U/ivnT69OlwovaQXfinTp2anJyM+bK2trYnF3rDeNsiE+GucAU394N4nem2o0jGz7y9Gq8O7ktra2uhI7cdTSn5Ux0JUhLelV599dXwH7/3e7+37YPDNYO7HCQF7m+dTiesKQ899JCpAUhJ7nPxUoB4p+MhH5C3b9/O5XKjX+4N703hosy+V60lxdEE93Dcfsa2o8FiQUrCjoUTJQddCQgEhUIhfEPbNk3COpXL5e7EcNzs1O7vug5SkvduIGaG3tAvk8lcunSp1WoVi8WLFy+aaDDE/v37wwDd9Xp9yP1CVldX6/V6GLNmz+8QCEhJeIccP348HFy7evVq3/vqbm1tnT17NtxrK3n3IGCQ8+fPx2Hk+9bk8vLyiRMnwl3vRx+wkDtql7efhTEYopz7RBg1PdxYpVQqhdF0M5lMu90OA+2GgXwbjYZD2zD6ahXunhVGqH7ooYeKxWK4zUG9Xg/rVK1Wc +H2 XRfGmW80GvHmUuFOVGG8bhs9pCSM6rXXXvu7v/u71dXVzc3NGzduTE5OZrPZI0eOFIvFU6dOpW4uAmzr1q1bzWZzdXW12WzeunUrfGRks9lw41M 7I+ 8RL7zwwrPPPvuxj33s/3zAT0yEGzy67wtSEgCAe5FzJQEAkJIAAEhJAACkJAAAUhIAAKQkAABSEgCAu+xXTIJ73PLycqvV6nQ6rVbrpZdeMkEAACl5/7t06VKj0cjn8+EmtimhDsN/53K5QqFQLpdTNx975JFHvvWtb 3W7 XRMTALg3udvNnU3JsDcx9aNcLpfP5//7v/97fX09+e+lUqlerx86dCg+Q6fTaTQa8RnMLABASr63XLhwoVqthnuhLiwszM3N7du3L/50eXn58uXLV69ezWQyExMTBw8evH79evJ+qcvLy6VSSUoCAPcgl93cceVyOVZgsVhMdmQmkzl+/Pjzzz9frVbDYzY3Nz/zmc+8A6/q1q1bly5dOnz48KVLl8wjAGA8zpW841JnQPZ1/vz5eCC71WptbGzEw9x3yNTU1ObmprkDAOyGvZL3irDzMqjX63f6z8WOLBQKJj4AICXfBZrN5qAfxRMi3 2G5 XM58AQCk5LvAiN32DmTl1NRU +I9 Rjr8DAPTlXMl3SLiC+yMf+cigB3S73fCYycnJ48ePj/Enbt68ubS0lMlkHnjggd///d9PXgbe5zvE+/7/t4hbt26lrgTqa3V1dXV19cCBAx/+8IeLxeKQR7711lv/9m//tr6+Hp45m83+0R/90Yc//GHLAABIScYUruD++c9/PugBX/nKV8JjHnvssZ0++bVr1+bn59vtdvIfC4VCvV4ftNPxP//zP2MjZjKZQfG6sbFRrVbDAJnxH3O5XK1We/LJJ3sff/bs2a985SthWPV8Ph9eUjabffTRR2u12v79+y0JAHA/cYD7HZWqvWhtba3RaIT8CgMDjWhra+vEiRPlcjmXy5VKpeSR8VarVSqVtra2Uo+/cuXKBz7wgXgTnfBbExMTExMTJ06cSD74hRdeCD0aOvX27dsrKyuFQqHT6VQqlUceeST1Yh555JFarXbq1Knw4Ndff73T6dRqtW6 3W6 /XkzEKANwnbnPnxaldrVZ7f9pqtcI5lNlsttVqpX6avFKn0+mkfhrasdFoJP9xYWEh/kq5XE7+aH5+vncZiGdwlkql+MhGo5HNZjOZTLPZTD5Dp9OJj5+fn4//XqvVQgp3u93Ui1xcXAwZbUkAgPuMvZJ3wdra2vLy8urq6vLy8tmzZ0ulUuizpaWl4RfB9D1AXCwWT548mfyXL3zhC3HXZmo/6MWLF1N12 2w2 33zzzRCp169fj6+wUql0u91qtZo69r1///5QjZlMpl6v37x5M/x3+MdSqdR75uXMzEwmk7nTI2UCAO88KXkXNJvNUql07NixUqlUq9XCQe12u73t1Tapo9VhL+Ds7GzvI+Mola1Wq/e3to3U+fn5TqeTzWb77sWMQ1F2Op1woU9m8LH7TCZz8OBBMx0A7ksuu3mHhKuzw3+fOXPmj// 4j+ P12qOX1k9+8pNU8z333HN9Hzk9PV0sFsMlNa1WqzdS4+vp/es3b94MR9Wnpqb67gednp6emppaX1/PZDI/+9nPkj+q1+t/+Id/+PnPfz71K+4eDgD3JXsl3yGplioWix/72MeKxeKO9tjFo8lDLC8vP/vss4888kjoyJCSQ17PBz/4wdSP/uZv/ib8R 7w0 p1d82RsbG+E/8vl8 +I+ 5ubnDhw+fPXv20qVLa2trZj0A3MfslbwfbG1t1Wq1VqvVbDZ7L5Tue+l0NpsNpdi7zzKm5/r6+uHDh3O5XGpk9Xa7HQ9nx6HO6/V6vH68 3W7 H8 ylDXIYrbwAAKcm95cKFC/Eim3K5XC6XP/WpTx08ePDo0aN990cGk5OT4Qj1cL0dmc/nQzIWCoVcLhcz9Pjx481ms1wu95br5cuXv/e9 7w0 Z5BIAkJLcBU899VS9Xs9kMqVSqV6vj36V9Obm5raPKRaLKysro7+Y48ePh/2RtVotFZStVqtcLrdaLaOUA8D9xLmS72KXLl0KHVkoFK5fv57qyLg3MZ7FuFO3bt3a6a/s37///Pnzb775ZqvVqlarpVIpvozUUW8AQEoyqomJiT1/znB9zMTExPBE+7Vf+7Xef/z1X//1QY8Pw0BmMpkbN26McqFP8PLLLyfTc3p6+vz589evX3/zzTdPnz4dn9CSAABSkh3b89FwlpeXw0Hq27dv9471s 7W1 Fa+M6Rtwv/qrvzromR999NH4muPV3Nt64okn4jXjKXFsoN/6rd+yJACAlOTekhpz59atW+VyeciY4ZnEaD69l+YcOnQoDkJer9eXl5dHeQ25XG74X8zs4lA7ACAlGUfyAurktSzhAurw35VKJd7SZnl5+dixY7lcbni3TU5Oxli8du1aJpNZXV2NSVqr1cKTdzqdcrkcHpBy5cqVo0ePxiPg7XY7nLjZ64UXXggdWalUzFAAkJKMamtr6+zZs/F/Q7fFYb 2H2 9jYWF5ejgP9ZDKZRqMRz0fcv39/vKthq9XK5XInTpw4evRoqVSam5t76aWX4m+1Wq3eQ8/FYjH+tFwuT0xMHDt2LO6hPH78eL1ez2azsSYPHz781FNPXbhw4cKFC2fPnj18+HClUikUCmHvZmjQZrN59OjR5F7M8PYXFhZyuVyj0XD5NgDcb25zZ8S7YA+ysrIy/BlSAzomtdvt8JjUPbLz+Xyz2Qw/igepg2q1mnzyzc3NOKJ4MDc3l3oBV69eHbRrM5/P12q1+Mjeo+SlUim+gLm5ufiCAYD7yYSbI98hN2/e3NzcDLfYvnnz5sGDB2/cuHHkyJFMJrO6uprNZsN/jyjuVgz3zo77FDOZzGuvvfbtb387k8lMTk6WSqV9+/bFFxBPiHzrrbd+4zd+Y9DThutyTp482fcxy8vLzWYzXOIzMTFx5MiRhx9+uPfF37x5c3V1dXNz8z/+4z/eeOONsOMz9ZIAgPuMlAQAYEzOlQQAQEoCACAlAQCQkgAASEkAAJCSAABISQAApCQAAFISAAApCQAAUhIAACkJAICUBABASgIAICUBAEBKAgAgJQEAkJIAAEhJAACQkgAASEkAAKQkAABSEgAAKQkAAFISAAApCQCAlAQAQEoCACAlAQBASgIAICUBAJCSAABISQAAkJIAAEhJAACkJAAAUhIAACkJAABSEgAAKQkAgJQEAEBKAgAgJQEAQEoCACAlAQCQkgAASEkAAJCSAABISQAApCQAAFISAAApCQAAUhIAACkJAICUBABASgIAICUBAEBKAgAgJQEAkJIAAEhJAACQkgAASEkAAKQkAABSEgAAKQkAAFISAAApCQCAlAQAQEoCACAlAQBAS

Ngày đăng: 15/02/2015, 20:40

TỪ KHÓA LIÊN QUAN