1. Trang chủ
  2. » Giáo án - Bài giảng

Đề hay của Thầy Thuận

5 121 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 136,25 KB

Nội dung

ĐẠI HỌC SƯ PHẠM HÀ NỘI KHOA TOÁN-TIN ĐỀ THI THỬ ĐỀ THI THỬ ĐẠI HỌC - CAO ĐẲNG 2013 Môn thi : TOÁN Thời gian làm bài : 180 phút (không kể thời gian giao đề) Câu I. (2,0 điểm) Cho hàm số 2 3 2 x y x + = − . 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2. Tìm m để đường thẳng ( ) : 2 d y x m = + cắt (C) tại hai điểm phân biệt sao cho tiếp tuyến của (C) tại hai điểm đó song song với nhau. Câu II. (2,0 điểm) 1. Giải phương trình ( ) 2 2 3 sin cos 2 cos tan 1 2sin 0 x x x x x + − + = . 2. Giải hệ phương trình ( ) 3 2 2 3 9 3 1 9 2 3 x y x xy x x y  + − − =   + − =   . Câu III. (1,0 điểm) Tính tích phân ( ) 2 3 4 2sin 3 cos sin x x x dx x π π + − ∫ . Câu IV. (1,0 điểm) Cho lăng trụ ABC.A’B’C’ có cạnh bên bằng a, đáy ABC là tam giác đều, hình chiếu của A trên (A’B’C’) trùng với trọng tâm G của ∆ A’B’C’. Mặt phẳng (BB’C’C) tạo với (A’B’C’) góc 0 60 . Tính thể tích lăng trụ ABC.A’B’C’ theo a. Câu V. (1,0 điểm) Cho các số thực x, y, z không âm thỏa mãn 2 2 2 4 3 x y z + + = . Tìm giá trị lớn nhất của biểu thức: ( ) 3 2P xy yz zx x y z = + + + + + . Câu VI. (2,0 điểm) 1. Trong mặt phẳng tọa độ Oxy cho tam giác ABC vuông cân tại A. Biết phương trình cạnh BC là ( ) : 7 31 0 d x y + − = , điểm N(7; 7) thuộc đường thẳng AC, điểm M(2; -3) thuộc AB và nằm ngoài đoạn AB. Tìm tọa độ các đỉnh của tam giác ABC. 2. Trong không gian Oxyz cho điểm A(3; -2; -2) và mặt phẳng ( ) : 1 0 P x y z − − + = . Viết phương trình mặt phẳng (Q) đi qua A, vuông góc với mặt phẳng (P) biết rằng mặt phẳng (Q) cắt hai trục Oy, Oz lần lượt tại điểm phân biệt M và N sao cho OM = ON. Câu VII. (1,0 điểm) Gọi 1 z và 2 z là hai nghiệm phức của phương trình ( ) ( ) 2 2 1 4 2 5 3 0 i z i z i + − − − − = . Tính 2 2 1 2 z z + . Hết Họ và tên thí sinh:………………………… Số báo danh: ……………………………… Câu Nội dung Điểm 1. (1.0 điểm) Khảo sát và vẽ đồ thị hàm số. * TXĐ: D = R\{2}. * ( ) 2 7 ' 0 2 y x = − < − . Vậy hàm số nghịch biến trên từng khoảng xác định. 0.25 * Hàm số có tiệm cận đứng x = 2, tiệm cận ngang y = 2. 0.25 * Bảng biến thiên 0.25 Giao Ox: 3 0 2 y x = ⇔ = − . Giao Oy: 3 0 2 x y = ⇒ = . Đồ thị: 0.25 2. (1.0 điểm) Tìm m để đường thẳng … Phương trình hoành độ giao điểm: ( ) ( ) ( ) 2 2 6 2 3 0 * 2 3 2 2 2 x m x m x x m x x  + − − + = +  = + ⇔  − ≠   0.25 (d) cắt (C) tại 2 điểm phân biệt khi và chỉ khi phương trình (*) có hai nghiệm phân biệt và khác 2. ( ) ( ) ( ) 2 2 0 6 8 2 3 0 4 60 0 2 0 g m m m m g ∆ >   ⇔ ⇔ − + + > ⇔ + + >  ≠   (luôn đúng). 0.25 I (2.0 điểm) Với điều kiện trên giả sử đường thẳng cắt đồ thị hàm số tại hai điểm có hoành độ 1 2 x x ≠ . Ta có 1 2 6 2 m x x − + = . Tại hai giao điểm kẻ hai tiếp tuyến song song khi và chỉ khi ( ) ( ) 1 2 1 2 ' ' 4 y x y x x x = ⇔ + = 2 m ⇔ = − . 0.5 1. (1.0 điểm) Giải phương trình… Điều kiện cos 0 x ≠ 0.25 ( ) 2 2 3 sin cos 2 cos tan 1 2 sin 0 x x x x x + − + = ⇔ ( ) 2 2 3 sin 1 2sin 2sin 1 2 sin 0 x x x x − + − + = 0. 25 2 2 2 sin 1 2sin sin 1 0 2 1 6 sin 2 5 2 6 x k x x x x k x x k π π π π π π  = − +  = −     ⇔ + − = ⇔ ⇔ = +   =    = +   . 0. 25 Kết hợp điều kiện, phương trình có nghiệm 5 2 ; 2 6 6 S k k π π π π   = + +     0.25 II. (2.0 điểm) 2. (1.0 điểm) Giải hệ phương trình… ( ) ( ) ( ) 2 2 2 3 3 1 3 1 3 1 3 2 3 3 x x x y x x hpt x y x x x y  + − =  + =  ⇔ ⇔   − = + + − =    hoặc 2 3 2 1 3 2 x x x y  + =   − =   0.5 Nếu 2 3 13 3 1 2 3 1 11 3 13 2 x x x x y y  − + =   + =  ⇔   − = − +   =   hoặc 3 13 2 11 3 13 2 x y  − − =    − −  =   0.25 Nếu 2 3 17 3 2 2 1 3 10 3 17 2 2 x x x x y y  − +  = + =    ⇔   − = − +   =    hoặc 3 17 2 10 3 17 2 x y  − − =    − −  =   0.25 Tính tích phân… ( ) ( ) 2 2 2 3 3 3 4 4 4 2sin 3 cos 2sin 3 cos cos sin sin sin x x x x x x x I dx dx dx x x x π π π π π π + − − = = + ∫ ∫ ∫ 0.25 2 2 2 2 1 3 2 2 2 4 4 4 4 2 4 cos 1 1 1 1 1 sin 2 sin 2 sin 2 sin 1 1 1 cot 2 2 2 2 2 x x x I dx xd dx x x x x x π π π π π π π π π π π π   = = − = − +       = − − − =     ∫ ∫ ∫ 0.25 ( ) ( ) 2 2 2 3 3 4 4 2sin 3 cos 2sin 3 7 sin 2 2 sin sin 2 x x x I dx d x x x π π π π − − = = = − ∫ ∫ 0.25 III. (1.0 điểm) Vậy 1 2 2 2 6 I I I = + = − . 0.25 IV. (1.0 điểm) Tính thể tích… Gọi M,M’ lần lượt là trung điểm BC, B’C’ ⇒ A’, G, M’ thẳng hàng và AA’M’M là hình bình hành . A’M’ ⊥ B’C’, AG ⊥ B’C’ ⇒ B’C’ ⊥ (AA’M’M) ⇒ góc giữa (BCC’B’) và (A’B’C’) là góc giữa A’M’ và MM’ bằng  0 ' 60 M MA = . 0.25 a A' C' B' C B A M H M' G Đặt x = AB. Ta có ∆ ABC đều cạnh x có AM là đường cao. ⇒ 3 3 ' ', ' 2 3 x x AM A M A G= = = . Trong ∆ AA’G vuông có AG = AA’sin60 0 = 3 2 a ; 0.25 0 3 3 ' ' os60 2 3 2 a x a A G AA c x= = = ⇔ = 2 2 0 2 1 3 3 3 3 3 . .sin 60 ( ) 2 4 4 2 16 ABC x a a S AB AC ∆ = = = = 0.25 2 3 . ' ' ' 3 3 3 9 . 2 16 32 ABC A B C ABC a a a V AG S ∆ = = = 0.25 Tìm giá trị lớn nhất và giá trị nhỏ nhất của… Đặt x y z t + + = 2 3 2 3 t   ≤ ≤       0.25 ( ) 2 2 2 2 2 1 1 4 2 2 3 xy yz zx x y z x y z t     + + = + + − − − = −       nên 2 3 4 3 P t t = + − 0.25 Xét hàm số ( ) 2 3 4 3 f t t t = + − xác định trên 2 3 ; 2 3       ; ( ) 3 2 3 3 ' 2 0 2 f t t t t = − = ⇔ = (loại). ( ) 2 3 3 3 25 ; 2 3 2 6 f f   = =       0.25 V. (1.0 điểm) Vậy 3 3 min 2 P = khi 2 3 3 t = ⇔ 2 trong 3 số x, y, z bằng 0 số còn lại bằng 2 3 3 Vậy 25 max 6 P = khi 2 t = ⇔ 2 3 x y z = = = . 0.25 1. (1.0 điểm) Tìm tọa độ các đỉnh của tam giác ABC Đường thẳng AB đi qua M nên có phương trình ( ) ( ) 2 3 0 a x b y − + + = ( ) 2 2 0 a b + ≠ ( )  0 ; 45 AB BC = nên 0 2 2 3 4 7 cos 45 4 3 50 a b a b a b a b = +  = ⇔  = − +  . 0.25 Nếu 3a = 4b, chọn a = 4, b = 3 ta được ( ) : 4 3 1 0 AB x y + + = . ( ) : 3 4 7 0 AC x y − + = . Từ đó A(-1; 1) và B(-4; 5). Kiểm tra 2 MB MA =   nên M nằm ngoài đoạn AB (TM) Từ đó tìm được C(3; 4) 0.50 Nếu 4a = -3b, chọn a = 3, b = -4 được ( ) : 3 4 18 0 AB x y − − = , ( ) : 4 3 49 0 AC x y + − = Từ đó A(10; 3) và B(10;3) (loại) 0.25 VI. (2.0 điểm) Nếu không kiểm tra M nằm ngoài AB trừ 0.25 điểm. By: Thuan TranQuang Maths – Hanoi National University of Education Tel: 0912.676.613 2. (1.0 điểm) Viết phương trình mặt phẳng…. Giả sử Q n  là một vecto pháp tuyến của (Q). Khi đó ( ) 1; 1; 1 Q P n n ⊥ − −   Mặt phẳng (Q) cắt hai trục Oy và Oz tại ( ) ( ) 0; ;0 , 0;0; M a N b phân biệt sao cho OM = ON nên 0 0 a b a b a b = ≠  = ⇔  = − ≠  0.25 Nếu a = b thì ( ) ( ) 0; ; // 0; 1;1 MN a a u= − −   và Q n u ⊥   nên ( ) , 2;1;1 Q P n u n   = =      . Khi đó mặt phẳng (Q): 2 2 0 x y z + + − = và ( ) Q cắt Oy, Oz tại ( ) 0;2;0 M và ( ) 0;0;2 N (thỏa mãn) 0.25 Nếu a = - b thì ( ) ( ) 0; ; // 0;1;1 MN a a u= − −   và Q n u ⊥   nên ( ) , 0;1; 1 Q P n u n   = = −      . Khi đó mặt phẳng (Q): 0 y z − = 0.25 ( ) Q cắt Oy, Oz tại ( ) 0;0;0 M và ( ) 0;0;0 N (loại). Vậy ( ) : 2 2 0 Q x y z + + − = . 0.25 Tính 2 2 1 2 z z + Có ( ) ( )( ) 2 ' 4 2 2 1 5 3 16 i i i ∆ = − + + + = . Vậy phương trình có hai nghiệm phức 0.25 1 2 3 5 1 1 , 2 2 2 2 z i z i = − = − − 0. 5 VII. (1.0 điểm) Do đó 2 2 1 2 9 z z + = . 0.25 . HỌC SƯ PHẠM HÀ NỘI KHOA TOÁN-TIN ĐỀ THI THỬ ĐỀ THI THỬ ĐẠI HỌC - CAO ĐẲNG 2013 Môn thi : TOÁN Thời gian làm bài : 180 phút (không kể thời gian giao đề) Câu I. (2,0 điểm) Cho hàm số. điểm) Cho lăng trụ ABC.A’B’C’ có cạnh bên bằng a, đáy ABC là tam giác đều, hình chiếu của A trên (A’B’C’) trùng với trọng tâm G của ∆ A’B’C’. Mặt phẳng (BB’C’C) tạo với (A’B’C’) góc 0 60 . Tính. 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2. Tìm m để đường thẳng ( ) : 2 d y x m = + cắt (C) tại hai điểm phân biệt sao cho tiếp tuyến của (C) tại hai điểm đó song song với nhau.

Ngày đăng: 04/02/2015, 20:00

TỪ KHÓA LIÊN QUAN

w